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1. Introduction

Small particles can be confined to a nearly pla-
nar region just above the driven electrode in RF-
driven plasmas. Under proper conditions they 
will arrange themselves into a regularly spaced ar-
ray called a “Coulomb crystal” [1]. Similar struc-
tures have been seen in colloidal suspensions [2], 
the positive column of glow discharges [3], thermal 
plasmas [3], and ion traps [4]. This phenomenon 
has attracted considerable interest because of the 
insight it may lend into the formation and dynam-
ics of conventional crystals, and because of possi-
ble technological applications.

A dust particle becomes negatively charged in 
the plasma in order to balance the electron and ion 
currents impinging on the surface. In the conven-
tional model of a Coulomb crystal, the negatively 

charged dust particles are spatially constrained by 
electric fields associated with the electrode geom-
etry and other factors such as momentum transfer 
from the ion drift current. Acting together, these 
forces form a trapping site, within which electro-
static repulsion between like-charged dust parti-
cles produces a lowest energy configuration hav-
ing translational symmetry [5]. In this model, the 
interparticle force is repulsive. Condensation into 
a localized “crystal” is the result of the confining 
potential.

There is some empirical evidence that under 
the proper conditions an attraction may exist be-
tween charged dust particles without the presence 
of a confining potential. Chen et al. [6] present pho-
tographs of isolated “molecules” containing six 
particles, and claim these to be evidence of an at-
traction between the particles which is not due to 
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Abstract
We report the results of a study of the electrostatic interaction between negatively charged particles 
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positive ion density to the local electrostatic potential that we examined, we find that the interaction is 
repulsive for all particle separations.
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a trap-confinement mechanism. Further, there are 
several reports that particles in adjacent strata are 
aligned, with the particles in the upper stratum 
aligned directly above those of the lower [7 , 8]. 
These data might also be interpreted to imply an 
attractive interaction. Recently, however, Melzer et 
al. have shown that this behavior is probably due 
to the attraction of the lower dust particle to an ion-
rich wake formed by the upper particle [9]. The ex-
istence of a wake-mediated mechanism does not 
preclude an attraction between the particles them-
selves, but it does show that the observation of in-
terstratum alignment does not imply it. Konopka 
et al., on the other hand, report a direct measure-
ment of the interparticle potential function in di-
rections parallel to the electrode surface. They find 
a repulsive potential, which is well described by 
a screened potential similar to the Debye–Hückel 
result [10].

The idea of a net attractive force between dust 
particles is intriguing, in that it raises the possibil-
ity of dust “molecules”. Several workers have pro-
posed mechanisms that yield a net attraction be-
tween charged dust particles. However, most are 
based on ion inertial effects [11–13] rather than a 
purely electrostatic mechanism as in molecular 
bonds. An exception is a model proposed by Re-
sendes et al. [14]. A similar model has also been 
proposed independently by Chen et al. [6]. These 
authors calculate the total electrostatic energy of 
a system of two particles as a function of the par-
ticle separation. The resulting curve has a min-
imum, reminiscent of a Morse potential. They in-
terpret this minimum as implying a net attraction 
between the particles. The result of Resendes et al. 
has been used by Astrakharchik et al. [15] to model 
the formation and dynamics of particle clusters in 
a plasma.

In this Letter we have two objectives. First, we 
point out that the use of total electrostatic energy 
curves (Refs. [6 and 14]) in a non-closed system is 
not appropriate for a force determination. A nega-
tive slope in the potential energy vs. particle sep-
aration graph, for this type of system, does not 
necessarily imply an attraction because of an inde-
terminant energy flow between the plasma and the 
system. The force can be calculated directly from 
the electrostatic force on the particle in question. 
For the Debye–Hückel approximation, this calcula-
tion is simple, and the result is that the force is ev-
erywhere repulsive.

Because of the novelty of a classical “molecular” 
bond between the particles, we were interested to 
see if other approximations relating electron density 
to electrostatic potential might produce an attraction 
based on an electrostatic mechanism. Accordingly, 
we have carried out calculations for several such ap-
proximations. Our goal was to determine whether 
or not a net electrostatic attractive force might occur 
under any conditions. The second objective of this 
paper is to report and discuss these results. In all 
cases we have investigated, we find a repulsive force 
on the particles for all separations. All our approxi-
mations assume thermalized positive ions. This as-
sumption is certainly not valid in the sheath of the 
driven electrode of a low-pressure RF plasma where 
the ion wind produces a force apparently attracting 
the downwind particle to the upwind, but not vice 
versa [9]. Our results complement these findings in 
that they show that a purely electrostatic mecha-
nism of attraction is unlikely.

2. Debye–Hückel approximation

In the Debye–Hückel approximation the potential 
is a solution to the Poisson equation 

(1)

where Φ is the electrostatic potential and ρ is the 
charge density. In addition, the charge density is 
taken to be a linear function of the local electro-
static potential, Φ: 

(2)

where qe is the electronic charge, n0 the plasma den-
sity, Tp the “parallel” combination of the electron 
and ion temperatures, and the ions are assumed 
to be singly ionized. Using Equation (2) in Equa-
tion (1) yields, for an isolated spherical particle of 
charge Q and radius a, 

(3)

where λD = (0KTp/qe
2n0)½, and the approximation is 

valid for a  λD.
Equation (3) applies to an isolated particle, but 

since Equation (2) is linear in Φ, the potential for 
multiple non-polarizable particles is the sum of 
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terms like Equation (3), one for each particle. Thus, 
the total electrostatic energy of two particles of 
charge −Q immersed in the plasma is 

UT = ½∫(ρ1 + ρ2)(Φ1 + Φ2)dV.                 (4)

where ρ1,2 includes the charge density correspond-
ing to the particles and the sheath. This integral can 
be evaluated analytically for the case of two point 
particles, yielding 

(5)

Equation (5) has a minimum at (1 + √—3)λD ≈ 
2.73λD. Resendes et al. [14], obtain the same result, 
as have we [16] and Riley [17]. Chen et al. [6] use a 
simpler, more approximate method to calculate the 
energy, but arrive at a similar conclusion.

It is tempting to calculate the force from dUT/dr, 
using Equation (5). This is the procedure implied 
by Resendes et al. [14] and Chen et al. [6]. It is in-
correct in this case, however, because the system is 
not isolated. In changing the separation by dr, be-
side the mechanical work, F dr, the plasma ambi-
ent also supplies or sinks energy, which must be 
considered. The correct result for the interparticle 
force can be obtained simply from F = −QE, where 
E is the electric field at one particle from all charges 
except that particle. Because the Poisson equation 
with the Debye–Hückel approximation is linear, 
superposition applies, and the plasma charge den-
sity is the superposition of two spherically-sym-
metric distributions given by (2) and (3). The result 
is everywhere repulsive, with magnitude (in the 
limit a  λD) 

(6)

3. Other approximations to the plasma state

Two assumptions underlie the Debye–Hückel ap-
proximation: thermodynamic equilibrium, and 
the validity of a linearization of the resulting 
Boltzmann exponentials. Both assumptions are in-
valid for conditions typical of a Coulomb crystal 
experiment. In order to explore further the possi-
bility of an electrostatic attraction between particles 
we have also investigated other approximations to 
the plasma state. These approximations are also of 

limited validity. However, they do provide some 
insight into the range of behaviors the underlying 
mathematics might allow.

All cases we have investigated assume that the 
charge density is a function of the local potential, 
Φ, and this function is used in Equation (1). Since 
the Debye–Hückel approximation involves a linear 
relationship, we also investigated both sublinear 
and superlinear relations in an attempt to bound 
the likely behavior. For the calculations we describe 
here, we considered two particles, and assumed cy-
lindrical symmetry along the interparticle axis. In 
order to investigate possible geometric effects, we 
have looked at two cases: (1) the particles are cylin-
ders aligned with the interparticle axis, and (2) the 
particles are spheres. For the cylinders, the diam-
eter and length were taken to be equal, and for 
comparison the diameter of the sphere was taken 
the same as that of the cylinder. For the cylinders, 
Equation (1) was solved using a standard, rectan-
gular-mesh, finite difference, successive over-relax-
ation (SOR) method, and the force was calculated 
from the surface fields according to 

(7)

where n̂ is a unit vector normal to the surface. 
This expression assumes the surface, S, is an 
equipotential.

For the spheres, a standard triangular-mesh, fi-
nite elements, SOR method was used. The force was 
calculated by calculating the Coulomb-law force 
between the two particles and between one particle 
and the surrounding positive ion sheath. In the lat-
ter case, the surface charge density on one particle 
is calculated from the surface electric field, and the 
particle surface and the surrounding ion sheath are 
divided into thin, coaxial rings. The force between 
rings at (ri,zi) and (rj,zj) can be shown to be 

(8)

where E(x) is the complete elliptic integral of the 
second kind, and λi is the linear charge density of 
the ith ring. The force on the particle is then ob-
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tained by summing the force between appropriate 
pairs of rings.

In both methods the particles were taken to 
have the same fixed potential, and the system was 
placed inside a large cylinder with a grounded 
surface. The ion and electron temperatures were 
taken as 0.026 and 1.0 eV, respectively, for all cal-
culations presented in this Letter. Several val-
ues of the plasma density and particle size were 
investigated in the course of this study, but here 
we report results only with n0 = 1×108 cm−3 (corre-
sponding to λD ≈ 120 μm), and particle diameter 
and length of 33 μm (≈ 0.28 λD). Several values of 
particle potential were also investigated, but here 
we report results only for −0.2 V. For both the cy-
lindrical and spherical particles the solution vol-
ume was 0.2 cm (≈16.7 λD) in diameter and length, 
with Φ = 0 on the volume surface. (We made use 
of symmetry about the z = 0 plane to cut the solu-
tion volume in half.)

3.1. Collisionless approximation (sublinear dependence)

A well-known approximation for the dependence 
of ion density on potential was developed to de-
scribe the behavior of Langmuir probes. The ap-
proximation assumes either thermalized or mono-
energetic ions in a boundary region surrounding 
the probe (or particles in our case), and collisionless 
trajectories for the ions inside this boundary. Ex-
cept for difficulties related to bound orbits and ion 
collisions with the probe (particles), the ion density 
is easily worked out, and turns out to be a function 
of the local potential, Φ. If we assume thermal ions, 
with temperature Ti at the boundary region, the re-
sult is 

(9)

where n0 is the plasma density and qe is the un-
signed electronic charge. To obtain this result, we 
assumed the central particle to be transparent to 
the ions, and we neglected bound orbits.

Applying the same conditions to the electrons 
yields a Boltzmann-like result 

(10)

We solved Equation (1) for a range of interpar-
ticle separations with the charge density given 
by 

ρ = qe(ni−ne).                            (11)

The result for cylindrical particles, along with 
the results for the other cylindrical particle cases 
we investigated, and the analytic Debye–Hückel 
result are shown in Figure 1. Similar (±12%) results 
were obtained for spherical particles over the range 
of separations from about 1 to 4 λD.

We also calculated the total electrostatic en-
ergy as a function of particle separation according 
to Equation (4). The result was a Morse-like curve 
similar to, but shallower than, the Debye–Hückel 
result.

3.2. Boltzmann approximation (superlinear dependence)

If the system were in local thermodynamic equilib-
rium (LTE), the electron and ion densities would be 
given by Boltzmann distributions. Because of re-
combination at the particle surface, LTE is not real-
ized, and, at least near the particle, the Boltzmann 
distribution predicts a substantially larger ion den-
sity than is likely to be present. The Boltzmann dis-
tribution does provide an interesting example for 
comparison with the collisionless model in that the 
dependence of ion density on potential is superlin-
ear, rather than sublinear. For this reason, we have 
carried out numerical solutions similar to those 
used for the collisionless approximation, for charge 
density given by 

(12)

The interparticle force vs. separation for cylin-
drical particles calculated using Equation (12) is 
also shown in Figure 1.

3.3. Debye–Hückel approximation (linear dependence)

Primarily as a check of our numerical method, 
we have carried out numerical calculations us-
ing the Debye–Hückel approximation for the 
charge density (Equation (2)). The results for cy-
lindrical particles are also shown in Figure 1, 
along with the “analytic” result for the Debye–
Hückel model. The spherical-particle results 
were similar.
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The “analytic” result takes the potential pro-
duced by one particle to be of the form of Equa-
tion (3), calculates the electric field by taking the 
gradient of that potential at the location of the sec-
ond particle, and then determines the force on the 
second particle by multiplying the field at the sec-
ond particle by the charge on the particle. The re-
sulting force is 

(13)

where a is the radius of the (assumed spherical) 
particle. This problem differs slightly from the 
problem solved numerically in three ways: 

1. 	The particles are taken to be spherical, whereas 
the finite-difference numerical calculation uses 
cylindrical particles.

2. 	Taking the potential to be the superposition of 
isolated-particle potential functions is slightly 
in error because the resulting potential does not 

satisfy the boundary condition that Φ = V0 on 
the particle surfaces.

3. 	The force is taken to be QE, where Q is the to-
tal charge on the particle and E is the field at the 
center of the particle from all sources except the 
particle itself. In the numerical calculations the 
force was obtained from the spatially varying σ 
and E on the particle surface.

For particles much smaller than the separation, 
these differences should not affect the results sig-
nificantly, and good agreement is expected. As seen 
in Figure 1, the agreement is very good.

4. Discussion

The particle potentials for the results shown in Fig-
ure 1 were rather arbitrarily chosen as −0.2 V. This 
potential is approximately the potential for which 
the electron and ion fluxes impinging on the surface 
of a particle are equal for the case of a Boltzmann 
ion distribution function. Since the ion density, at 

Figure 1. Plot of the cylindrical-particle interparticle force vs. particle separation, calculated numerically, for the colli-
sionless, the Debye, and the Boltzmann approximations. Also shown is the result of the Debye approximation, calcu-
lated analytically. The particle potentials were −0.2 V, and the other parameters were as given in the text.
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the particle surfaces, for other distribution func-
tions (Debye and collisionless) is lower, the charg-
ing potential in steady state for these cases is cor-
respondingly larger in magnitude. However, we 
chose to present data for a single potential for all 
distribution functions to facilitate comparison, and 
the equal-flux potential under the Boltzmann case 
was chosen because the Boltzmann ion density be-
comes unphysically large for much larger (in mag-
nitude) potentials.

We have carried out similar calculations with 
assumed particle potentials around −1.0 V for the 
collisionless and Debye approximations. We have 
also examined several other approximations, as 
discussed below, and in all cases find only repul-
sive force.

In addition to the assumed forms for ni(Φ) dis-
cussed above, we have also looked at several other, 
quite unphysical, relationships in an attempt to see 
if an attractive force could be produced by any lo-
cal approximation for ni. In all cases, the electron 
density was taken to be a Boltzmann distribu-
tion, except that in no case was the net charge den-
sity allowed to become negative. Three cases were 
investigated: 

1. 	The ion density was taken to be a Boltzmann 
function of Φ for Φ ≥ Φ0, and to have the colli-
sionless form of Equation (9) for Φ < Φ0, where 
Φ0 is an arbitrarily chosen threshold usually 
taken to be −0.1 to −0.2 V.

2. 	ni(Φ) = n0e−q
e
Φ/kT

i, Φ ≥ Φ0, 
ni(Φ) = n0e−q

e
(2Φ

0
−Φ)/kT

i, Φ < Φ0.

Here Φ0 is an arbitrarily chosen threshold poten-
tial, usually taken to be about −5kTi. This form 
has the property that it concentrates the posi-
tive ion density in the region where the poten-
tial is Φ0.

3.  

 
where Φ0 and δ are arbitrarily chosen constants, 
typically taken to be about V0/5 and Φ0/10, re-
spectively. This functional form is similar to that 
of the previous case, in that in tends to concen-
trate ion density in regions where Φ = Φ0.

The modified Boltzmann and the Lorentzian 
functional forms (items 2 and 3 above) were con-

structed in order to place the positive ion density 
where it would be most effective in producing an 
electrostatic attraction. In all cases we investigated, 
however, the force was repulsive, and monotoni-
cally-decreasing in magnitude for separations be-
tween about 0.5λD and 5λD. Based on this observa-
tion, we speculate that there is no local functional 
dependence of ρ on Φ which will lead to a net at-
traction between the two particles.

Except in thermodynamic equilibrium, there is 
no physical reason for the charge density being a 
local function of the potential. Indeed, such models 
ignore an important feature of the physics — the 
loss of ions at the particle surface due to recombi-
nation. Perhaps a fluid model might describe the 
situation more accurately. In this model, the den-
sity is typically not a local function of Φ. Although 
we have not done so, it would be interesting to in-
vestigate the predictions of such models for this 
system.

Another approach, is to determine the ion den-
sity using a Monte Carlo approach. Choi and Kush-
ner [18] report the results of such a calculation, 
although the assumed conditions were rather dif-
ferent than those common for Coulomb crystal for-
mation. They calculate the interparticle electrostatic 
force, and find it everywhere repulsive.

5. Conclusion

Recent reports (based on the Debye–Hückel ap-
proximation) of an electrostatic attraction be-
tween negative particles imbedded in a plasma 
are incorrect because they neglect the exchange 
of energy between the positive ions and the exter-
nal plasma. Correctly done, the interparticle force 
is repulsive for all particle separations under the 
Debye–Hückel approximation. A difficult point in 
any calculation of the interaction between parti-
cles in a plasma is the determination of the pos-
itive ion density. We have directly calculated the 
force between two particles under several approx-
imations besides Debye–Hückel relating the pos-
itive ion density to the local potential. In no case 
do we find an attractive force, and we speculate 
that for any local relationship the force will be re-
pulsive. We have not, however, investigated non-
local relationships, such as would be produced by 
the fluid model.
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