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Identification and characterization of irregular consumptions
of load data

Desh Deepak SHARMA1, S. N. SINGH2, Jeremy LIN2,

Elham FORUZAN3

Abstract The historical information of loadings on sub-

station helps in evaluation of size of photovoltaic (PV)

generation and energy storages for peak shaving and dis-

tribution system upgrade deferral. A method, based on

consumption data, is proposed to separate the unusual

consumption and to form the clusters of similar regular

consumption. The method does optimal partition of the

load pattern data into core points and border points, high

and less dense regions, respectively. The local outlier

factor, which does not require fixed probability distribution

of data and statistical measures, ranks the unusual con-

sumptions on only the border points, which are a few

percent of the complete data. The suggested method finds

the optimal or close to optimal number of clusters of

similar shape of load patterns to detect regular peak and

valley load demands on different days. Furthermore,

identification and characterization of features pertaining to

unusual consumptions in load pattern data have been done

on border points only. The effectiveness of the proposed

method and characterization is tested on two practical

distribution systems.

Keywords Density based clustering, Irregular

consumption, Local outlier factor, Peak demand, Valley

demand

1 Introduction

During the last few decades, there has been a major shift

from the vertically integrated monopolistic system to the

open power market system. The restructuring of electricity

supply industry has created many new challenges in pro-

viding the secure, stable and economical electric power to

the end users [1–3]. The electric prices vary significantly

during the day due demand variations. To overcome the

peaking problems, the demand response programs are

suggested under the smart grid initiatives [4–6]. Under

demand response scheme, customers reduce the electrical

load demand during the peak-price period by rescheduling

the demand for low-price periods [4–9]. Peak clipping,

valley filling and load shifting are key tools of demand

response [9].

Power operators are concerned about irregular behavior

of electricity consumption in their decision making pro-

cess. In the load profile data, abnormal consumptions may

happen due to measurement error, undetected consump-

tion, illegal electricity connection, improperly installed

equipment, etc. [10–14]. Clustering of load profiles helps in

developing working methodology for energy losses (tech-

nical and commercial) evaluation [10–13]. For peak

shaving and distribution system upgrade, it is very essential
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to know the changes in loading at the substations i.e the

consumption behavior of customers. At the peak load, the

power losses in different feeders and different transformers

are to be estimated [15]. This will provide fair calculation

of network pricing.

Data mining and artificial intelligence techniques such

as support vector machines [11], fuzzy clustering [12], etc.

are explored in the identification of irregularities in energy

consumption. A comparison of a load profile is done with

standard or average load profile to identify the abnormal

consumption [12, 16]. Extensive experimental testing was

carried out in [17] for selection of parameter values such as

the sensitivity threshold to detect anomalous events, max-

imum cluster radius for the nearest neighbor cluster method

and parameter used for fuzzy rule extraction based on

identified clusters.

Different authors, in their research works, discussed

various methods of classification of the electrical con-

sumption data [14, 18–28]. These methods can facilitate

development of different types of demand response

strategies and improvement of grid reliability. For different

customers, the representative load patterns (RLPs) are

obtained and these are clustered on the basis of RLPs

[26, 27]. The customers of each cluster will have same load

pattern and thus, TLP (typical load profile) of each cus-

tomer of a group is a centroid of that cluster [27]. Based on

similar electrical consumption behavior, classical k-means

[23, 27], fuzzy c-means [23, 27], hierarchical clustering,

self-organizing feature maps (SOFM) [23, 27], principal

component analysis (PCA) [23], curvilinear component

analysis (CCA) algorithms [23], ant colony clustering

(ACC) [28], support vector clustering (SVC) [26], etc. have

been suggested for the classification of electrical load

profile data. Different comparison methods such as clus-

tering dispersion indicator, Davies-Bouldin indicator, sta-

bility index are utilized for cluster validity assessment

[23, 27].

A data object is characterized by a set of similarity or

dissimilarity measures which are described by distance

function. Various clustering algorithms have been applied

in separating the data object into different clusters while

employing distance function. Major clustering methods

which are applied in classification of data are partition

based, hierarchical (agglomerative and divisive) clustering,

neural network based, density based, grid based, model

based, etc. [29–31]. Partitioning algorithms (k-means,

fuzzy c-means, etc.) applied in clusters of load data need a

number of clusters as input data. In the hierarchical clus-

tering algorithm, dendrogram is created from the leaves up

to the root (agglomerative approach) or from root down to

leaves (divisive approach) with merge or divide operation

in each iteration. A termination criterion is required to stop

the iterations [23]. In an ant colony clustering (ACC)

concept, a specified number of clusters are required as

input or number of clusters is defined in post-processing

phase. In an iterative process of ACC, an initialization

phase requires a number of clusters and number of ants in

ending phase, a stopping criterion is to be defined [28]. In

support vector clustering (SVC), the final clusters are

obtained in post-processing phase, which is computation-

ally intensive [26].

The ISODATA algorithm, which includes temperature

dependency and outlier filtering, is proposed in [32] for

customer classification. For the classification of load pro-

files, the Gaussian mixture model is used in assigning the

labels, only, to the most recurrent load profiles [33]. Inter-

cluster behaviour classification model and intra-cluster

consumption volume prediction model are constructed

using agglomerative hierarchical clustering algorithm [34].

In density based clustering algorithm, random initialization

of any parameter is not required. Therefore, after setting

the global parameters heuristically, similar results are

obtained in each iteration and hence, consistency of the

algorithm is preserved. There are different variants of

density based algorithm available in the literature. Density

based spatial clustering of applications with noise

(DBSCAN) is one of the most popular density based

algorithms being used in data mining [29–31].

Most of the clustering algorithms require an iterative

control strategy to optimize the objective function and

random initialization of some parameters. Thus, clustering

results vary with different iterations. Selection of appro-

priate number of clusters is another tedious task in imple-

menting these algorithms. The problem in implementation

of DBSCAN is selection of global parameter while k-

means and fuzzy c-means are based on iterative control

scheme. Generally, statistical methods are used to identify

the outliers and these methods are based on fixed proba-

bility distribution of data. However, the real time infor-

mation is not fixed to any distribution. Further, all the

irregular consumption detection methods work on whole

load pattern data set. Outlier detection approaches based on

k-means and fuzzy c-means approaches finds variation of

data object from the centroid. The main problem with

existing density based clustering algorithm is that intrinsic

cluster structures cannot be detected by global density

parameters. Different local densities are to be revealed to

find local clusters in the data space with further partition

[29, 35].

Motivated by aforementioned facts, in this paper, a new

method, which is suitable for clustering and identifying the

unusual electricity consumptions and their quantification

according to the nature of irregularity, is proposed. The

proposed method utilizes the concept of Local Outlier

Factor (LOF) [36, 37] for ranking of unusual consumptions

based on neighborhood densities i.e. k- nearest neighbors
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(k-NNs) of these consumptions in the load pattern data.

Clustering results are compared with k-means and fuzzy c-

means with clustering validation using Davies Bouldin

index and Silhouette coefficient.

The major contributions of this paper:

1) A method is proposed to obtain global density

parameters in order to find an optimal partition of a

data set into high and low density regions. The low

density regions are known as border points which are a

little part of whole load data and utilized to find

irregular loading on distribution substations. Hence,

computation work is highly reduced in identification

of only irregular demand.

2) Micro clusters are obtained to reveal local clusters and,

hence, further partition of the data set is avoided. Core

points in load data help in analyzing the occurrence of

a peak-valley in load pattern.

3) Furthermore, an approach to characterize and quantify

the different features of unusual consumptions using

feature irregularity factor (FIF) is introduced on only

border points of load data. It identifies the irregular-

ities in unusual consumption based on different

irregularity features. This approach is scalable as

different irregular features of unusual loadings on

substations can be identified and added to decide FIF

of different unusual consumptions. The suitability of

the proposed method is demonstrated on two practical

distribution systems.

2 Clustering methods

2.1 k-means

Classical k-means algorithm is a partition based clus-

tering algorithm which separates a set of n data objects into

k clusters based on similarity features. Given a set of n-

number of observations, each observation is a d-dimen-

sional real vector. This observation set is partitioned into

k sets (k\ n), while an objective function is minimized.

Each set represents a cluster of data [29, 30].

2.2 Fuzzy c-means

In fuzzy c-means clustering, each data object is assigned

to different clusters with different degrees of membership.

Thus, membership of a data object is shared among dif-

ferent clusters. This algorithm tries to find the best partition

of whole data while minimizing an objective function

[29, 30].

2.3 Density based clustering

This algorithm separates high density and low density

regions. A data point belongs to a cluster if its neighbor-

hood density is high enough. Clusters get arbitrary shape

while absorbing all the data points, those are in the

neighborhood. Densities of all the clusters may be differ-

ent. The classical density based spatial clustering of

applications with noise (DBSCAN) forms clusters such that

each data point in a cluster should consists of at least a

minimum number of points (Nminpts) in its neighborhood

defined by a given radius (reps). It means that the cardi-

nality of the neighborhood has to exceed a threshold

[29–31].

3 Local outlier factor (LOF)

LOF is density based outlier detection method [36, 37]

in which the ratios between local density of data object and

local density of the data objects’ neighborhood are

obtained. An outlier is defined based on the density of data

objects existing in its neighborhood. A comparison of the

density of each object with the density of its k-NNs is to be

done. The local density of an outlier is relatively low

compared to the local density of other data objects around

its neighboring objects. In this approach, each data object

can be represented by an outlying factor as per their nature

of anomalies. If the value of LOF of a data object is higher,

it means that there is a large change in densities of the

object and its k-NNs. If the value of LOF of a data object is

approximately equal to 1, the data object is close to dense

region and not to an outlier [36, 37].

3.1 k-distance

Basically, it is the distance between an object under

consideration and its k-th nearest neighbor. Let D is whole

data set; z 2 D is the k-th nearest neighbor of x 2 D and

Ldist(x, z) is the distance of x to object z. The k-distance of

x is written as

Ldist;kðxÞ ¼ Ldistðx; zÞ ð1Þ

where Dx is the set of k-th closest objects to x 2 D, then the

distance of x to o 2 Dx is Ldist (x,o) B Ldist,k(x) while

Dx ( D. Euclidean distance is considered for distance

measurement.

3.2 k-distance neighborhood of x

The k-distance neighborhood of object x consists of k-th

nearest neighbors i.e. objects whose distances from x are
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less than or equal to k-distance of x. k-distance neighbor-

hood of x is defined as

NkðxÞ ¼ 8o 2 DxjLdistðx; oÞ� Ldist;kðxÞ;Dx � D
� �

ð2Þ

3.3 Reachability distance of x with respect to z

The reachability distance is an asymmetric measure. The

reachability distance is used to find the density of k-nearest

neighborhood of an object. The reachability distance of an

object x with respect to object z is given as

Lreachdist;kðx; zÞ ¼ max Ldist;kðzÞ; Ldistðx; zÞ
� �

ð3Þ

It maintains minimal distance between two objects x and

z while object x is kept outside the neighborhood of z. If

x is not close to z, then the reachability distance is simply

the distance between x and z i.e. Ldist(x, z). If x is very close

to z then the reachability distance is k-distance of z i.e.

Ldist,k(z).

3.4 Local reachability density of x

The local reachability density of x represents the density

of its neighborhood. It is defined as the reciprocal of

average reachability distance of k-distance neighborhood

of x. If jNkðxÞj is the number of objects in k-distance

neighborhood of x, then the local reachability density of

x is given as

Rlrd;kðxÞ ¼
jNkðxÞjP

z2NkðxÞ
Lreachdist;kðx; zÞ

ð4Þ

3.5 Local outlier factor of x

Basically, local outlier factor is the average of the ratio

of local reachability densities of objects in k-distance

neighborhood of x to the local reachability density of x it-

self and given as

LOFkðxÞ ¼

P

z2NkðxÞ

Rlrd;kðzÞ
Rlrd;kðxÞ

jNkðxÞj
ð5Þ

The strength of reachability distance depends on

positive integer k. The higher value of k ensures more

stable results, but the burden of computation increases.

4 Outlier detection methods and problem
assessments

‘‘An outlier is an observation which deviates largely

from the other observations as to arouse suspicions that it

was generated by a different mechanism.’’ Abnormalities,

discordants, deviants, irregularities, or anomalies are the

other terms used for outliers. Different basic models, such

as extreme value analysis, probabilistic and statistical

models, linear models, proximity-based models, informa-

tion theoretical models, high dimensional outlier detection

models, are used for detection of outliers in the data. These

models are used depending on the type of the available data

observation set. These algorithms are having pros and cons

in the detection of outliers [38]. The objective of the outlier

detection method is to identify data objects which are

markedly different from or inconsistent with the normal set

of data. The advantages and disadvantages of clustering

based, nearest neighbour based, classification based and

spectral anomaly detection techniques are discussed in

[35]. It is shown that computational complexity is a big

issue and most of the anomaly detection techniques are

computationally expensive [35, 38]. These techniques work

on the whole of the data observation set in the detection of

anomalies. In this paper, a method is proposed for an

optimal partition of load data into core points and border

points. Irregular consumptions are part of border points.

Accurate selection of two global parameters

reps;o;Nminpts;o is to be done as per (6). Data point with LOF

less than 1.0 is a part of the cluster. Possessing at least one

LOF, of a data point, nearly equal to 1.0 but greater than

1.0, ensures that all less dense data points and outliers are

included in border points. Thus, with this appropriate set of

global parameters, it is ensured that all the high dense

points are separated from the less dense points [36, 37], and

clustering operation is performed on high dense points only

and LOFs are computed of less dense points. Following

equation is formulated for sub-optimal partition of whole

load data into high and less dense regions.

ðreps;o;Nminpts;oÞ ¼
ðreps;NminptsÞjmin fLOF;

where fLOF ¼ LOFðllrb Þ � 1;

LOFðlbÞ[ 1:0; lb; l
lr
b 2 B;B � X

8
><

>:

ð6Þ

where B is a set of border points lb; X is the complete load

pattern data; llrb is the border point with lowest rank with

LOF in B; l 2 X is data point (a load profile) and lc 2 X is a

core point in load data.

5 Proposed method for identification of unusual
consumptions and clustering

The proposed method, which acquires the basic concept

of density based clustering, focuses on the core points for

clustering purpose and border points for the identification

of outlier. The LOFs are computed for only border points.

So, all the border points are quantified with LOF according

to their outlying nature. In the method, there is no
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consideration of any defined distribution of data to isolate

the irregular consumption while assigning the degree of

being irregular as LOF in load pattern data. Computation of

LOF is done only on border points which are a few percent

of whole load pattern data. No iterative control scheme is

required for optimal or close to optimal clustering results

obtained on a practical system [39, 40] by the proposed

method. Although the method can find optimal clusters, but

appropriate clusters are obtained in each zone in order to

find distinguishable peaks and valleys for peak load clip-

ping, load shifting. Heuristically, it is found that clustering,

which produces distinguishable peak and valley, is vali-

dated as optimal clustering or close to optimal.

5.1 Distance matrix

Euclidean distance is considered to measure the closeness

of data objects (load profiles). The distance between n-di-

mensional twodataobjects li and lj is described asgivenbelow

Ldistðli; ljÞ ¼
Xn

k¼1

jjlki � lkj jj ð7Þ

eij ¼ Ldistðli; ljÞ ð8Þ

A distance matrix represents the closeness of data

objects and this matrix is a square matrix and its dimension

is N � N where N is number of data objects. Diagonal

elements such as e11, e22, …, eNN are always zero. The

scaling of the distance matrix is carried out by dividing all

elements of distance matrix by a scaling factor if required.

5.2 Solution to obtain global parameters

The parameters reps;o;Nminpts;o for a sub-optimal partition

of load data can be obtained as given below:

1. Set arbitrarily reps;Nminpts to generate set B;

2. Tune reps;Nminpts to reps;o;Nminpts;o to satisfy (6).

5.3 Generation of small clusters

Small cluster is formed from arbitrarily selected root

core point and its direct density reachable core points at

depth one. So, a small cluster, Csc, is formed according to

following theorem [31].

Theorem If xi is core point and xi 2 Csc then xj 2 Csc if

xj is core point and it is direct density reachable from xi.

5.4 Operation of merging small clusters

Two or more than two smaller clusters are merged into a

single cluster such that the maximum deviation of averages

of these small clusters at any dimension is less than a

threshold.

Consider C1
sc;C

2
sc; . . .;C

m
sc

� �
is a set of small clusters of

given n-dimensional data and v1; v2; . . .; vmf g is set of

averages (centroids) of these small clusters. Maximum

deviation of two averages at any dimension is defined as

given below.

hij ¼ max
q¼1:n

jvqi � v
q
j j ð9Þ

hmax and hmin are maximum and minimum values of hij
among all small clusters obtained as

hmax ¼ max
i;j¼1:m;i 6¼j

hij
� �

ð10Þ

hmin ¼ min
i;j¼1:m;i 6¼j

hij
� �

ð11Þ

Suppose K is the number of clusters as c1; c2; . . .; cKf g
after merging small clusters. h ¼ h1 can be set such that all

small clusters are merged into single cluster i.e. K = 1.

h1 ¼ hmin\h\hmaxjK ¼ 1
� �

ð12Þ

h ¼ hm can be set such that no small cluster is merged.

In this case, the number of clusters K is equal to the number

of small clusters m. Obviously, the number of clusters

obtained, after merge operation, is less than number of

small clusters i.e. 8K�m.

hm ¼ hmin\h\hmaxjK ¼ m
� �

ð13Þ

hK can be set for K number of clusters as

hK ¼ h1\h\hmj1�K�mf g ð14Þ

hoK is the value of h such that optimal number of clusters Ko

is found. So hoK is defined as given below.

hoK ¼ h1\h\hmjK ¼ Kof g ð15Þ

5.5 Assigning non-outliers to clusters

Border points which are having LOF approximately

equal to 1.0 are located close to a homogeneous dense

region and these may be part of any cluster through density

reachable and density connected concepts. Higher values of

LOF of points show that there is a large difference in the

densities of these points and their k-nearest neighbors and

hence, these points are considered to be outliers [36, 37].

A limiting value ULOF is considered for LOF in order to

define set of outliers, XU, out of border points B as given

below.

XU ¼ lb 2 BjLOFðlbÞ[ULOFf g ð16Þ

The XU is, obviously, set of unusual consumptions.

Assume c1; c2; . . .; cKf g is the set of clusters then the
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border points which are not designated as outlier can be

assigned to a cluster via following way.

lb 2 B :¼ lb 2 Cijmax
i¼1:K

NCi

kNNðlbÞ
� �

ð17Þ

where NCi

kNNðlbÞ is the number of k-nearest neighbors of

point lb in cluster ci [30].

5.6 Proposed method

Figure 1 shows the flow chart for finding the clusters

and outlier with the proposed method. The steps of the

proposed method are described as:

1) Get the database to find ranked outliers and clusters.

2) Select the proper distance function and obtain a

distance matrix.

3) Find global parameters reps;o;Nminpts;o as per

section 5.2.

4) Construct small clusters with core points.

5) Repeat the process of step 4 to obtain other small

clusters until all of the remaining core points are

visited.

6) Merge small clusters into clusters with variation in

threshold h to obtain the optimal number of clusters.

7) Compute LOF for each border point and consider a

limiting value for LOF to isolate ranked outliers from

border points.

8) Merge the non-outliers border points to clusters.

6 Proposed characterization of unusual
consumptions

The electricity consumptions, which are different from

regular electricity consumptions, are to be analyzed. Dif-

ferent types of peak demand, sudden large change and zero

demand are some irregular consumption. These irregular

consumption behaviors are defined below on only set XU.

6.1 Irregular peak unusual consumption

Irregular peak unusual consumption Uirpeak is defined as

Uirpeak ¼ lb 2 XU j9t : Ddtirpeak [Ddref ;a
n o

ð18Þ

Ddtirpeak ¼ dtðlbÞ � dref

Ddref ;a ¼ dpeak;a � dref

where dt(lb) is the demand of a load data point (a load

profile) lb at time interval t 2 T . dref is the reference

demand and the demand which is more than dref is termed

as peak demand. dpeak,a is an acceptable peak demand in

the system. Ddref,a is a predefined acceptable change in

demand more than dref to decide irregular consumption.

6.2 Broadest peak demand

Broadest peak demand Ubpeak is an unusual consumption

as defined below. The demand in Ubpeak is more than dref
for some consecutive time intervals speak and npeak is the

cardinality of speak.

Ubpeak ¼ l 2 XU jðdtðlÞ � dref Þ[ 0; t 2 speak
� �

ð19Þ

6.3 Sudden large gain unusual consumption

Sudden large gain unusual consumption, Usgain, is the

amount of increase in demand more than dga which is an

acceptable gain in demand at any time interval t 2 T .

Usgain ¼ l 2 XU j9t : Ddtgain [ dga

n o
ð20Þ

Start

Get complete data set

Set global parameters, identify the core points and border points

Select an unvisited core point
and find all direct density

reachable unvisited core points

Mark these core points as
visited and group them into

a small cluster

Are all core
points visited?

Find all small clusters

Set threshold, merge all small
clusters to clusters

Merge remaining border
points to clusters

Validate the clustering results

If optimal no.
of clusters?

Find all optimal no. of clusters

Compute LOF of all
border points

Set a bound for outlier

Find ranked outliers

End

Core points Border
points

Y

Y

N

N

Identification
of unusual

consumptions

Fig. 1 Flow chart for finding clusters and LOF of unusual

consumptions
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Ddtgain ¼ dtðlÞ � dt�1ðlÞ

Similar to Usgain, sudden large drop unusual

consumption Usdrop, is the amount of decrease in demand

more than dda which is an acceptable drop in demand at any

time interval t 2 T .

Usdrop ¼ l 2 XU j9t : Ddtdrop [ dda

n o
ð21Þ

Ddtdrop ¼ dt�1ðlÞ � dtðlÞ

6.4 Nearly zero demand unusual consumption

Nearly zero electricity demand unusual consumption,

Uzero, is the demand, which remains a very low value equal

to zero at any time interval t 2 T or for some duration of

time intervals.

Uzero ¼ l 2 XU jdtðlÞ ¼ 0 and t 2 szerof g ð22Þ

where szero is a set of time intervals on which demand is

zero and nzero is the cardinality of szero. Based on

aforementioned definitions, vector of features of unusual

consumptions is defined as

YU ¼ ðDdtirpeak; npeak;Ddtgain;Ddtdrop; nzeroÞ ð23Þ

Ddtirpeak [Ddref ;Dd
t
gain [ dga;Dd

t
drop [ dda

To identify the degree of irregularity in unusual

consumptions, feature irregularity factor (IFIF) is

introduced and defined below:

IFIF ¼ jjYU jj ð24Þ

Each feature of different unusual consumptions, in

vector YU is normalized by min-max or z-score

normalization method. In an unusual consumption, it is

possible that more than one unusual characteristic may

present. From a row of unusual consumption in YU, the

most dominating unusual characteristics can be identified.

Limiting values in IFIF directly relate to real unusual

behaviors of outliers. Once limiting values are decided,

feature vector and hence, IFIF of an unusual consumption

are decided.

7 Case studies

The proposed method to identify unusual consumptions

and to find clustering results for peak valley analysis is

tested on the two practical systems. Regular peaks and

valleys are identified with clustering results obtained from

proposed approach in order to distinguish irregular peaks in

the load pattern data. The proposed characterization of

unusual consumptions has also been carried out. The 365

days are numbered as day 01 is Jan 01, similarly day 365 is

Dec 31 and so on. To validate the clustering of load pattern

data, two most popular methods such as the Davies-Boul-

din index (DBI) and Silhouette coefficient (SC) are used.

Davies-Bouldin criterion depends on a ratio within the

cluster and between cluster distances [25, 27, 30, 31]. The

Silhouette coefficient criterion incorporates two approa-

ches: cohesion and separation. Cohesion measures close-

ness of objects in a cluster and separation finds whether the

clusters are well-separated or not [30, 31].

7.1 Case study-1

The effectiveness of the proposed method tests on a

practical system of 20 zones [39, 40]. The data are annual

hourly loaded (in kW) for US utility with 20 zones of year

2007. In most of the zones, the electricity consumption data

are given in the range of thousands of kW. Therefore, the

distance matrix is required to be scaled down. For each

zone, the distance matrix is divided by the suitable divisor

(scaling factor such as 103; 104; etc.) so that elements of

distance matrix are in the range of 10.

Different notations are used in Table 1 as zi is Zone-id;

min
f
D;minkD are minimum value of DBI with fuzzy c-means

and k-means respectively; max
f
S;maxkS are maximum val-

ues of silhouette coefficient with fuzzy c-means and k-

means respectively; N
f
o;D;N

k
o;D are optimal numbers of

Table 1 Optimal number of clusters with fuzzy c-means and k-

means

zi min
f
D N

f
o;D max

f
S N

f
o;S

minkD Nk
o;D maxkS Nk

o;S

1 0.7370 3 0.6632 3 0.6787 5 0.6680 3

2 0.7456 5 0.6231 2 0.7523 3 0.6283 2

3 0.7672 3 0.6231 2 0.7364 3 0.6283 2

4 0.6826 2 0.7444 2 0.6804 2 0.7500 2

5 0.7286 4 0.6156 4 0.6571 4 0.6337 4

6 0.7506 3 0.6204 2 0.7138 5 0.6231 2

7 0.7731 5 0.6231 2 0.7883 5 0.6283 2

8 0.7517 3 0.6618 2 0.7998 2 0.6767 2

9 1.2000 2 0.4844 4 0.9411 3 0.5363 4

10 0.7628 3 0.6889 2 0.7627 5 0.6984 2

11 0.6843 4 0.6418 2 0.6802 5 0.6520 2

12 0.6844 4 0.6240 2 0.7024 5 0.6514 3

13 0.8385 4 0.6411 2 0.7734 4 0.6576 2

14 0.7513 5 0.6418 3 0.7953 3 0.6450 3

15 0.7988 4 0.6244 3 0.7619 5 0.6348 3

16 0.7710 4 0.6133 3 0.6975 5 0.6305 3

17 0.7547 4 0.6559 3 0.7515 5 0.6627 3

18 0.7700 5 0.6378 3 0.6856 5 0.6418 3

19 0.7554 5 0.6499 3 0.7710 4 0.6518 3

20 0.8099 5 0.5786 2 0.7670 5 0.5851 2
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clusters with DBI and N
f
o;S;N

k
o;S are optimal numbers of

clusters with Silhouette coefficient using fuzzy c-means

and k-means, respectively.

7.1.1 Results with fuzzy c-means and k-means

k-means and fuzzy c-means clustering algorithms are

implemented to cluster the load pattern data of different

zones with different number of clusters. Optimal numbers

of clusters of each zone are identified with Davies-Bouldin

index and Silhouette coefficient and results of all 20 zones

are shown in Table 1.

7.1.2 Results with DBSCAN

While implementing DBSCAN, various combinations of

Nminpts, reps are chosen, but no set of these global param-

eters is found to get clusters. Results at different values of

parameters are given in Table 2, for Zone-1 and Nminpts ¼ 5

only, with different values of reps. There are no cluster

formations on complete days. Further partition of load data

is needed to find regular and irregular consumptions.

7.1.3 Results with proposed method

Let uU is the percentage data used for unusual con-

sumptions detection and defined as given below:

uU ¼ CB

CX
� 100 ð25Þ

where CB and CX are cardinalities of set of border points,

B, and whole load data, X, respectively. Using (6), for

optimal partition of load data, Nminpts;o and reps;o for dif-

ferent regions are obtained as shown in Table 3 and LOF

are calculated on only uU. Thus, the computational work is

highly reduced. With the proposed method, the irregular

consumptions are identified in each zone and these are

ranked using LOF as per the irregularity. Low to high

anomalous levels of different unusual consumptions are

identified with the assignment of LOF. For Zone-1,4,5, six

irregular consumption days with their LOF are shown in

Table 4.

In most of the zones, except Zone-4, the highest LOF is

close to 2.0 so unusualness in electricity consumptions is

not large in these zones. It is found that Zone-4 has most

varied unusual consumptions (Fig. 2). In Zone-4, on days

152, 153, 350, 351(i.e. June 01, June 02 and Dec 16 and

Dec 17, 2007), the LOFs are more than 3.0. It shows that

on mentioned days, the electrical load consumption devi-

ates in large amount compared to the normal load con-

sumptions. In different zones, a limiting value for LOF can

be set to isolate the outliers so that utilities can extract

requisite information from outliers. Irregular consumptions

of Zone-4 and 5 are shown in Figs. 3, 4, respectively.

Different irregularity features are obtained and shown in

Table 5 only on border points of Zone-4 which consists most

varied unusual consumptions. Minimum values in sudden

drop and gain features are decided same as 100 kW for min-

max normalization. The 1100 kW, heuristically, is assumed as

an acceptable demand to decide the irregular peak unusual

consumptions. In this zone in a year 2007, no day is found

which has zero electricity demand. FIFs are calculated of

different unusual consumptions to rank them as {350, 351,

152, 153, 37, 26, 36, 42, 103}basedon irregularity features.

Table 2 Results with DBSCAN

reps No. of clusters No. of load pattern in clusters No. of load patterns not in clusters

2.5 01 365 Zero

1.7–2.4 01 364 01

1.2–1.6 01 363 02

1.1 01 355 10

1.0 02 338, 06 21

0.9 01 325 40

0.8 01 312 53

0.7 03 276, 10, 08 71

0.6 04 8, 208, 5 139

0.5 05 117, 26, 9, 9, 10 194

0.4 05 63, 8, 10, 5, 5 274

0.3 04 05, 34, 9, 8 309

0.2 01 05 360

0.1 No cluster – 365
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Type and occurrence of regular peak and valleys in

clustering results are detected in different zones. Peak and

valley as demand response opportunities of only Zone-4

and 5 are shown in Table 6 and Figs. 5, 6. Morning peak

(mp), evening peak (ep) and valley (v) are identified. In

different zones, it is found with clustering results that 2 to 3

clusters are sufficient for peak-valley assessment and the

numbers are optimal or close to optimal. Notations used in

Table 7 are described as, min
p
D is minimum or close to

minimum value of DBI and max
p
S is maximum or close to

maximum value of Silhouette coefficient with proposed

method; Np
o is optimal or close to optimal number of

clusters with proposed method.

Zone-id
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

4

6

M
ax

im
um

 L
O
F

8

Fig. 2 Maximum LOF in different zones

Fig. 3 Selected unusual consumptions in Zone-4

Table 3 Optimal partition of load data in different zones

Zone-id reps;o Nminpts;o uU LOF llrb
� �

1 1.5 20 13.15 1.03

2 0.8 20 13.25 1.00

3 1.0 25 10.41 1.03

4 5.5 20 3.01 1.00

5 0.8 25 10.14 1.03

6 0.9 25 15.06 1.00

7 0.9 26 17.53 1.00

8 2.5 25 19.72 1.03

9 0.9 25 21.64 1.02

10 1.6 25 19.72 1.02

11 0.9 28 12.05 1.01

12 1.1 28 18.63 1.01

13 1.4 30 16.98 1.01

14 2.2 30 15.98 1.00

15 0.5 28 13.42 1.02

16 3.0 25 12.60 1.00

17 2.0 25 20.82 1.00

18 1.9 25 11.50 1.00

19 0.7 25 16.98 1.01

20 0.5 22 18.35 1.02

Table 4 Irregular consumptions with LOF

Zone-1 Zone-4 Zone-5

Day LOF Day LOF Day LOF

221 2.1890 152 6.9532 220 2.0630

220 1.9872 153 4.7295 20 1.8368

37 1.9807 350 4.2539 37 1.5186

222 1.7111 351 3.4112 39 1.3232

36 1.6461 26 2.2803 36 1.3221

237 1.5779 103 1.4808 21 1.2858

Fig. 4 Selected unusual consumptions in Zone-5

Table 5 Irregular consumptions features (Zone-4)

Day Ddtirpeak npeak Ddtdrop Ddtgain nzero IFIF

152 0 0 1 0.068 0 1.002

153 0 0 0 1 0 1

103 0 0 0.258 0.058 0 0.264

26 0 0.308 0.709 0.342 0 0.845

350 1 0.308 0 0.185 0 1.063

351 0 1 0.136 0.144 0 1.019

37 0 0.923 0 0 0 0.923

36 0 0.538 0 0 0 0.538

42 0 0.462 0 0 0 0.462
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7.2 Case study-2

Indian Institute of Technology Kanpur (IITK) distribu-

tion system gets power supply from Panki power grid via

33 kV lines. One 10 MVA and two 5 MVA, 33 kV/11 kV

transformers are installed in main substation [41]. The 10

MVA transformer (Tr-3) of main substation caters the

major demand in IITK. Unusual consumptions along with

regulars are identified and analyzed in hourly load data of

year 2013 of 10 MVA, 33/11 kV transformer. Two optimal

clustering are obtained and validated with Silhouette

coefficient as 0.7865, 0.7832 and 0.7901 from k-means,

fuzzy c-means and proposed method, respectively. Clus-

tering results and unusual consumptions are shown in

Figs. 7, 8, respectively. The ranked irregular consumptions

with LOF are shown in Table 8.

The global parameters are set as Nminpts;o ¼ 20 and

reps;o ¼ 5 according to (6). The number of border points is

identified as 27 which is 7.40% of all 365 load patterns of

year 2013. Unusual characteristics, with the proposed

approach of characterization, are identified only in differ-

ent border points. For these consumptions, the IFIF are

calculated while assuming limiting values of dref ¼ 325A,

dpeak;a ¼ 375A, dga ¼ 150A, dda ¼ 150A. Day 198 is having

Table 6 Peak-valley analysis

Zone-id Cluster no. DR opport. Time

(hour)

Demand (kW)

04 2 mp 9 1057

v 15 737

ep 20 1005

05 1 v 4 0.871 9 104

ep 19 1.567 9 104

2 mp 8 1.871 9 104

v 14 1.354 9 104

ep 20 1.616 9 104

Table 7 Clusters with proposed method

zi min
p
D max

p
S Np

o zi min
p
D max

p
S Np

o

1 0.6677 0.7396 3 11 0.6261 0.7604 3

2 0.6316 0.7600 3 12 0.6471 0.7361 3

3 0.5677 0.7602 3 13 0.6292 0.7612 2

4 0.6587 0.7726 2 14 0.6521 0.7155 3

5 0.6339 0.7571 3 15 0.6416 0.7514 3

6 0.6644 0.7551 3 16 0.6826 0.7813 3

7 0.6923 0.7513 3 17 0.6899 0.7323 3

8 0.6568 0.7647 3 18 0.6313 0.7632 3

9 0.8738 0.6961 2 19 0.6706 0.7863 3

10 0.6098 0.7121 3 20 0.6039 0.7069 3

Fig. 5 Clustering results of Zone-4

Fig. 6 Clustering results of Zone-5
Fig. 7 Clustering results of electricity demand on Tr-3 (on a phase)

of IITK

Fig. 8 Unusual consumptions of electricity demand on Tr-3 (on a

phase) of IITK
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392 A showing an irregular peak demand at 20:00 whereas

Day 218 is having the broadest peak demand more than

325 A for maximum consecutive 8 hours (from 10:00 to

17:00). On Day 249, the demand drops sharply, a maxi-

mum drop in load pattern data, from 346 A to 0 A between

12:00 to 13:00. On the Day 250, the demand increases,

sharply, from 0 A to 317 A between 11:00 to 12:00. On

Day 272, the demand remains zero for 13 from 11:00 to

23:00.

Each column of Table 9 is normalized with min-max

normalization method. Min values in sudden drop and gain

features are decided same as 150 A, zero values for npeak
and nzero, and 375 A in irregular peak while max values, in

respective columns, are used for normalization. Thus,

unusual consumptions are compared with one other and

IFIF are calculated. IFIF is composed of irregularity features

present in the unusual consumption and the features which

are dominating and others which have less effect can be

identified. The ranking of unusual consumptions with IFIF

is obtained as {249, 198, 250, 218, 225, 272, 241, 151, 224,

125, 83, 35}.

8 Size of energy storage

Based on the analysis of loading on a 10 MVA trans-

former at 33 kV/11 kV substation of IITK, in 2013, authors

have identified a critical load profile using k-means algo-

rithm [41] while utilizing complete load pattern data. This

profile decides possible size of energy storage, without PV

generation, for peak shaving operation. The broadest peak

demand, defined in (20), is basically a critical load profile

and helps in deciding the size of energy storage for peak

shaving. To decide the critical load profile, the proposed

approach of this paper works only on 7.40% of the load

pattern data as that shown in Fig. 9. The profile of Day 218

shows the broadest peak demand.

9 Conclusion

In this paper, the unusual consumptions are obtained by

the proposed method, using the local outlier factor (LOF),

on only a few percent of whole load pattern data. Different,

unusual loadings, and occurrence and type of peak-valley

demand on substations are identified. The different features

of unusual consumptions have been analyzed with pro-

posed characterization on only border points of two prac-

tical test systems. Test results reveal that the proposed

method is very effective in finding the irregular con-

sumption, such as different types of unusual peak demand,

sudden large change and zero demand. Regular peaks-

valleys are identified with clustering results obtained from

proposed approach in order to distinguish irregular peaks in

the load pattern data. To validate the clustering of load

pattern data, two most popular methods such as the Davies-

Bouldin index (DBI) and Silhouette coefficient (SC) are

used.

Table 9 Features of unusual consumptions in IITK load data

Day Ddtirpeak npeak Ddtdrop Ddtgain nzero IFIF

249 0 0.38 1 0.9 0.08 1.40

225 0 0.25 0.91 0.03 0.54 1.088

272 0 0 0.40 0.15 1 1.087

241 0 0 0.81 0.48 0.31 0.99

250 0 0 0.61 1 0.08 1.170

198 1 0.625 0 0 0 1.179

172 0 0.125 0.46 0.3 0.08 0.569

218 0 1 0.44 0 0.08 1.095

263 0.059 0.5 0 0 0 0.504

125 0 0 0.05 0.06 0.38 0.39

35 0 0 0 0 0.15 0.15

83 0 0 0 0 0.23 0.23

224 0 0.5 0 0 0 0.5

151 0 0.875 0 0 0 0.875

Table 8 Irregular consumptions at IITK load pattern data

Day LOF Day LOF Day LOF

249 7.10 35 2.40 176 1.37

250 6.03 83 2.28 263 1.31

272 5.01 172 2.19 106 1.29

218 4.89 97 2.15 231 1.26

241 3.72 76 2.05 178 1.22

198 3.27 119 1.76 88 1.20

151 2.90 86 1.61 288 1.19

225 2.80 15 1.58 89 1.16

125 2.54 224 1.48 348 1.14

With proposed approach Approach with k-means
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Fig. 9 Pertencage load data used for identification of broadest peak

demand
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