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CMI analysis and precoding designs for
correlated multi-hop MIMO channels
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Abstract

Conditional mutual information (CMI) analysis and precoding design for generally correlated wireless multi-hop
multi-input multi-output (MIMO) channels are presented in this paper. Although some particular scenarios have been
examined in existing publications, this paper investigates a generally correlated transmission system having spatially
correlated channel, mutually correlated source symbols, and additive colored Gaussian noise (ACGN). First, without
precoding techniques, we derive the optimized source symbol covariances upon mutual information maximization.
Secondly, we apply a precoding technique and then design the precoder in two cases: maximizing the mutual
information and minimizing the detection error. Since the optimal design for the end-to-end system cannot be
analytically obtained in closed form due to the non-monotonic nature, we relax the optimization problem and attain
sub-optimal designs in closed form. Simulation results show that without precoding, the average mutual information
obtained by the asymptotic design is very close to the one obtained by the optimal design, while saving a huge
computational complexity. When having the proposed precoding matrices, the end-to-end mutual information
significantly increases while it does not require resources of the system such as transmission power or bandwidth.

Keywords: Precoding design; MIMO spatially correlated channel; Mutual information and channel capacity;
Multi-hop relay network; Colored noise

1 Introduction
With the fast-paced development of computing tech-
nologies, wireless devices have enough computation and
communication capabilities to support various multime-
dia applications. To deliver high-quality multimedia over a
wireless channel, multi-input multi-output (MIMO) tech-
nology has been emerging as one of the enabling tech-
nologies for the next-generation multimedia systems by
providing very high-speed data transmission over wireless
channels [1]. In the last decade, MIMO has been adopted
by almost all new LTE, 3GPP, 3GPP2, and IEEE standards
for wireless broadband transmission to support wireless
multimedia applications [2-7]. A fundamental assumption
of MIMO system design is placing antennas far enough
[3] from each other to make fading uncorrelated. It means
that different pairs of transmitting and receiving antennas
are uncorrelated so that the channel statistical knowl-
edge can be expressed as a diagonal covariance matrix.
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However, this assumption is no longer held true for com-
pact embedded multimedia system design due to the
small form factor. The compact system design will cause
a MIMO spatial correlation problem [8-13], leading to
a significant deterioration on the system performance.
Furthermore, the pervasive use of computing devices
such as laptop computers, PDAs, smart phones, automo-
tive computing devices, wearable computers, and video
sensors leads to a fast-growing deployment of wireless
mesh networks (WMN) [14] to connect these comput-
ing devices by a multi-hop wireless channel. Therefore,
how to achieve high channel capacity by using multi-hop
MIMO transceivers under strict space limitations is the
fundamental question targeted in this paper.
In the first part of this paper, we analyze the capacity

(or bound on the capacity) of generally correlated wireless
multi-hop amplify-and-forward (AF) MIMO channels.
For generality, we consider a wireless system, in which
the channel at each hop is spatially correlated but inde-
pendent of that at the other hops, the source symbols
are mutually correlated, and the additive Gaussian noises
are colored. Although most previous works on wireless

© 2015 Tran et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.
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channel only consider white noise and uncorrelated data
symbols, the assumption of white noise is not always true
(see, e.g.,[15-19]). Moreover, in practice, the case of corre-
lated data symbols arises due to various signal processing
operations at the baseband in the transmitter.
For less than three-hop wireless channel, various works

have been done on the capacity or bounds on the capac-
ity [1,13,20-24]. For multi-hop relay network, capacity
analysis was proposed in [25-27]. In [25], the authors
considered rate, diversity, and network size in the anal-
ysis. In [26,27], the authors assumed that there is no
noise at relay nodes, and the number of antennas is very
large. Since these assumptions are not feasible in com-
pactMIMOdesign withmutual interference, in this paper,
we consider a generally correlated system at the wireless
fading channel, data symbols, and additive colored Gaus-
sian noises (ACGN). It includes the correlated system
assumption in [26,27] as a special case. First, we derive
the optimal source symbol covariance to maximize the
mutual information between the channel input and the
channel output when having the full knowledge of chan-
nel at the transmitters. Secondly, the numerical interior
point method-based solution and an asymptotic solu-
tion in closed form are derived to maximize the average
mutual information when having only the channel statis-
tics at the transmitters. Although the asymptotic design
is very simple and comes by maximizing an upper bound
of the objective function, simulation results show that
the asymptotic design performs well as the numerically
optimal design.
In the second part of this paper, we apply the precod-

ing technique and then design the precoding matrix to
either maximizing the mutual information or minimiz-
ing the detection error. It has been shown in [20] that
beamforming, which can be considered as a particular
case of precoding, increases the mutual information of
single-hop MIMO channel. In [28], the outage capacity of
multi-hop MIMO networks is investigated, and the per-
formance of several relaying configurations and signaling
algorithms is discussed. In [25], the authors considered
rate, diversity, and network size in the analysis. The multi-
hop capacity of OFDM-based MIMO-multiplexing relay-
ing systems is derived in [29,30] for frequency-selective
fading channels. Apparently, in the literature, only refer-
ences [26,27] actually study the asymptotic capacity and
precoding design for wireless correlatedmulti-hopMIMO
relay networks. Under a special case of wireless chan-
nels having only white noise at the destination, no noise
at all relay levels, and the number of antennas is very
large (to infinity); references [26,27] provide the precod-
ing strategy and asymptotic capacity. Since the special
wireless channel assumption in [26,27] is not always feasi-
ble for compact MIMO design with space limitation and
mutual interference at various signal-to-noise ratio (SNR)

levels, in this paper, we design precoders for the gener-
ally correlated AF system. Obviously, the optimal capacity
and precoding design cannot be analytically obtained in
closed form as the design problem is very complicated and
neither convex nor concave. Similarly to [26,27], for gen-
erally correlated multi-hop MIMO channels, we propose
asymptotic designs in closed form.
First, instead of designing the optimal precoding strat-

egy to maximize the end-to-end mutual information, we
derive the sub-optimal precoding strategy by optimally
maximizing the mutual information between the input
and output signals at each hop. Since the mutual infor-
mation and detection error have a very close relationship,
we further propose the other sub-optimal precoding strat-
egy by optimally minimizing the mean square error (MSE)
of the soft detection of the transmitted signal at each
hop. Simulation results show that the asymptotic precod-
ing designs are efficient. They significantly increase the
end-to-end mutual information, while do not require any
resource of the system such as transmission power or
bandwidth.
The paper is organized as follows. Section 2 first

describes the correlated wireless multi-hop MIMOmodel
without any precoding techniques and then designs the
source signal covariance to maximize the mutual infor-
mation in two cases: having full knowledge of channel
state information at the transmitters and having only
the channel statistics at the transmitters. Section 3 first
proposes the precoding design to maximize the mutual
information and then proposes the precoding design
to minimize the soft detection error. Simulation results
are provided in Section 4 and Section 5 concludes the
paper.
Notation: Boldface upper and lower cases denote matri-

ces and column vectors. Superscript ∗ and H depict the
complex conjugate and the Hermitian adjoint operator,
while⊗ stands for the Kronecker product. IN is theN×N
identity matrix. Sometimes, the indexN are omitted when
the size of the identity matrix is clear in the context. E{z}
is the expectation of the random variable z and tr{A} is
the trace of the matrix A. I(.) andH(.) denote the mutual
information and the entropy, respectively. Rxy depicts the
covariance matrix of two random variables x and y.A ≤ B
(A < B, respectively) for symmetric matrices A and B
means that B − A is a positive semi-definite (definite,
respectively) Hermitian matrix.

2 The correlated channel andmutual information
maximization

2.1 Spatially correlated wireless multi-hopMIMO channel
Consider an N-hop wireless MIMO channel as presented
in Figure 1. The MIMO system has a0 antennas at the
source, ai antennas at the i-th relay, and aN antennas at
the destination. Then, the channel gain matrix at the i-th
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Figure 1 An N-hop wireless MIMO channel with spatial correlations
at both transmitting and receiving sides.

hop is represented by the Kronecker model [11,12,31-35]
as:

Hi = �
1/2
ri Hwi�

1/2
ti ∈ C

ai×ai−1 , i = 1, . . . ,N ,

where

Hi =
⎡⎢⎣ h11(i) · · · h1ai−1(i)

... · · · ...
hai1(i) · · · haiai−1(i)

⎤⎥⎦ ,

and �ti and �ri are ai−1 × ai−1 and ai × ai known
covariance matrices that capture the correlations of the
transmitting and receiving antenna arrays, respectively.
The matrix Hwi is an ai × ai−1 matrix whose entries are
independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian random variables of vari-
ance σ 2

hi, i.e., CN (0, σ 2
hi). The known matrices �ri and �ti

are assumed to be invertible and have the following forms:

�ti =

⎡⎢⎢⎢⎢⎣
1 t12(i) · · · t1ai−1(i)

t∗12(i) 1
. . . t2ai−1(i)

...
...

. . .
...

t∗1ai−1
(l) t∗2ai−1

(l) · · · 1

⎤⎥⎥⎥⎥⎦ ,

�ri =

⎡⎢⎢⎢⎢⎣
1 r12(i) · · · r1ai(i)

r∗12(i) 1
. . . r2ai(i)

...
...

. . .
...

r∗1ai(l) r∗2ai(l) · · · 1

⎤⎥⎥⎥⎥⎦ , (1)

where tij (rnm, respectively) with i �= j (n �= m, respec-
tively) reflects the correlated fading between the i-th and
the j-th (n-th and m-th, respectively) elements of the
transmitting (receiving, respectively) antenna array. The
channel at each hop undergoes correlatedMIMORayleigh
flat fading. However, the fading channels of any two differ-
ent hops are independent. Moreover, the channel at each
hop is quasi-static block fading with a suitable coherence
time for the system to be in the non-ergodic regime.
The ACGN at i-th hop is definied as ni with zero-mean

and covariance matrix E{ninHi } = Ri, i = 1, . . . ,N . Addi-
tionally, n1, . . . ,nN are all independent of each other, i.e.,
the colored noise at each hop is statistically uncorrelated
with the colored noise at the other hops.

The vector x0 that contain the data symbols at the
source is modeled as complex random variables with
covariance matrix Rx0 = E

{
x0x0H

}
under the power con-

straint tr{Rx0} = P0. For the general case of correlated data
symbols, Rx0 �= βIa0 ,β > 0, while Rx0 = E

{
x0x0H

} =
βIa0 for the case of uncorrelated data symbols.
Accordingly, the received signal at the destination can

be expressed as:

ẏN = HNHN−1 . . .H2H1x0 + nN + HNnN−1

+ HNHN−1nN−2 + . . . + HNHN−1 . . .H2n1.
(2)

Let

GN = HNHN−1 . . .H2H1

be the end-to-end equivalent channel, and

ṅ = nN + HNnN−1 + HNHN−1nN−2 + . . .

+ HNHN−1 . . .H2n1

be the end-to-end equivalent noise with the noise covari-
ance matrix being

Rṅ = E
{
ṅṅH

}
= RN+HNRN−1HH

N + HNHN−1RN−2HH
N−1H

H
N + . . .

+ HN . . .H2R1HH
2 . . .HH

N .
(3)

Therefore, Equation 2 can be rewritten as:

ẏN = GNx0 + ṅ. (4)

2.2 Mutual information maximization and channel
capacity when having channel state information at
the transmitters

The conditional mutual information (CMI) [36] between
the transmitted signal x0 and the received signal ẏN in
Equation 4 is given by:

I(x0; ẏN ) = H(x0) − H(x0|ẏN ) (5)

= H(ẏN ) − H(ẏN |x0). (6)

For the MIMO channel in Equation 4, the capacity is
defined as [36]:

C = max
p(x)

I(x0; ẏN ), (7)

where p(x) is the probability mass function (PMF) of
the random variable x0. The maximum is taken over all
possible input distributions p(x).
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Note that we have the fundamental condition [37]
det(I+XY) = det(I+YX). By Theorem 3 and Theorem 4
in the Appendix, the CMI in Equation 6 can be expressed
as:

I(x0; ẏN ) = H(x0) − H(x0|ẏN ) (8)
= log det(πeRx0)

− log det
[
πe

(
Rx0 − RT

ẏNx0R
†
ẏNRẏNx0

)]
= log det

(
I + Rx0GH

NR
−1
ṅ GN

)
= log det

(
I + R−1

ṅ GNRx0GH
N

)
. (9)

To obtain the channel capacity, we now design the
transmitted signal covariance to maximize the mutual
information in Equation 8:

max
Rx0≥0, tr(Rx0 )≤P0

log det
(
I + Rx0GH

NR
−1
ṅ GN

)
, (10)

under the allowed transmitted signal power P0. For
simple cases of channel characteristics, the solution of
Equation 10 can be derived from the Hadamard inequal-
ity argument [36]. We now give a direct solution method
based on spectral optimization for the general case.
Let Q = Rx0 ≥ 0 and P = GH

NR
−1
ṅ GN > 0. Equation 10

can be written as:

max
Q≥0, tr(Q)≤P0

log det(I + QP), (11)

where its optimal solution Q can be obtained in closed
form by the following theorem.

Theorem 1. The optimal solutionQ to the maximization
problem

max
Q≥0, tr{Q}≤P0

log det(I + QP), (12)

isQ = UHD−1
P XU. Here,U is the unitary matrix obtained

from the singular value decomposition (SVD) of P =
UHDPU, and X is the diagonal matrix having its diagonal
elements X(i, i) satisfy:

D−1
P (i, i)X(i, i) = (μ−1 − D−1

P (i, i))+, (13)

where x+ = max{0, x} and μ is chosen such that
Trace(D−1

P X) = P0.

Proof of Theorem 1. : See Appendix.

2.3 Average mutual information maximization and
channel capacity with only the channel statistics at
the transmitters

The end-to-end mutual information between the trans-
mitted signal x0 and received signal ẏN in Equation 4

is given by Equation 6. When considering the mutual
information for a long time period, the average end-to-
end mutual information between channel input x0 and
channel output (ẏN ,GN ) can be expressed as:

I (x0; (ẏN ,GN )) = EGN

{
log det

(
I + Rx0GH

NR
−1
ṅ GN

)}
.

Under the transmitted power constraint P0, we have to
solve the this optimization problem:

max
Rx0≥0, tr(Rx0 )≤P0

EGN

{
log det

(
I + Rx0GH

NR
−1
ṅ GN

)}
(14)

to obtain the capacity in the non-ergodic regime of the
system. Since the objective function is the expectation
of a concave function with respect to the to-be-designed
variable, obtaining the optimal solution in closed form to
this problem is very difficult or almost impossible. We
propose to use ‘SeDuMi’ [38] or ‘SDPT 3’ [39] solver for
a numerically optimal solution. To reduce the computa-
tional complexity, an asymptotic solution in closed form
is also derived by relaxing the objective function.
Since the function Rx0 → log det

(
I + Rx0GH

NR
−1
ṅ GN

)
is concave, it is obvious that:

EGN

{
log det

(
I + Rx0GH

NR
−1
ṅ GN

)}
≤ log det

(
I + EGN

{
Rx0GH

NR
−1
ṅ GN

})
.

Therefore, instead of maximizing the average end-to-
end mutual information between the channel input and
channel output, we now maximize an upper bound of
the mutual information. Simulation results will show that
this upper bound is closed to the true mutual information
value. The relaxed optimization problem is now expressed
as:

max
Rx0≥0, tr(Rx0 )≤P0

log det
(
I + Rx0EGN

{
GH
NR

−1
ṅ GN

})
.

(15)

Again, letQ = Rx0 ≥ 0 and P = EGN

{
GH
NR

−1
ṅ GN

}
> 0,

it can be seen that Problem (15) is now in the form of (11),
and hereby, the solution to (15) can be optimally obtained.

3 Precoding design for spatially correlated
wireless multi-hopMIMO channel

3.1 Precoded N-hop wireless MIMO channel formulation
By applying the precoding technique to the wireless sys-
tem, a precoded N-hop wireless MIMO channel is pre-
sented in Figure 2. Before transmitting over the wireless
channel, the source signal x0 is linearly precoded by a lin-
ear precoder P0 such that the transmitted signal at the
source is:

x̄0 = P0x0, P0 ∈ C
a0×a0 .
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Figure 2 A precoded N-hop wireless MIMO channel with spatial
correlations at both transmitting and receiving sides.

For the sake of saving transmission bandwidth, all pre-
coding matrices considered in this paper are square,
i.e., non-redundancy precoder. The purpose of precoding
technique here is to re-form the transmitted signal and
re-allocate the transmitted power such that the transmit-
ted signal can effectively combat the spatial correlation
and colored noise in the eigen-mode. For single-hop wire-
less channels, the non-redundancy precoders to cope with
spatial correlations and colored noises have been success-
fully proposed in [35,40] and in [19], respectively.
The received signal at the first hop can be expressed as:

x1 = H1x̄0 + n1 = H1P0x0 + n1.

Since the AF strategy is considered, the received signal xi
at the i-th hop is also the source signal at the next hop.
Before transmitting over the wireless channel, the source
signal xi is also linearly precoded by a linear precoder Pi
such that the transmitted signal at the i-th transmitter is:

x̄i = Pixi, Pi ∈ C
ai×ai , i = 1, . . . ,N − 1.

To keep the transmitted power unchanged after precod-
ing, the precoder matrices are restricted as:

tr
{
PiRxiPH

i
} ≤ tr

{
Rxi

}
, i = 0, . . . ,N − 1, (16)

such that they satisfy the per-node long-term average
power constraint:

tr
{
Rx̄i

} = tr
{
E
{
x̄ix̄iH

}} = tr
{
PiRxiPH

i
}

≤ tr
{
Rxi

} = tr
{
E
{
xixHi

}}
.

(17)

The received signal at the destination is given by:

ȳN = ḠNx0 + n̄, (18)

where

ḠN = HNPN−1HN−1PN−2 . . .H2P1H1P0 (19)

is the end-to-end equivalent channel, and:

n̄ = nN
+ HNPN−1nN−1

+ HNPN−1HN−1PN−2nN−2

+ . . .

+ HNPN−1HN−1 . . .H3P2n2
+ HNPN−1HN−1 . . .H3P2H2P1n1

(20)

is the end-to-end equivalent colored noise. The noise
covariance matrix is calculated as:

Rn̄= E
{
n̄n̄H

}
= RN

+ HNPN−1RN−1PH
N−1H

H
N

+ HNPN−1HN−1PN−2RN−2PH
N−2H

H
N−1P

H
N−1H

H
N

+ . . .

+ HNPN−1HN−1. . .H3P2R2PH
2 H

H
3 . . .HH

N−1P
H
N−1H

H
N

+ HNPN−1HN−1 . . .H3P2H2P1R1PH
1 H

H
2 P

H
2 H

H
3 . . .

× HH
N−1P

H
N−1H

H
N .

(21)

By Theorem 3 and Theorem 4 in the Appendix, the
instantaneous end-to-end mutual information between
the system input x0 and the system output ȳN is given by:

I(x0; ȳN ) = H(x0) − H(x0|ȳN )

= log det(πeRx0)

− log det
[
πe

(
Rx0 − RT

ȳNx0R
†
ȳNRȳNx0

)]
= log det

(
I + Rx0ḠH

NR
−1
n̄ ḠN

)
.

(22)

For i = 1, . . . ,N , the capacity of the system is

C = max
Pi−1

log det
(
I + Rx0ḠH

NR
−1
n̄ ḠN

)
s.t. tr

{
Pi−1Rxi−1PH

i−1
} ≤ tr

{
Rxi−1

}
.

(23)

The maximum is taken over all possible precoding
matrices Pi−1, i = 1, . . . ,N . The design problem is how to
obtain the optimal set of precoding matrices Pi−1 to max-
imize the mutual information and consequently attain the
channel capacity (Equation 23) of the correlated MIMO
multi-hop wireless channel.

3.2 Asymptotic capacity and precoder design to
maximize the individual mutual information

Since the objective function in Equation 23 is very com-
plicated and neither a convex nor a concave function
with respect to the to-be-designed variables Pi−1, gener-
ally obtaining the optimal solution in closed form to this
problem is impossible. In this section, we propose to relax
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the objective function to obtain an asymptotic solution in
closed form.
Instead of maximizing only the end-to-end mutual

information between the source and the destination, we
propose to maximize the individual mutual information
between the transmitted signal and received signal at all
hops. Based on each maximization problem at each hop,
one after the others, each precoding matrix is designed.
Similarly to single-hop wireless models, it can be seen

that the input-output relationship at each hop can be
expressed as:

xi = Hix̄i−1+ni = HiPi−1xi−1+ni, i = 1, . . . ,N . (24)

Note that we have the fundamental condition [37]
det(I+XY) = det(I+YX). By Theorem 3 and Theorem 4
in the Appendix, themutual information between the sys-
tem input xi−1 and the system output xi at the i-th hop is
given by:

I(xi−1; xi) = log det
(
I + Rxi−1PH

i−1H
H
i R

−1
i HiPi−1

)
= log det

(
I + Pi−1Rxi−1PH

i−1H
H
i R

−1
i Hi

)
. (25)

The precoding matrices Pi−1, i = 1, . . . ,N are obtained
by solving the maximization problems:

max
Pi−1

log det
(
I + Pi−1Rxi−1PH

i−1H
H
i R

−1
i Hi

)
s.t. tr

{
Pi−1Rxi−1PH

i−1
} ≤ tr{Rxi−1}.

(26)

For i = 1, the maximization problem (26) becomes:

max
P0, tr

{
P0Rx0P

H
0
}≤tr

{
Rx0

} log det (I + P0Rx0PH
0 H

H
1 R

−1
1 H1

)
.

(27)

As R−1
1 is definite and Rx0 is semi-definite, let P =

HH
1 R

−1
1 H1 > 0 and make the variable change Q =

P0Rx0PH
0 ≥ 0, Equation 27 can be written as:

max
Q≥0, tr{Q}≤tr{Rx0 } log det(I + QP), (28)

where its optimal solution Q can be obtained in closed
form by Theorem 1. It can be be seen that the variable
change Q = P0Rx0PH

0 ≥ 0 is legal as for every known
matrix Q, one can easily find out a corresponding matrix
P0 = Q1/2R−1/2

x0 .
From the optimal value of Q, it is obvious to have the

optimal value of P0 sinceRx0 is semi-definite. After having
the optimal value of P0, from Equation 24, the covariance
matrix Rx1 can be calculated easily. It is also obvious to
see that Rx1 is semi-definite. Consequently, by using the
optimal precoding matrices in the previous hops, the pre-
coding matrix Pi−1, i = 2, . . . ,N in the current i-th hop

can be optimally obtained by solving the maximization
problems:

max
Q̄≥0, tr(Q̄)≤P̄

log det(I + Q̄P̄), (29)

where Q̄ = Pi−1Rxi−1PH
i−1 ≥ 0 and P̄ = HH

i R
−1
i Hi >

0, P̄ = tr
{
Rxi−1

}
.

3.3 Precoding design to minimize the detection error
When designing a wireless system, one criterion which is
usually used for this purpose is the minimization of the
detection error. To detect the source signal x0 from the
received signal in Equation 18, the minimummean square
error (MMSE) estimator of x0 is [41]:

x̃0 =
{
R−1
x0 + ḠH

NR
−1
n̄ ḠN

}−1
ḠH
NR

−1
n̄ ȳN .

In essence, x̃0 is a soft estimate of the data vector x0. The
final hard decision x̂0 is obtained by appropriately round-
ing up each element of x̃0 to the nearest signal point in the
constellation. The mean square error (MSE) in the MMSE
estimation of the source symbols from the received signal
at the destination is given by [41]:

tr
{
R−1
x0 + ḠH

NR
−1
n̄ ḠN

}−1
. (30)

In order to improve the detection performance, instead
of designing the precoding matrices Pi−1, i = 1 . . . ,N to
maximize the end-to-end mutual information as shown in
the above sections, we now design the precoding matrices
Pi−1 to minimize the MSE (Equation 30) under the power
constraint in Equation 16.

min
Pi−1

tr
{
R−1
x0 + ḠH

NR
−1
n̄ ḠN

}−1

s.t. tr
{
Pi−1Rxi−1PH

i−1
} ≤ tr

{
Rxi−1

}
. (31)

Similar to the design for mutual information maxi-
mization, it can be seen that the objective function in
Equation 31 is very complicated and neither a convex nor
a concave function with respect to the to-be-designed
variables Pi−1. Since it is impossible to obtain the opti-
mal solution in closed form for Problem (31), we relax the
optimization problem (31) for an asymptotic solution in
closed form.
Instead of globally minimizing the MSE of the source

symbol detection at the destination only, we minimize the
MSE of the soft estimate at each hop. Based on each min-
imization problem at each hop, each precoding matrix
is obtained, one after the others. The input-output rela-
tionship (Equation 24) at each hop is again used for the
asymptotic design. The MSE in the MMSE estimation of
the transmitted signal xi−1 from the received signal xi in
Equation 24 is:

tr
{
R−1
xi−1 + PH

i−1H
H
i R

−1
i HiPi−1

}−1
, i = 1, . . . ,N . (32)
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The precodingmatrices Pi−1 are obtained by solving the
minimization problems:

min
Pi−1

tr
{
R−1
xi−1 + PH

i−1H
H
i R

−1
i HiPi−1

}−1

s.t. tr
{
Pi−1Rxi−1PH

i−1
} ≤ tr

{
Rxi−1

}
.

(33)

Let Qi = HH
i R

−1
i Hi ≥ 0, the optimization problem can

be stated as:

min
Pi−1

tr
{
R−1
xi−1 + PH

i−1QiPi−1
}−1

s.t. tr
{
Pi−1Rxi−1PH

i−1
} ≤ tr

{
Rxi−1

}
. (34)

This optimization problem has the same form and solu-
tion as those in [19], Equation 12. The optimal solution is
summarized in the following.
Let M be the rank of Qi. Make the following SVDs of

Qi = UH
Q�QUQ and Rxi−1 = UH

xi−1�xi−1Uxi−1 . Here, �Q =
diag

[
�2

MQ 0
]
, with�MQ > 0, is a diagonal matrix having

the eigenvalues of Qi on its main diagonal in decreas-
ing order and UQ is the unitary matrix whose columns
are the corresponding eigenvectors of Qi. Analogously,
�xi−1 > 0 is the diagonal matrix having the eigenvalues of
Rxi−1 in decreasing order on its main diagonal, andUxi−1 is
the unitary matrix whose columns are the corresponding
eigenvectors.

Theorem 2. The optimal precoder matrices Pi−1 to be
used with the MMSE detection at each hop are:

Pi−1=ÛH
Q diag

⎧⎨⎩
[(

μ̄−1/2

γ (j)
− 1

γ 2(j)

)+]1/2
⎫⎬⎭

j=1,...,M

Ûxi−1 ,

where γ (j) = �
1/2
xi−1(j, j)�MQ(j, j), ÛQ and Ûxi−1 ∈ C

M×N

with UQ =
[
ÛH
Q ∗]H , Uxi−1 =[ ÛH

xi−1 ∗
]H

, and μ̄ is cho-
sen such that

∑M
j=1 �−2

MQ(j, j)(μ̄−1/2γ (j) − 1)+ = tr{Rxi−1}.

4 Simulation results
This section provides simulation results to illustrate the
performance of the proposed designs. In all simulation
results presented in this section, colored noise is gener-
ated by multiplying a matrixGi with white noise vectorwi
[19], whose components are CN (0, σ 2

w). This means that
the covariance matrix of colored noise is Ri = σ 2

wGiGH
i .

To have the average power of colored noise the same as
that of white noise, Gi is chosen such that tr{GiGH

i } = ai,
i = 1, . . . ,N . The average transmitted power is chosen to
be unity, the signal-to-noise ratio (SNR) in dB is defined
as SNR = −10log10σ 2

w, and the average noise power can
be calculated as σ 2

w = 10−SNR/10.
The wireless channel model is assumed to be quasi-

static block fading and spatially correlated by the
Kronecker model with σ 2

hi = 1. The one-ring model in

([13], Equation 6) is used to generate the elements of the
covariance matrices �ri and �ti. Specifically, �ti(n,m) ≈
J0
(
�ti

2π
λ
dti|m − n|), m, n = 1, . . . , ai−1, and �ri(u, v) ≈

J0
(
�ri

2π
λ
dri|u − v|), u, v = 1, . . . , ai. Here, we chosen

�ti = 5π i/180 and �ri = 10π i/180 are the angle spreads
(in radian) of the transmitter and the receiver at the i-th
hop; dti = 0.5λ and dri = 0.3λ are the spacings of the
transmitting and receiving antenna arrays at the i-th hop;
λ is the wavelength and J0(·) is the zeroth-order Bessel
function of the first kind. Note that the angle spreads,
�ti and �ri, the wavelength λ, and the antenna spacings,
dti and dri, determine how correlated the fading is at the
transmitting and receiving antenna arrays at each hop.
Figure 3 presents the mutual information of correlated

four-hop wireless channels under colored noise with ideal
channel state information at the transmitters (CSIT) when
having 2×2 and 4×4MIMO antennas.We used ‘SeDuMi’
[38] solver for the numerically optimal solution. It can be
observed that the closed-form solution and the numerical
solution yield the same optimal mutual information value.
Figure 4 shows the mutual information of two-hop

wireless 2 × 2 MIMO channels under colored noise in
three cases: 1) the upper bound of the average end-
to-end mutual information with the asymptotic design
solution obtained from Section 2.3, 2) the average end-
to-end mutual information with the asymptotic design,
and 3) the average end-to-end mutual information with
the optimal design solution obtained from the numerical
interior-point-method. It can be seen in Figure 4 that the
average end-to-end mutual information with asymptotic
design is very closed to that obtained by the numerical
interior point method. However, these mutual informa-
tion values are less than and closed to the upper bound
of the mutual information obtained by the asymptotic
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Figure 3 Comparison of mutual information for correlated four-hop
MIMO channels under colored noise with ideal CSIT.
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Figure 4 Comparison of average mutual information for a correlated four-hop MIMO channel under colored noise with only the channel statistics
at the transmitters.

solution. It verifies that the asymptotic design can effi-
ciently yield an acceptable mutual information while sav-
ing a huge computational complexity compared to the
numerical design, especially when the system size is large.
When precoding technique is applied, the wireless

channel model has 4 × 4 MIMO antennas, and the vector
x0 of a0 correlated source symbols are generated as x0 =
Gss0, where s0 is a length-a0 vector of uncorrelated sym-
bols drawn from the Gray-mapped quadrature phase-shift
keying (QPSK) constellation of unit energy. The matrix
Gs is generated arbitrarily but normalized such thatGsGH

s
has unit elements on the diagonal. This ensures the same
transmitted power as in the case of uncorrelated data
symbols. Note that the correlation matrix of the source
symbols is Rx0 = GsGH

s .
Figures 5, 6, and 7 present the end-to-end mutual

information values of correlated wireless MIMO channels
having correlated source symbols under colored noise in
four cases: 1) with the precoding design in Section 3.2
to maximize the individual mutual information, 2) with
the precoding design in Section 3.3 to minimize the indi-
vidual soft detection error, 3) with the precoding design
in ([27], Section V-C), and 4) without the precoding
techniques.
In Figure 5, the wireless channel under consideration

has only one hop. In this single-hop scheme, the proposed
design to maximize the mutual information is obviously
optimal as the end-to-end mutual information is also the
mutual information at the only hop. As expected, three
systems having the precoding techniques perform better

than the systemwithout being applied the precoding tech-
nique. It can be observed that themutual information with
the precoding design to maximize the mutual information
is better than that of the precoding design to minimize
the soft detection error. However, the more important
observation is that both the end-to-end mutual informa-
tion values of the wireless systems having the proposed
precoding designs are larger than the mutual information
value of the design in ([27], Section V-C). This perfor-
mance gain is reasonable as the design in ([27], Section
V-C) only proposed optimal precoding directions with
equal power allocation, while in our designs two precod-
ing problems of transmitted power allocation and trans-
mitted signal direction are optimally designed at each
hop.
In Figure 6, the simulation results for the two-hop

wireless MIMO channels are illustrated. In this two-hop
scheme, although the end-to-end mutual information val-
ues of the wireless systems having the proposed precoding
designs are better than that of the wireless system hav-
ing the precoding design in ([27], Section V-C), it is very
interesting that the precoding design to minimize the
soft detection error gives a better capacity performance
than that of the precoding design to maximize the mutual
information.
When the wireless channels have four hops, as shown in

Figure 7, the precoding design to minimize the individual
soft detection error yields a significant performance gain
than that of the design to maximize the individual mutual
information value. It is also depicted in Figure 7 that
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Figure 5 Comparison of end-to-end mutual information for correlated wireless single-hop MIMO channels with and without precoding techniques.

all the proposed precoding designs for four-hop wireless
channels have a better performance than that of the sys-
tem without the precoding technique.

5 Conclusions
In this paper, the closed-form source symbol covari-
ance is designed to maximize the mutual information
between the channel input and the channel output of

correlated wireless multi-hop MIMO systems when hav-
ing the full knowledge of channel at the transmitters.
When having only channel statistics at the transmitters,
the numerically optimal source symbol covariance and
a sub-optimal source symbol covariance in closed form
are designed to maximize the average end-to-end mutual
information. Moreover, two sets of precoding matrices are
sub-optimally designed for generally correlated multi-hop
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Figure 6 Comparison of end-to-end mutual information for correlated wireless two-hop MIMO channels with and without precoding techniques.
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Figure 7 Comparison of end-to-end mutual information for correlated wireless four-hop MIMO channels with and without precoding techniques.

MIMO channels. The first design is obtained by max-
imizing the mutual information between the input and
output signals at each hop while the second design is
obtained by minimizing the MSE of the soft detection
at each hop. Simulation results show that the proposed
precoding designs significantly increase the end-to-end
mutual information of the wireless system, while it does
not spend system resources such as transmission power or
bandwidth.

Appendix
Theorem 3. ([42], p. 522) Suppose that y and x are
two random variables of zero mean with the covariance
matrix:

Rx,y =
[
Ry Ryx
RT
yx Rx0

]
=
[
E
{
yyH

}
E
{
yxH

}
E
{
xyH

}
E
{
xxH

} ]
Then, the conditional distribution x|y has the covari-

ance:

Rx0 − RT
yxR†

yRyx.

Here, R†
y is the pseudo-inverse of Ry.

Theorem 4. ([1], Lemma 2) For any zero-mean random
vector x with the covariance E{xxH} = Rx0 , the entropy
[36] of x satisfies:

H(x) ≤ log det(πeRx0)

with equality if and only if x is a circularly symmetric
complex Gaussian random variable with zero mean and
covariance Rx0 , i.e., among the random variables with the

same mean and covariance, the Gaussian one gives the
largest entropy.

Proof of Theorem 1. The function F(Q) = log det(I +
QP) is not readily spectral. However, we can deduce
Equation 11 to spectral optimization by making the
SVD of P = UHDPU and changing the variable X =√
DPUQUH√

DP in Equation 12, it can be seen that
tr(Q) = tr(UHD−1/2

P XD−1/2
P U) = tr(D−1

P X). Therefore,
the optimization problem (12) is now expressed as follows:

max
X≥0,tr(D−1

P X)≤P
log det(I + X) (35)

where the function X → log det(I+X) is spectral and the
function X → Trace(D−1

P X) is linear and thus differen-
tiable. According to [43]:[

log det(I + X)
]′ = VH(I + DX)−1V = (I + X)−1,[

Trace(D−1
P X)

]′ = D−1
P ,

where X = VHDXV by SVD.
For simplicity, we relax the constraint X ≥ 0 in

Equation 35 by Xii ≥ 0, i.e., instead of Equation 35 we
consider:

max
Xii≥0, Tr(D−1

P X)≤P
log det(I + X). (36)

In the next few lines, we will prove that the optimal solu-
tion X is an diagonal matrix so Equations 35 and 36 have
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the same optimal solution. The Lagragian of Equation 36
is:

L(X,α,μ) = − log det(I + X) − Trace(XDα)

+ μ(Trace(D−1
P X) − P),

αi ≥ 0, μ ≥ 0, Dα = diag(α)

Since log det(I + X) is concave and − log det(I + X) is
convex so Equation 36 is a convex programming. Accord-
ing to the Karush-Kuhn-Tucker (KKT) condition [44] for
the optimality of convex programming, the optimal solu-
tion to the optimization problem in Equation 36 and
the corresponding Lagrange multipliers must satisfy the
following necessary and sufficient conditions:

0 = ∂L(α,μ)

∂X
= −(I + X)−1 − Dα + μD−1

P , (37)

0 = αiXii, i = 1, 2, . . . , n; 0 = μ(Trace(D−1
P X) − P).

(38)

From Equation 37, it is clear that X is diagonal, and
therefore, Equations 35 and 36 are equivalent. Solving
Equations 37 and 38 gives the following water-filling solu-
tion:

D−1
P (i, i)X(i, i) = (μ−1 − D−1

P (i, i))+ (39)

where x+ = max{0, x} and μ is chosen such that
Trace

(
D−1

P X
)

= P. The optimal solution is Q = UH(
D−1/2

P XD−1/2
P

)
U = UHD−1

P XU.
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