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In Bacillus subtilis, extracellular peptide signaling regulates several biological processes. Secreted Phr
signaling peptides are imported into the cell and act intracellularly to antagonize the activity of regulators
known as Rap proteins. B. subtilis encodes several Rap proteins and Phr peptides, and the processes regulated
by many of these Rap proteins and Phr peptides are unknown. We used DNA microarrays to characterize the
roles that several rap-phr signaling modules play in regulating gene expression. We found that rapK-phrK
regulates the expression of a number of genes activated by the response regulator ComA. ComA activates
expression of genes involved in competence development and the production of several secreted products. Two
Phr peptides, PhrC and PhrF, were previously known to stimulate the activity of ComA. We assayed the roles
that PhrC, PhrF, and PhrK play in regulating gene expression and found that these three peptides stimulate
ComA-dependent gene expression to different levels and are all required for full expression of genes activated
by ComA. The involvement of multiple Rap proteins and Phr peptides allows multiple physiological cues to be
integrated into a regulatory network that modulates the timing and magnitude of the ComA response.

Many bacteria use extracellular signaling molecules to coor-
dinate a variety of biological processes (reviewed in references
43 and 80). Extracellular signaling molecules can provide in-
formation about the density of a population of cells. This
regulatory strategy, often called quorum sensing, allows pro-
cesses to be initiated or inhibited once a certain cell population
density is achieved (43, 80). In addition, extracellular signaling
molecules may be used to sense the amount of diffusion and
mixing occurring within a population of cells; this strategy may
allow cells to increase production of extracellular enzymes and
secreted products under conditions in which these enzymes are
less likely to diffuse away and more likely to provide benefits to
the producing cells (63).

In the gram-positive bacterium Bacillus subtilis, several pro-
cesses are known to be regulated by extracellular peptide sig-
naling, including the initiation of genetic competence (the abil-
ity to incorporate exogenous DNA from the environment) (41,
70), sporulation (59, 70), production of degradative enzymes
(9, 52) and exopolysaccharides (9, 77), and antibiotic synthesis
(9, 41, 70). Three types of secreted peptide signaling molecules
have been identified: a modified 5- to 10-amino-acid peptide,
ComX, that interacts extracellularly with its receptor (41, 62,
76); lantibiotic peptides, such as subtilin, which interact extra-
cellularly with their receptors (reviewed in reference 73); and
unmodified pentapeptides, known as Phr peptides, that are
internalized to inhibit the activity of their target proteins,
known as Rap proteins (reviewed in references 31 and 56).

B. subtilis encodes a family of 8 Phr peptides (PhrA, PhrC,
PhrE, PhrF, PhrG, PhrH, PhrI, and PhrK) and a family of 11
Rap proteins (RapA to RapK) (24, 30). Each Phr peptide is

encoded in an operon with a Rap protein (30), and each
characterized Phr inhibits the activity of its cotranscribed Rap
(6, 27, 52, 59, 70). The PhrC peptide (also known as compe-
tence- and sporulation-stimulating factor [70]) also inhibits the
activity of an unpaired Rap protein, RapB (55). It is possible
that the other unpaired Rap proteins are also inhibited by
noncognate Phr peptides.

In addition to expression from the upstream rap promoter
(32, 59), most phr genes are also expressed from a promoter
upstream of phr that is recognized by RNA polymerase con-
taining the alternative sigma factor, �H (32, 42, 47). This reg-
ulation by �H causes the level of each phr gene to increase as
cells transition from exponential growth to stationary phase
(32, 42).

The primary phr gene products are pre-Phr peptides that are
38 to 57 amino acids in length. Pre-Phr peptides are exported
and cleaved to form the mature Phr pentapeptides (reviewed
in references 31 and 56). The oligopeptide permease (Opp), an
ATP-binding cassette (ABC) transporter that imports small
peptides (58, 65), transports the Phr peptides into the cell,
where they can inhibit the activities of Rap proteins (34, 55).

Several Rap proteins regulate a variety of processes by an-
tagonizing the activities of response regulator proteins, either
by stimulating dephosphorylation of the response regulator
(RapA, RapB, and RapE) (27, 57, 78) (Table 1) or by binding
to the response regulator and interfering with DNA binding
(RapC, RapF, and RapG) (6, 10, 52). One Rap protein, RapI,
regulates the mobility of the genetic element ICEBs1, possibly
by antagonizing the activity of the element-encoded immunity
repressor (2). RapG and RapH were recently shown to inhibit
expression of some ComA-activated genes, as well as the expres-
sion of DegU-activated genes (24). The remaining Rap proteins
(RapD, RapJ, and RapK) have not been characterized.

Two Rap proteins, RapC and RapF, inhibit the activity of
the response regulator ComA (6, 10, 70). Their cognate pep-
tides, PhrC and PhrF, stimulate ComA’s activity by directly
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inhibiting the activities of RapC and RapF (6, 10). ComA,
when phosphorylated (50, 64), activates the expression of sev-
eral genes, including those involved in antibiotic synthesis (9,
50, 51, 82), degradative enzyme production (9, 48), exopolysac-
charide production (9), fatty acid metabolism (9), and the
initiation of genetic competence (12, 13, 51). ComA receives
phosphate from ComP, a membrane-bound receptor histidine
kinase that is activated through its interaction with the extra-
cellular signaling peptide ComX (1, 41, 71, 76, 77, 81). There-
fore, at least three peptides, i.e., PhrC, PhrF, and ComX, are
known to stimulate ComA-dependent gene expression. PhrC
and ComX peptide signaling activates ComA-regulated pro-
cesses when B. subtilis cells reach a high population density
(41, 70). Signaling through these peptides, as well as the PhrF
peptide, may also provide cells with additional physiological
information.

In order to more fully understand the roles that Rap pro-
teins and Phr peptides play in modulating ComA-activated
processes, we characterized the roles that several Rap proteins
and Phr peptides play in regulating ComA-dependent gene
expression. We monitored the effects of overproduction of
several uncharacterized Rap proteins on global gene expres-
sion and found that overproduction of RapK inhibits the ex-
pression of genes activated by ComA. Furthermore, deletion of
phrK resulted in increased expression of ComA-dependent
genes. This effect on ComA-dependent gene expression was
dependent upon rapK, indicating that PhrK stimulates ComA’s

activity by inhibiting RapK’s activity. We also observed that
PhrC, PhrF, and PhrK stimulate ComA-dependent gene ex-
pression to different magnitudes and that all three peptides are
required for full expression of ComA-dependent genes. Based
on these results as well as previously published observations,
we conclude that signaling through the PhrC, PhrF, and PhrK
peptides integrates multiple physiological cues to modulate the
levels and timing of processes regulated by ComA.

MATERIALS AND METHODS

Media. Cells were grown at 37°C in Schaeffer’s nutrient broth sporulation
medium (DSM) (23) or in S7 minimal salts medium (79) (containing 50 mM
instead of 100 mM MOPS [morpholinepropanesulfonic acid]) supplemented
with 1% glucose, 0.1% glutamate, tryptophan and phenylalanine (40 �g/ml), and
threonine (120 �g/ml) (when necessary) as indicated. LB (66) was used for
routine growth of B. subtilis and Escherichia coli. Antibiotics, when appropriate,
were used as follows: ampicillin (100 �g/ml), chloramphenicol (5 �g/ml), neo-
mycin (2.5 �g/ml), spectinomycin (100 �g/ml), erythromycin (0.5 �g/ml) and
lincomycin (12.5 �g/ml) together to select for macrolide-lincosamide-strepto-
gramin B resistance, and tetracycline (12.5 �g/ml). Isopropyl-�-D-thiogalacto-
pyranoside (IPTG) (Sigma) was used at a final concentration of 1 mM.

Strains and alleles. The strains used in this study are listed in Table 2. All B.
subtilis strains were derived from the parental strain JH642 (60). The E. coli
strain used for cloning is an MC1061 derivative with F�(lacIq) lacZM15 Tn10
(tet). Standard techniques were used for cloning and strain construction (23, 66).
Pspank(hy) (2), �rapC::cat (70), �phrC::erm (70), and amyE::srfA-lacZ�682 (3)
were previously described.

For overexpression in B. subtilis, the entire rapC, rapF, rapH, rapJ, and rapK
open reading frames (ORFs) were cloned downstream of the IPTG-inducible
promoter Pspank(hy) (7), a generous gift from D. Rudner (Harvard Medical

TABLE 1. Processes regulated by Rap proteins and Phr peptides in Bacillus subtilis

Rap
protein

Phr
peptide Target(s) of Rap Mechanism of Rap Responses regulated by target protein(s) Reference(s)

RapA PhrA Spo0F�P Stimulates autodephosphorylation Activates post-exponential-phase gene
expression and sporulation
indirectly through Spo0A

14, 57, 59

RapB PhrC Spo0F�P Stimulates autodephosphorylation Activates post-exponential-phase gene
expression and sporulation
indirectly through Spo0A

14, 55, 57

RapC PhrC ComA Inhibits binding of ComA to
DNA

Activates expression of genes involved
in production of degradative
enzymes, antibiotics, and
competence

9, 10, 70

RapD Unknown Unknown
RapE PhrE Spo0F�P Stimulates autodephosphorylation Activates post-exponential-phase gene

expression and sporulation
indirectly through Spo0A

14, 27

RapF PhrF ComA Inhibits binding of ComA to
DNA

Activates expression of genes involved
in production of degradative
enzymes, antibiotics, and
competence

6, 9; this work

RapG PhrG DegU, ComAa Inhibits binding of DegU to
DNA, unknown

Activate expression of genes involved
in competence and production of
degradative enzymes and antibiotics

24, 30, 40, 52, 54

RapH PhrH ComAa, DegUa Unknown Activate expression of genes involved
in competence and production of
degradative enzymes and antibiotics

24, 30, 40, 54

RapI PhrI Unknown Unknown RapI stimulates gene expression,
excision, and transfer of ICEBs1

2

RapJ Unknown Unknown
RapK PhrK ComAa Unknown Activates expression of genes involved

in production of degradative
enzymes, antibiotics, and
competence

This work

a Presumed targets of Rap protein.
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School), and integrated into the amyE locus by homologous recombination.
Cloning of Pspank(hy)-rapH was based on the previously published sequence of
this ORF (30). Reanalysis of this sequence, based on the newly released se-
quence published by Hayashi et al. (24), indicates that this construct contains the
entire rapH and phrH ORFs downstream of the Pspank(hy) promoter.

rapF-phrF was deleted by replacing (from the start codon) nucleotides �542 of
rapF to �149 of phrF with a tetracycline resistance gene derived from pDG1513
(19). rapK was deleted by replacing nucleotides �36 to �980 of rapK with the
chloramphenicol resistance gene from pGEM-cat (83); cat was replaced with erm
by integration of the plasmid pCm::Er (74). phrF was deleted by replacing
nucleotides �38 to �103 of phrF with the chloramphenicol resistance gene from
pGEM-cat. phrK was deleted by replacing nucleotides �64 to �100 of phrK with
spectinomycin resistance derived from pDL55 (4).

�oppBCDE::spc (�spo0KBCDE::spc) was created by replacing the RsrII/ClaI
fragment in plasmid pDR9 (65) (contains oppBCDE) with the BglI/NdeI frag-
ment containing spc from pUS19 (4). Both plasmid and insert DNA was re-
cessed/filled-in by the Klenow fragment of E. coli DNA polymerase I prior to
ligation. The recombinant plasmid was integrated into the B. subtilis chromo-
some by homologous recombination.

�sigH::cat::spc (�spo0H::cat::spc) was created by integrating plasmid pJL62
(35) by homologous recombination into a strain containing the �sigH::cat (26)
mutation.

The Ppel-lacZ promoter fusion was generated by cloning the DNA from
nucleotides 	371 to �39 of pel upstream of the promoterless lacZ in the vector
pDG793 (18), followed by integration into the thrC locus by homologous recom-
bination. A similar fusion at amyE was previously described (9).

DNA microarrays. Pspank(hy)-rapF (JMA26), Pspank(hy)-(rapHphrH) (JMA27),
Pspank(hy)-rapJ (JMA29), and Pspank(hy)-rapK (JMA30) cells were grown in
defined minimal medium for at least four generations to an optical density at 600
nm (OD600) of �0.5. IPTG was added to half of the cultures, and samples were
collected from induced and uninduced cultures 30 min later. Wild-type (JH642),
�phrC (RSM121), �phrF (JMA163), and �phrK (CAL7) cells were grown in
defined minimal medium for at least four generations to an OD600 of �1, when
samples were collected.

Cells were harvested and total RNA was prepared as described previously (7).
RNA from each sample was reverse transcribed and labeled as described previ-
ously (2). In the experiments monitoring gene expression in cells overexpressing
the indicated rap gene, labeled cDNAs from induced samples (with IPTG) and
uninduced samples (without IPTG) were cohybridized to cDNA microarrays as
described previously (2). In the experiments monitoring gene expression in
wild-type, �phrC, �phrF, and �phrK cells, labeled cDNA from each experimental
sample was hybridized with a labeled reference cDNA sample to 65-mer oligo-
nucleotide arrays as described previously (2).

Arrays were scanned and analyzed as described previously (2). Iterative outlier
analysis (7, 37) was used as described previously (2) to identify genes whose
expression changed significantly with 95% or greater confidence. The mean ratio
for a set of three independent experiments is reported. Lists of significant genes
were arranged into known or putative operons based on the prediction of co-
orientation of transcription and the absence of predicted Rho-independent ter-
minators. If a gene or genes that were part of a known or predicted operon
changed significantly, the average fold changes in gene expression for the other
genes in the operon were also assessed. If the expression of those genes changed
similarly but these changes were below the significance threshold of the analysis,
the values of these fold changes were included in Fig. 1 and in Table S1 in the
supplemental material.

�-Galactosidase assays. The �-galactosidase specific activities of the indicated
fusions were assayed as described previously (26). Specific activity was calculated
relative to the OD600 of the sample. �-Galactosidase specific activity is plotted
relative to the OD600 of each sample. In each graph, the results from a single
experiment are presented and are representative of the results observed in at
least two independent experiments.

Microarray data accession number. Complete microarray results are available
in Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo). The accession
number for the series record is GSE4670.

RESULTS

Characterization of the effects of Rap overproduction on
global gene expression. We used DNA microarrays as an initial
approach to characterize genes whose mRNA levels were af-
fected by several Rap proteins. We examined the effects of

TABLE 2. Strains used in this study

Strain name Genotypea

JH642....................trpC2 pheA1
CAL7 ....................�phrK7::spc
CAL8 ....................amyE::
srfA-lacZ�682 neo� �phrK7::spc
CAL9 ....................amyE::
srfA-lacZ�682 neo� �phrC751::erm

�phrK7::spc
CAL10 ..................amyE::
srfA-lacZ�682 neo� �phrF163::cat

�phrK7::spc
CAL11 ..................amyE::
srfA-lacZ�682 neo� �phrC751::erm

�phrF163::cat �phrK7::spc
JMA26 ..................amyE::
Pspank(hy)-rapF spc�
JMA27 ..................amyE::
Pspank(hy)-(rapHphrH) spc�
JMA29 ..................amyE::
Pspank(hy)-rapJ spc�
JMA30 ..................amyE::
Pspank(hy)-rapK spc�
JMA47 ..................amyE::
srfA-lacZ�682 neo� �rapC::pJS79 cat
JMA48 ..................amyE::
srfA-lacZ�682 neo� �rapK41::cat::erm
JMA50 ..................amyE::
srfA-lacZ�682 neo� �rapC::pJS79 cat

�rapK41::cat::erm
JMA51 ..................amyE::
srfA-lacZ�682 neo� �sigH380::cat::spc
JMA52 ..................amyE::
srfA-lacZ�682 neo� �oppBCDE585::spc
JMA53 ..................amyE::
srfA-lacZ�682 neo� �sigH380::cat::spc

�rapC::pJS79 cat
JMA54 ..................amyE::
srfA-lacZ�682 neo� �oppBCDE585::spc

�rapC::pJS79 cat
JMA55 ..................amyE::
srfA-lacZ�682 neo� �sigH380::cat::spc

�rapK41::cat::erm
JMA56 ..................amyE::
srfA-lacZ�682 neo� �oppBCDE585::spc

�rapK41::cat::erm
JMA57 ..................amyE::
srfA-lacZ�682 neo� �sigH380::cat::spc

�rapC::pJS79 cat �rapK41::cat::erm
JMA58 ..................amyE::
srfA-lacZ�682 neo� �oppBCDE585::spc

�rapC::pJS79 cat �rapK41::cat::erm
JMA76 ..................amyE::
Pspank(hy)-rapF spc� thrC::
pel-lacZ erm�
JMA77 ..................amyE::
Pspank(hy)-rapK spc� thrC::
pel-lacZ erm�
JMA78 ..................amyE::
Pspank(hy)-rapC spc� thrC::
pel-lacZ erm�
JMA79 ..................amyE::
Pspank(hy) spc� thrC::
pel-lacZ erm�
JMA117 ................amyE::
srfA-lacZ�682 neo� �rapFphrF312::tet
JMA122 ................amyE::
srfA-lacZ�682 neo� �oppBCDE585::spc

�rapFphrF312::tet
JMA123 ................amyE::
srfA-lacZ�682 neo� �sigH380::cat::spc

�rapFphrF312::tet
JMA129 ................amyE::
srfA-lacZ�682 neo� �rapFphrF312::tet

�rapK41::cat::erm
JMA134 ................amyE::
srfA-lacZ�682 neo� �oppBCDE585::spc

�rapC::pJS79 cat �rapFphrF312::tet
JMA135 ................amyE::
srfA-lacZ�682 neo� �sigH380::cat::spc

�rapC::pJS79 cat �rapFphrF312::tet
JMA138 ................amyE::
srfA-lacZ�682 neo� �oppBCDE585::spc

�rapFphrF312::tet �rapK41::cat::erm
JMA139 ................amyE::
srfA-lacZ�682 neo� �sigH380::cat::spc

�rapFphrF312::tet �rapK41::cat::erm
JMA142 ................amyE::
srfA-lacZ�682 neo� �rapC::pJS79 cat

�rapFphrF312::tet �rapK41::cat::erm
JMA144 ................amyE::
srfA-lacZ�682 neo� �oppBCDE585::spc

�rapC::pJS79 cat �rapFphrF312::tet
�rapK41::cat::erm

JMA149 ................amyE::
srfA-lacZ�682 neo� �sigH380::cat::spc
�rapC::pJS79 cat �rapFphrF312::tet
�rapK41::cat::erm

JMA163 ................�phrF163::cat
JMA165 ................amyE::
srfA-lacZ�682 neo� �phrC751::erm
JMA166 ................amyE::
srfA-lacZ�682 neo� �phrF163::cat
JMA169 ................amyE::
srfA-lacZ�682 neo� �phrC751::erm

�phrF163::cat
JMA752 ................amyE::
srfA-lacZ�682 neo� �phrK7::spc

�rapK38::cat
JMS682 .................amyE::
srfA-lacZ�682 neo�
RSM121................�phrC751::erm

a All strains are derived from JH642 and contain trpC2 and pheA1 alleles.
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FIG. 1. Overexpression of rapF or rapK and deletion of phrC, phrF, or phrK inhibit expression of genes activated by ComA. We used DNA
microarrays to examine changes in mRNA levels in response to overexpression of rapF, rapH, rapJ, or rapK or deletion of phrC, phrF, or phrK. A.
Genes whose expression changed significantly in response to overexpression of rapF (RapF��), rapJ (RapJ��), or rapK (RapK��), to
cooverexpression of rapH and phrH (RapH��), or to deletion of phrC (PhrC	), phrF (PhrF	), or phrK (PhrK	) were identified as described
in Materials and Methods and are represented by a box shaded to represent the magnitude of the mean fold change in gene expression. A threefold
or greater decrease in gene expression is shaded bright blue, and a threefold or greater increase in gene expression is shaded bright yellow. Those
genes whose expression did not change significantly are shaded black. Additional microarray results, including the gene names and numerical
values of the fold changes in gene expression, are in Table S1 in the supplemental material. The boxes to the left of the visualization indicate those
genes whose expression were previously shown to be regulated by the response regulators ComA (5, 9, 53, 54) (gray box), Spo0A (14, 46) (black
boxes), and DegU (40, 54) (white boxes). B to F. Percentage of operons whose expression changed significantly in response to overexpression of
rapF or rapK or to deletion of phrC, phrF, or phrK and are known to be regulated by the response regulators ComA (green segments), Spo0A
(striped segments), DegU (red segments), or other regulators (gray segments). B. Gene expression changes in cells overexpressing rapF
(RapF��). C. Gene expression changes in cells overexpressing rapK (RapK��). D. Gene expression changes in �phrC cells (PhrC	). E. Gene
expression changes in �phrF cells (PhrF	). F. Gene expression changes in �phrK cells (PhrK	).
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rapF, rapH, rapJ, and rapK overexpression on global mRNA
levels. Although changes in global mRNA levels may result
from changes in the level of gene transcription as well as
changes in the levels of RNA stability, for simplicity we as-
sumed that changes in mRNA levels reflect changes in gene
expression. This same microarray-based strategy successfully
elucidated the role that RapI plays in activating expression of
genes in the ICEBs1 mobile element (2).

Each rap gene was overexpressed from the IPTG-inducible
promoter Pspank(hy) during exponential growth in defined
minimal medium. RNA transcript levels in induced and unin-
duced cells were compared 30 min after induction. We ana-
lyzed the results of three independent experiments to identify
those genes whose expression changed significantly in response
to overproduction of each Rap. We compared the results of
these experiments to the published genomewide analyses of
several response regulator regulons (9, 14, 29, 40, 46, 54) in
order to identify response regulators whose activities were
potentially regulated by these Rap proteins. In particular, we
were interested in identifying any Rap proteins that affect
ComA-dependent gene expression.

Overproduction of each Rap protein resulted in changes in
the expression of several genes. RapH overproduction caused
small changes in expression of 15 genes; there was no signifi-
cant overlap between those genes affected by RapH overpro-
duction and characterized response regulator regulons (Fig. 1A;
see Table S1 in the supplemental material). These observations
are in contrast to the results recently reported by Hayashi et al.,
who observed that rapH overexpression inhibited srfA, rapF,
and sacB expression (24). Reanalysis of the nucleotide se-
quence of our rapH overexpression construct, which was con-
structed based on the previously published sequence for the
rapH region (30) and not the newly reported sequence of
Hayashi et al. which identified multiple sequence errors in this
region (24), revealed that our construct overexpresses both
rapH and phrH. Therefore, we believe that the small changes in
gene expression that were observed were due to efficient inhi-
bition of RapH’s activity by the cooverexpressed PhrH peptide.

RapJ overproduction affected the expression of 39 operons,
including 20 that are known to be regulated by Spo0A. Expres-

sion of 17 Spo0A-activated operons decreased in cells over-
producing RapJ, and expression of 3 Spo0A-repressed operons
increased (Fig. 1A; see Table S1 in the supplemental material).
It is not known whether RapJ directly or indirectly inhibits the
activity of Spo0A; further studies will be needed to determine
how RapJ affects Spo0A-dependent gene expression.

Overproduction of RapF or RapK inhibited the expression
of genes known to be activated by ComA (Fig. 1A to C and
Table 3). The effects of RapF overproduction on ComA-de-
pendent gene expression are consistent with previously pub-
lished data (6). To understand how multiple Rap proteins and
Phr peptides affect the activity of ComA, we further explored
the roles that RapF, RapK, PhrF, and PhrK play in regulating
ComA-dependent gene expression.

Effects of RapF overproduction on gene expression. Over-
production of RapF had few effects on gene expression, with
significant changes in only eight operons (Fig. 1A and B and
Table 3; see Table S1 in the supplemental material). Three of
the eight operons affected are directly activated by ComA,
whereas the remaining operons are regulated by other re-
sponse regulators or their regulation is unknown. Although
rapF overexpression inhibited only a small subset of the ComA
regulon, we conclude that overexpression of RapF inhibits
ComA-dependent gene expression, because the genes that
were inhibited show some of the largest changes in gene ex-
pression in response to perturbations in the levels of comA (9).
The modest effects of RapF overproduction on gene expres-
sion may be partially explained by the effects of the negative
autoregulatory loop that controls expression of rapF from its
native copy in the chromosome. Transcription from the rapF
promoter is activated by ComA (9) and should be partially
repressed in response to increased RapF activity, resulting in a
smaller net increase in the amount of active RapF upon rapF
overexpression from the inducible promoter. Consistent with
this, we observed that rapF transcripts increased less than
threefold in response to induction from the IPTG-dependent
promoter. In addition, modest effects of rapF overexpression
on ComA-dependent genes may be partially explained by the
time at which gene expression was assayed (OD600 of �0.8),
when expression of ComA-dependent genes is still increasing

TABLE 3. Effects of RapF or RapK overproduction or phrC, phrF, or phrK deletion on gene expression

rap or phr modulation

No. of operons:

Activated
by ComA

Activated
by Spo0A

Activated
by DegU

Repressed
by Spo0A

Repressed
by DegU Other a

rapF overexpression 3b 3b 2c 1c 3
rapK overexpression 14d 11d,e 1e 4 16
�phrC 21f 21f, g 7g 2 30
�phrF 24h 21h,i 5i 1 1 34
�phrK 16 j 22j, k 2k 10

a Operons are regulated by other response regulators or are not known to be regulated by a response regulator.
b Three operons are activated by both ComA and Spo0A.
c One operon is repressed by both Spo0A and DegU.
d Eight operons are activated by both ComA and Spo0A.
e One operon is activated by both Spo0A and DegU.
f Eleven operons are activated by both ComA and Spo0A.
g Four operons are activated by both Spo0A and DegU.
h Eleven operons are activated by both ComA and Spo0A.
i Three operons are activated by both Spo0A and DegU.
j Eight operons are activated by both ComA and Spo0A.
k Two operons are activated by both Spo0A and DegU.
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to its maximal level. Gene expression changes were measured
under these conditions to avoid analyzing cells transitioning
from exponential-phase growth to stationary-phase growth,
when patterns of gene expression change dramatically. RapF
may also affect transcription independently of ComA, because
four of the operons whose expression changed in response to
RapF overproduction are not regulated by ComA.

Effects of RapK overproduction on gene expression. The
expression of 37 operons changed significantly in response to
RapK overproduction (Fig. 1A and C and Table 3; see Table
S1 in the supplemental material). Fourteen of the 30 operons
whose expression decreased are activated by ComA, including
eight operons that are also activated by Spo0A. RapK over-
production inhibited the expression of three additional oper-
ons that are activated by Spo0A and activated expression of
four operons that are repressed by Spo0A. Based on these
results, we infer that RapK inhibits the activity of ComA,
either directly or indirectly, as the majority of operons whose
expression demonstrated the largest decreases in expression
are activated directly by ComA and indirectly by Spo0A (see
Table S1 in the supplemental material). However, several
genes whose expression changed in response to overexpression
of rapK are not part of the ComA regulon (Fig. 1A and C and
Table 3; see Table S1 in the supplemental material), indicating
that RapK likely affects the activity of additional regulators.
Spo0A is likely another direct or indirect target of RapK, as
several of the operons affected by rapK overexpression are
known to be regulated by Spo0A. Nevertheless, the effect of
RapK overproduction on the expression of ComA-regulated
genes is unlikely to be due solely to effects on Spo0A’s activity,
as many of the ComA-regulated genes whose expression
changed in response to overproduction of RapK did not
change in response to overproduction of RapJ, which also inhib-
ited Spo0A-dependent gene expression (Fig. 1A; see Table S1 in
the supplemental material).

Overproduction of RapF and RapK inhibits expression of
Ppel-lacZ. In order to further investigate the roles that RapF
and RapK play in regulating ComA-dependent gene expres-
sion, we monitored the effects of RapF and RapK overproduc-
tion on the expression of the ComA-activated gene pel by using
a fusion of the pel promoter to the reporter gene, lacZ. In
contrast to the microarray experiments, which monitor gene
expression at only a single time, the Ppel-lacZ fusion provides
a dynamic picture of the effects of RapF or RapK overproduc-
tion on gene expression throughout growth. We compared
expression of Ppel-lacZ in cells overexpressing rapF or rapK to
that in control cells with an empty overexpression vector (Fig.
2). Consistent with previous observations (9), pel expression
was initially low and increased with increasing cell density in
control cells (Fig. 2). Other ComA-regulated genes exhibit
similar patterns of expression (32, 41) (Fig. 3). Overproduction
of RapF or RapK prevented the density-dependent increase in
pel expression (Fig. 2). A similar effect was observed when
rapC, the other known ComA inhibitor, was overexpressed
(Fig. 2). These data further demonstrate that RapF and RapK
inhibit ComA-dependent gene expression when overproduced
and indicate that RapF and RapK could play significant roles
in regulating ComA-dependent gene expression.

PhrC, PhrF, and PhrK stimulate ComA-dependent gene
expression. All characterized Rap proteins are inhibited by

their cognate Phr peptides. Therefore, we examined the roles
that PhrF and PhrK play in regulating the expression of
ComA-regulated genes. We used DNA microarrays to com-
pare mRNA levels in �phrF and �phrK mutants to mRNA
levels in wild-type cells. We expected that loss of phrF or phrK
would result in decreased ComA-dependent gene expression,
as the activity of RapF or RapK should increase due to the
absence of their inhibitory peptides. We also tested the effects
of deletion of phrC on global gene expression. The expression
of several ComA-regulated genes (srfA, rapA, and rapC) is
known to decrease in �phrC mutants (10, 32, 70); this is due to
increased RapC activity (10, 70). We found that deletion of all
three phr genes resulted in decreased expression of genes ac-
tivated by ComA, with �phrF and �phrK mutants having the
largest and smallest decreases in magnitude of expression of
ComA-dependent genes, respectively (Fig. 1A and D to F; see
Table S1 in the supplemental material).

(i) �phrC. Deletion of phrC significantly changed the expres-
sion of 66 operons (Fig. 1A and D and Table 3; see Table S1

FIG. 2. Overexpression of rapC, rapF, or rapK inhibits expression of
the ComA-activated gene pel. Cells containing Ppel-lacZ and Pspank(hy)-
rapC (JMA78), Pspank(hy)-rapF (JMA76), Pspank(hy)-rapK (JMA77),
or Pspank(hy) (JMA79) were grown in defined minimal medium. IPTG
was added to cells at an OD600 of �0.4 to 0.6. Samples were collected
from cells prior to IPTG addition, at the time of IPTG addition, and
30, 60, 90 120, 150, and 180 min. after IPTG addition. �-Galactosidase
activity was assayed as described in Materials and Methods and is
plotted relative to the OD600 values of the samples. The arrow indi-
cates the time of IPTG addition. Ppel-lacZ expression in Pspank(hy)
(‚) (wild type [wt]), Pspank(hy)-rapC (E) (rapC��), Pspank(hy)-rapF
(�) (rapF��), and Pspank(hy)-rapK (�) (rapK��) cells is shown. The
inset shows data replotted with the y axis from 0 to 1.5 units of
�-galactosidase specific activity.
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FIG. 3. Effects of rap and phr deletions on expression of srfA. PsrfA-lacZ-containing cells were grown in defined minimal medium, and samples
were removed throughout growth for determination of �-galactosidase specific activity. �-Galactosidase specific activity was determined as
described in Materials and Methods and is plotted relative to the OD600 values of the samples. A. Wild-type (wt) (JMS682) (■), �phrK (CAL8)
(�), �phrC (JMA165) (E), �phrC �phrK (�phrCK) (CAL9) (F), and �phrF (JMA 166) (‚) cells. The inset shows data from the early time points
(OD600 of �1) in wild-type, �phrC, and �phrF cells replotted with a y axis from 0 to 150 units of �-galactosidase specific activity. B. Wild-type
(JMS682) (■), �rapC (JMA47) (�), �(rapF phrF) (�rapF) (JMA117) (Œ), �rapK (JMA48) (E), and �rapC �(rapF phrF) �rapK (�rapCFK)
(JMA142) (F) cells. C. �phrF (‚) (JMA166), �phrC �phrF (�phrCF) (JMA169) (�), �phrF �phrK (�phrFK) (CAL10) (�), and �phrC �phrF
�phrK (�phrCFK) (CAL11) (�) cells. D. Wild-type (JMA682) (■), �opp (JMA52) (�), �opp �(rapF phrF) (�opp �rapF) (JMA122) (F), �opp
�rapC �(rapF phrF) (�opp �rapCF) (JMA134) (�), �opp �rapC �rapK (�opp �rapCK) (JMA58) (Œ), �opp �(rapF phrF) �rapK (�opp �rapFK)
(JMA138) (‚), and �opp �rapC �(rapF phrF) �rapK (�opp �rapCFK) (JMA144) (�) cells. E. Wild-type (JMS682) (■), �sigH (JMA51) (F), �sigH
�rapC (JMA53) (�), �sigH �(rapF phrF) �rapK (�sigH �rapFK) (JMA139) (ƒ), and �sigH �rapC �(rapFphrF) �rapK (�sigH �rapCFK)
(JMA149) (E) cells.
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in the supplemental material). Twenty-one of the 54 operons
whose expression decreased are activated by ComA; these
include 11 operons that are activated by Spo0A. Deletion of
phrC also resulted in decreased expression of 10 additional
operons that are activated by Spo0A. The remaining operons
whose expression changed in response to deletion of phrC were
either regulated by other response regulators or not known to
be regulated by a response regulator (Fig. 1A and D and Table
3; see Table S1 in the supplemental material).

(ii) �phrF. Deletion of phrF resulted in significant changes
in the expression of 72 operons (Fig. 1A and E and Table 3; see
Table S1 in the supplemental material). Twenty-four of the 69
operons whose expression decreased in �phrF cells are known
to be activated by ComA; these include 11 that are also acti-
vated by Spo0A. Deletion of phrF also resulted in decreased
expression of 10 additional operons that are activated by
Spo0A. The remaining operons whose expression changed in
response to deletion of phrC were either regulated by other
response regulators or not known to be regulated by a response
regulator (Fig. 1A and E and Table 3; see Table S1 in the
supplemental material).

(iii) �phrK. Deletion of phrK resulted in significant changes
in the expression of 40 operons (Fig. 1A and F and Table 3; see
Table S1 in the supplemental material). Of the 38 operons
whose expression decreased in �phrK cells, 16 are activated by
ComA, including 8 that are also activated by Spo0A. Deletion
of phrK resulted in decreased expression of 14 additional oper-
ons that are activated by Spo0A, whereas the remaining oper-
ons affected by deletion of phrK are not known to be regulated
by response regulators (Fig. 1A and F and Table 3; see Table
S1 in the supplemental material).

Targets for Phr peptides and Rap proteins. Consistent with
previous studies and our results from overproduction of RapF
and RapK, our analysis of �phrC, �phrF, and �phrK mutants
demonstrates that all three Phr peptides play a role in activat-
ing expression of genes regulated by ComA. PhrC and PhrF
are known to stimulate the expression of ComA-dependent
genes by inhibiting RapC and RapF, respectively (6, 70). RapC
and RapF have been previously shown to directly interact with
ComA and to inhibit its ability to bind to DNA (6, 10). PhrK
likely stimulates ComA-dependent gene expression by inhibit-
ing the activity of RapK. RapK inhibits ComA-dependent gene
expression either by acting on ComA directly or by affecting
the activity of another regulator that is known to modulate
ComA-dependent gene expression (14, 20, 32, 46, 67).

RapK may also play a role in directly or indirectly regulating
the expression of genes activated by Spo0A, because a number
of Spo0A-controlled genes were affected by overproduction of
RapK and deletion of phrK. There are two classes of Spo0A-
regulated genes: those genes whose transcription is activated
or repressed by intermediate levels of phosphorylated Spo0A
(Spo0A�P), which include genes involved in biofilm forma-
tion, competence development, and antibiotic production, and
those genes whose transcription is activated or repressed by
high levels of Spo0A�P, many of which are involved in sporu-
lation (15, 16, 20–22). This regulation is thought to allow cells
to progressively respond to decreasing nutrient availability as
the amount of Spo0A�P increases (8, 15, 16). Under the
conditions tested, we expected that the majority of genes
whose expression would change would be those that were reg-

ulated by intermediate levels of Spo0A�P. This is what we
observed, as the majority of Spo0A-regulated genes whose
expression changed in response to overexpression of rapK or
deletion of phrK were those that respond to intermediate levels
of Spo0A�P. Further work is needed to determine if RapK
can inhibit Spo0A under conditions favorable for regulation of
genes dependent upon high levels of Spo0A�P.

Although one might expect that overexpression of each rap
gene and deletion of each cognate phr would have similar
effects on gene expression, this is not what we observed. This is
likely due to the levels of active Rap protein that were present
in each condition. Overexpression of rapF had very modest
effects on global gene expression, whereas deletion of phrF had
large effects on gene expression. As described above, the mod-
est effects of RapF overproduction on global gene expression
were likely due to decreased expression from the native copy of
rapF, resulting in a relatively small increase in the ratio of
RapF to PhrF. In contrast, any RapF protein that was pro-
duced in phrF mutant cells should be active, as it is in excess
over its inhibitory peptide. Although overexpression of rapK
had a larger effect on ComA-dependent gene expression than
did deletion of phrK, these results may be partially explained by
the fact that transcription of rapK from its native promoter was
likely low at the time at which changes in gene expression were
measured, as expression of rapK is thought to be indirectly
activated by Spo0A, which activates expression of genes at the
end of exponential phase and in early stationary phase (14, 17).
This regulation likely explains most of the differences in the
magnitude of effects observed in response to overexpression of
rapF or rapK and deletion of phrF or phrK.

In addition to genes regulated by ComA, deletion of each
phr gene also resulted in changes in the expression of several
other genes. Many of these genes were not detected in the
rap overexpression experiments. These differentially regulated
genes may be regulated by both the rap and phr genes and
reflect differences in the way the experiments were performed,
i.e., transient overexpression of each rap gene compared to
absence of each phr gene throughout growth. Alternatively,
each Phr peptide may affect the activity of a protein or proteins
in addition to its cognate Rap protein. The PhrC and PhrG
peptides affect the activities of proteins in addition to their
cognate Rap proteins (52, 55, 70). PhrC interacts with two
additional proteins (70), one of which is the indirect Spo0A
antagonist RapB (55). Therefore, the effects of the �phrC
mutation on Spo0A-regulated gene expression may reflect un-
inhibited activity of RapB. The other target of PhrC has not
been identified, so it is possible that some of the gene expres-
sion changes observed in the �phrC mutant could reflect
changes in the activity of this protein.

PhrC, PhrF, and PhrK play different roles in stimulating
ComA-dependent gene expression. The results of our microar-
ray analysis of the �phrC, �phrF, and �phrK mutants indicated
that the �phrF mutation had the largest effect on the expres-
sion of genes activated by ComA under the conditions tested,
i.e., mid-to-late exponential growth in defined minimal me-
dium (OD600 of �1). However, as peptide levels change
throughout growth, possibly affecting gene expression to dif-
ferent extents, we used a fusion of lacZ to the ComA-depen-
dent promoter srfA (PsrfA-lacZ) to monitor the effects of phr
null mutations throughout growth (Fig. 3A).
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As described previously (70), we found that srfA expression
was �2-fold lower in �phrC mutants than in the wild type and
that the initial increase in srfA expression was slightly delayed
(Fig. 3A). In �phrF mutant cells, srfA expression was reduced
�10- to 20-fold and the initial increase in srfA expression was
delayed several generations relative to that in wild-type cells.
Furthermore, significant differences in the level of srfA expres-
sion were observed in �phrF cells at lower cell densities, a
condition where there were much smaller differences in the
magnitude of srfA expression between wild-type, �phrC, and
�phrF cells (Fig. 3A, inset). In the �phrK mutants, srfA expres-
sion was �75% of that in wild-type cells and was slightly
delayed.

These results provide further evidence that all three Phr
peptides are required for full levels of ComA-dependent gene
expression and that PhrC, PhrF, and PhrK stimulate ComA-
dependent gene expression to different magnitudes. Further-
more, the effects of the phrC, phrF, and phrK mutations on srfA
expression were dependent upon the presence of their cognate
rap genes, as srfA expression was not inhibited when both rap
and phr were inactivated [�(rapF phrF) (Fig. 3B) and �rapK
�phrK (data not shown)]. These observations, as well as pre-
viously published results (70), indicate that ComA-dependent
gene expression decreases in �phrC, �phrF, and �phrK mu-
tants due to the increased activities of RapC, RapF, and RapK,
providing further evidence that RapC, RapF, and RapK reg-
ulate ComA-dependent gene expression.

Multiple Phr peptides act independently to inhibit srfA ex-
pression. We also examined the effects of multiple phr dele-
tions on srfA expression to determine if each phr gene stimu-
lated ComA-dependent gene expression independently. We
found that srfA expression was less in �phrC �phrK double
mutant cells than in �phrC or �phrK single mutants (Fig. 3A),
indicating that PhrC and PhrK act independently to stimulate
ComA-dependent gene expression. Adding additional phr mu-
tations (�phrC, �phrK, or �phrC and �phrK) to the �phrF cells
had little effect on srfA expression (Fig. 3C), indicating that in
the absence of phrF, neither PhrC nor PhrK significantly stim-
ulates ComA-dependent gene expression. These data provide
further evidence of the important role that PhrF plays in stim-
ulating ComA-dependent gene expression and the modest
roles played by the PhrC and PhrK peptides.

Deletion of rapF or rapK has no effect on ComA-dependent
gene expression. As overexpression of rapF or rapK or deletion
of phrF or phrK resulted in decreased ComA-dependent gene
expression, we monitored the effects of deletion of rapF or
rapK on ComA-dependent gene expression. Deletion of rapC
in otherwise wild-type cells results in increased expression of
ComA-dependent genes (10, 70). However, we found that de-
letion of rapF or rapK had no detectable effect on srfA expres-
sion under the conditions tested: growth in minimal medium
(Fig. 3B), nutrient broth sporulation medium (DSM) (data not
shown), or DSM supplemented with glucose and glutamate (de-
scribed previously [11]; data not shown). Similarly, Bongiorni et
al. (6) did not observe changes in expression of the ComA-
dependent gene rapA in �rapF mutant cells.

We were also unable to detect additional effects on srfA
expression when the �rapC mutation was combined with the
�rapF, �rapK, or both the �rapF and �rapK mutations (Fig. 3B
and data not shown). This is in contrast to the results reported

by Bongiorni et al. (6), who observed that combining the �rapF
and �rapC mutations resulted in a further increase in expres-
sion of rapA. These conflicting observations could be due to
differences in the promoters assayed (rapA compared to srfA)
or the growth conditions (DSM, in which ComA-dependent
gene expression increases at the end of exponential growth,
versus minimal glucose medium, in which ComA-dependent
gene expression increases during exponential growth) (41, 51).
However, because we observed that overproduction of RapF
or RapK or deletion of PhrF or PhrK results in decreased
ComA-dependent gene expression, we suspect that RapF and
RapK have roles in regulating ComA-dependent gene expres-
sion under conditions that we have not yet identified.

Rap proteins inhibit ComA-dependent gene expression in
strains defective for synthesis and uptake of Phr peptides. The
inability to detect effects of �rapF and �rapK mutations on srfA
expression in cells grown in minimal media was surprising, as
our previous results indicated that under these growth condi-
tions, RapC, RapF, and RapK all actively repress srfA expres-
sion in the absence of their inhibitory peptides. Therefore, we
looked for additional insights into the roles that RapC, RapF,
and RapK play in regulating ComA-dependent gene expres-
sion by examining the effects of rapC, rapF, and rapK mutations
in the presence of mutations, �opp or �sigH, that affect ComA-
dependent gene expression, likely by affecting import and syn-
thesis of Phr peptides, respectively.

(i) �opp. Previous work had shown that the oligopeptide
permease (Opp) is required for competence development,
sporulation, and expression of srfA (20, 65). The requirement
for opp for sporulation is bypassed by deleting both rapA and
rapB, indicating that the major (and probably only) role for
Opp in sporulation is to inhibit the activities of the RapA and
RapB proteins, likely by importing the PhrA and PhrC pep-
tides, respectively (59). However, the role for Opp in compe-
tence development and srfA expression is less clear. Null mu-
tations in rapC do not bypass the need for opp for expression
of srfA or competence development. It seemed likely that opp
null mutants had decreased expression of ComA-activated
genes due to uninhibited activity of Rap proteins other than or
in addition to RapC (34, 70).

Based on our observations that RapC, RapF, and RapK all
inhibit expression of srfA and other genes activated by ComA,
we thought it was likely that the role that Opp played in
regulating srfA expression was to import the peptides that
antagonize the activities of RapC, RapF, and RapK. There-
fore, we tested the ability of rapC, rapF, and rapK deletions to
suppress the defects in srfA expression that occurred in an opp
mutant. We found that deletion of rapC, rapK, or both rapC
and rapK was not able to suppress the defect in srfA expression
observed in �opp cells, as srfA was expressed at the same low
level in �opp, �opp �rapC, �opp �rapK, and �opp �rapC
�rapK mutant cells (Fig. 3D and data not shown). However,
deletion of rapF in �opp mutant cells resulted in a significant
restoration of srfA expression (Fig. 3D). srfA expression was
further enhanced in �opp �rapF cells by deletion of rapC,
rapK, or both rapC and rapK (Fig. 3D). srfA expression in �opp
�rapC �rapF �rapK cells was slightly higher than that in wild-
type cells.

These results indicate that the primary reason that opp mu-
tant cells exhibit low levels of srfA expression is due to unin-
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hibited activity of RapF. In addition, the similarly low levels of
srfA expression in �phrF and �opp mutant cells indicate that
the increase in RapF activity in opp mutant cells is primarily
due to the inability to import the PhrF peptide. The changes in
the timing and level of srfA expression in the �opp �rapF
�rapK and �opp �rapC �rapF mutants also correlate well with
the changes in the timing and level of srfA expression in the
�phrC and �phrK mutants. Taken together, these results indi-
cate that in the absence of Opp and the import of the PhrC,
PhrF, and PhrK peptides, RapF, and to a lesser extent RapC
and RapK, inhibit ComA-dependent gene expression.

(ii) �sigH. �H directs some of the transcription of all phr
genes except phrA and phrH (24, 32, 42, 47). �H is also required
for full activation of srfA expression (26) and seems to play a
role in the posttranslational production of mature PhrC pep-
tide (32). We tested whether the decrease in srfA expression
that occurs in sigH mutants was due to the increased activity of
RapC, RapF, or RapK as a result of decreased inhibition by
their cognate peptides. We found that deletion of rapF, rapK,
or both rapF and rapK in �sigH mutants had no effect on srfA
expression (Fig. 3E and data not shown). However, deletion of
rapC in �sigH mutants restored srfA expression to levels
slightly higher than wild-type levels (Fig. 3E). Deletion of rapF
or rapK in addition to rapC in �sigH cells resulted in levels of
expression similar to those as observed in �sigH �rapC cells
(data not shown), whereas deletion of rapC, rapF, and rapK in
�sigH mutants resulted in a further increase in the levels of
srfA expression (Fig. 3E). These results indicate that the pri-
mary defect in srfA expression in sigH mutants is due to in-
creased RapC activity but that increased RapF and RapK
activities also contribute to the lower levels of srfA expression
in sigH mutant cells in the absence of RapC.

These results, compared to the results observed with dele-
tion of rap genes in opp mutant cells, also indicate that there
may be different requirements for �H activity among the Phr
peptides, with some Phr peptides being more dependent upon
�H activity, at the level of either phr transcription or posttrans-
lational processing. phrA and phrH do not possess �H-depen-
dent promoters and instead appear to be transcribed only from
the upstream rap promoters (24, 42, 59). phrE and phrI are
transcribed from at least one promoter in addition to the
�H-dependent promoter (42). As the role that �H plays in the
posttranslational processing of PhrC and potentially other pep-
tides has not been elucidated, it is currently not clear whether
different Phr peptides may be more dependent upon �H activ-
ity for posttranslational processing.

DISCUSSION

PhrK stimulates ComA-dependent gene expression by an-
tagonizing RapK. In this work, we identified an additional
rap-phr pair, rapK-phrK, that regulates the expression of sev-
eral genes activated by the response regulator ComA (9). We
observed that PhrK stimulates expression of genes activated by
ComA by antagonizing the activity of RapK. Since other reg-
ulatory proteins are also known to regulate transcription of
some of the genes that are activated by ComA (14, 20, 33, 46,
67), the effects mediated by RapK and PhrK may occur
through direct inhibition of ComA activity by RapK or through
inhibition of the activity of another regulatory protein. rapK

transcription is thought to be activated indirectly by Spo0A
(14, 46). Therefore, regulation of ComA-dependent gene ex-
pression by RapK provides an opportunity for additional sig-
nals, such as those that regulate Spo0A activity, to be incor-
porated into the decision to activate ComA-dependent gene
expression (Fig. 4).

RapC, RapF, and RapK play different roles in regulating
ComA activity. We also observed that RapC, RapF, and RapK
have different roles in the regulation of ComA-dependent gene
expression. We found that RapK has a modest role in inhib-
iting the expression of genes in the ComA regulon and that
under the conditions tested, this is evident only when the levels
of RapK exceed the levels of PhrK. RapF is a potent antagonist
of ComA-dependent gene expression in the absence of its
inhibitory peptide, but there is little evidence for its role in
regulating ComA-dependent gene expression when PhrF is pro-
duced and able to enter the cell. This is in contrast to the case for
RapC, whose modest inhibition of ComA-dependent gene ex-
pression is apparent in the presence and absence of PhrC.

The reason that RapF has such profound effects on ComA-
dependent gene expression in the absence of PhrF, but not in
its presence, may be due to higher intracellular levels of the
PhrF peptide at low cell densities, higher sensitivity of RapF
protein to low levels of PhrF, a combination of these two
factors, or an additional factor that inhibits the activity of
RapF under these conditions. If PhrF peptides accumulate in
the cell at a lower cell density than PhrC peptides, then RapF
activity could be inhibited at lower cell densities than those
observed for RapC. Accumulation of PhrF peptides at lower
cell density could be due to higher levels of PhrF transcription,
processing, or import into the cell. Differences in the transcrip-
tion or processing of PhrC and PhrF may explain the differ-
ences in the sensitivity of sigH mutants to the activities of RapC
and RapF (Fig. 3E); differences in the import of Phr peptides
may explain the observation that mutations in the oligopeptide
permease that do not respond to the PhrC peptide but still
allow more significant levels of ComA-dependent gene expres-
sion than in �opp cells can be obtained (69). Similarly, if RapF
were more sensitive to low levels of Phr peptide than RapC,
then RapF’s activity could be inhibited at lower cell densities
than those observed for RapC. Consistent with these hypoth-
eses, we observed that srfA expression was lower in �phrF
mutants than in �phrC mutants or wild-type cells at the earliest
time points assayed (Fig. 3A, inset).

FIG. 4. Integration of multiple signals for complex regulation of
ComA-dependent gene expression. This diagram illustrates several of
the physiological cues that are known to influence ComA-dependent
gene expression. Further details are provided in the text.
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Integration of multiple signals for complex regulation of
gene expression. The involvement of multiple peptides in the
activation of ComA provides the opportunity for a variety of
physiological signals to modulate the magnitude and timing of
ComA-dependent gene expression (Fig. 4). Although ComX
production appears to occur at a consistent rate throughout
growth (3), the abundance of Rap proteins and Phr peptides is
regulated at the level of transcription by proteins that respond
to different cellular signals (Fig. 4). Transcription of rapC and
rapF is activated by ComA (9, 32, 54), which establishes a
negative autoregulatory loop for transcription (Fig. 4). rapC
transcription is also repressed by CodY, a protein that is active
when cellular pools of branched-chain amino acids and GTP
are high (reviewed in reference 72) (Fig. 4). rapK is thought to
be activated indirectly by Spo0A (14, 46). Several factors are
known to regulate the transcription and activity of Spo0A:
CodY represses transcription of Spo0A, RNA polymerase con-
taining �H provides additional transcription of Spo0A, high
population density signals and ongoing DNA replication stim-
ulate the activation of Spo0A, and DNA damage inhibits the
activity of Spo0A (reviewed in references 8 and 17) (Fig. 4).
Furthermore, transcription from �H-dependent promoters af-
fects the levels of phrC, phrF, and phrK transcripts (32, 42, 47),
in addition to the factors that regulate expression of their
upstream rap genes (Fig. 4). �H is also regulated at the level of
transcription and activity by a variety of physiological signals,
including indirect activation of sigH transcription by Spo0A
and inhibition of �H activity by certain carbon sources and low
pH (reviewed in reference 8) (Fig. 4).

Differential regulation could also occur during production of
the active PhrC, PhrF, and PhrK peptides. Processing of Phr
peptides to their mature forms is thought to rely upon the
secretion machinery and at least one extracellular protease (31,
56, 75); these proteins may exhibit different specificities to-
wards each peptide. In addition, differential import into the
cell through the oligopeptide permease may also contribute to
variation in the ability of Phr peptides to antagonize the activ-
ities of their partner Rap proteins. Therefore, it is likely that
this regulatory network serves to modulate the magnitude and
timing of the ComA response under a variety of different
conditions.

Similarly, the activity of the Spo0A protein, which activates
expression of genes involved in sporulation and other post-
exponential-phase processes, is regulated indirectly by multiple
Phr peptides that act through Rap proteins that inhibit the
activity of Spo0F (27, 55, 57, 59). The involvement of multiple
Rap proteins and Phr peptides allows integration of additional
signals into this regulatory network, as rapA and rapE expres-
sion is controlled by ComA, rapB is expressed during exponen-
tial phase, and transcription of phrC and phrE is stimulated by
RNA polymerase containing �H (27, 32, 42, 47, 49, 57).

The involvement of multiple quorum-sensing signals in co-
ordinating biological responses is not unique to B. subtilis. In
Pseudomonas aeruginosa, a complex network involving at least
three quorum-sensing signals modulates expression of several
virulence genes (reviewed in references 28, 68, and 80). In
several of the Vibrio species, two or three quorum-sensing
signals control specific biological responses, including biolumi-
nescence in V. harveyi and V. fischeri (see references 25 and 38
and references therein) and virulence in V. harveyi and V.

cholerae (25, 44). In both cases, it is thought that the involve-
ment of multiple signals plays a role in fine-tuning the level and
timing of responses to specific conditions (36, 39, 45, 61, 68,
80). In all these systems, the utilization of quorum-sensing sys-
tems that integrate multiple signals provides the cells the ability to
modulate specific biological responses under a variety of condi-
tions.
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