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1. Introduction 

 

Wetlands represent the largest of all natural and anthropogenic methane (CH4) 

sources (Myhre et al., 2013; Schlesinger & Bernhardt, 2013). Natural and agricul-

tural wetlands comprise 3.6% of Earth’s surface, yet account for ca. 35-40% of CH4 

in the atmosphere (Yavitt, 2010). CH4 has a global warming potential ca. 28-32x 

that of CO2 over a 100-year period (Myhre et al., 2013), emphasizing the 

importance of understanding the processes and dynamics that control the flux of 

this potent greenhouse gas (GHG) to the atmosphere.  

The exchange of GHGs in wetlands takes place across three primary interfaces, 

the water-atmosphere (Carmichael et al., 2018; Helton et al.2014; Poindexter et al., 

2016), sediment-atmosphere (Chanton et al., 1989; Morse et al., 2012), and plant-

atmosphere interfaces (Carmichael et al., 2018; Rusch & Rennenberg, 1998; Schütz 

et al., 1991). Fluxes across any of these interfaces can be influenced by a variety of 

factors, including environmental conditions such as atmospheric pressure 

(Clements & Wilkening, 1974; Mattson & Likens, 1990), hydrologic controls such 

as soil moisture content (Davidson et al., 2004) and the position of the water table 

(Strack & Zuback, 2013), and soil nutrient content, particularly carbon quality 

(Corteselli et al., 2017; Joabsson et al., 1999) and quantity (Schimel, 1995). 

A wetland is defined as a transitional region between terrestrial and aquatic sys-

tems, in which the water table sits near, level to, or slightly above the land surface 

(Cowardin et al., 1979). In general, there are three important defining characteris-

tics of a wetland environment: (1) the land periodically supports predominantly hy-

drophytes, (2) the substrate is predominately undrained hydric soil, and/or (3) the 

substrate is nonsoil and is saturated with water or covered by shallow water at some 

time during the annual growing season (Cowardin et al., 1979). A majority of re-

search regarding GHG fluxes from wetlands is conducted in large-scale, perma-

nently flooded, and/or easily classified wetlands. In contrast, cryptic wetlands – 

wetlands that may be small-scale, seasonally inundated, and/or otherwise difficult 

to identify or characterize on a landscape– are not studied to the same degree 

(Carmichael et al., 2014; Yavitt, 2010). This imbalance is likely the result of the 

difficulty inherent in locating and classifying these unique environments in a land-

scape – obstacles that may also explain the inadequate knowledge of the extent of 
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cryptic wetlands globally (Yavitt, 2010). Therefore, a gap currently exists in liter-

ature regarding the relative importance of cryptic wetlands (Martinson et al., 2010) 

in global biogeochemical cycles.  

Agricultural drainage canals meet the criteria necessary for classification as a 

wetland (Cowardin et al., 1979), and may also be considered as cryptic wetlands 

due to the localized small-scale of these ecosystems within a landscape. However, 

even though they are individually small, the collective imprint of drainage canals 

across a landscape, especially in regions where land use is dominated by agricul-

ture, may be large. Thus, agricultural drainage canals may represent an unrecog-

nized source in the annual flux of GHG gases to the atmosphere from wetland eco-

systems. The present study is a preliminary attempt to quantify the role of agricul-

tural drainage canals in CO2 and CH4 fluxes to the atmosphere from a wetland 

ecosystem. 

 

2. Materials and Methods 

 

Site description 

Due to the potential for highly productive croplands, large areas of North Caro-

lina’s Albemarle-Pamlico Peninsula (Figure 1) were converted from wetlands to 

farmland in the 1970’s (Carter, 1975). However, due to the low-lying elevation of 

the region (Titus & Richman, 2001), land in the Albemarle-Pamlico Peninsula 

drains poorly and farmland must be intensively managed, often through the instal-

lation of extensive drainage infrastructure (i.e. canals and ditches) and pump station 

systems to prevent soil waterlogging and declines in crop productivity. Although 

individually small, the collective area of agricultural drainage infrastructure across 

the Albemarle-Pamlico Peninsula is extensive.  

The Timberlake Observatory for Wetland Restoration (hereafter TOWeR) is a 

former tract of farmland located in Tyrrell County, North Carolina (35°54′22″N, 

76°09′25″W, Figure 1) that was under active restoration during the early-mid 2000s  

(Ardón et al., 2010). This 4,200 acre site consists of ca. 634 acres of former agri-

cultural land that was drained by 24 acres of vee-ditches and a pump station 

(Needham, 2006).  Although a majority of the former drainage infrastructure at 
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TOWeR was reclaimed during the wetland restoration process, agricultural drain-

age canals still connect the restored wetland to the surrounding landscape, and 

ultimately the Albemarle Sound. 

 

 

 

 
 

 
Figure 1: Location of the Timberlake Observatory for Wetland Restoration in relation to 

the state of North Carolina and the Albemarle-Pamlico Peninsula. The white outline in the 

map inset denotes the location of the Timberlake Observatory for Wetland Restoration in 

Tyrrell County, NC. Image was created using Google Earth (copyright by DigitalGlobe). 
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Four separate locations within the study site (Figure 2a) were chosen for 

sampling fluxes of CH4, and CO2 from agricultural drainage canals (Figure 2c). 

These sites were selected to measure GHG fluxes at multiple locations influenced 

by different land-use practices along the primary drainage canal at TOWeR. The 

Inflow site was chosen to measure GHG fluxes where water from adjacent agricul-

ture fields flows into the wetland during heavy rains. The Wetland and Outflow 

sites were chosen to determine how the wetland might act as a filter and impact 

water-atmosphere GHG fluxes. The Roadside site was chosen to determine how 

surface water runoff from the adjacent highway might impact GHG fluxes from 

drainage canals.  

 

 

 
 

Figure 2: (a) Sample sites within the Timberlake Observatory for Wetland Restoration, 

including sites from this study (squares) and Wetland data from Carmichael et al. (2018) 

(circle) for comparison purposes; (b) deployed floating static flux chambers for the 

measurement of water-atmosphere greenhouse gas fluxes; (c) representative image of a 

wetland drainage canal. The image in panel (a) was created using Google Earth (copyright 

by DigitalGlobe). 
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Site mesoclimate and environmental measurements 

Environmental variables were continuously measured at each sampling location 

(Figure 2a) in July 2016 and compared to historical data from the State Climate 

Office of North Carolina’s Climate Retrieval and Observations Network of the 

Southeast (CRONOS) Database monitoring station #311949 located within 2 km 

of TOWeR in the Gum Neck Community of Tyrrell County, North Carolina. Air 

temperature and relative humidity were measured continuously at 2m above ground 

using a HOBO Pro V2 sensor and data logger (Model U23–001, Onset, Bourne, 

MA) shielded from direct sunlight and the nighttime sky.  

Daily water quality measurements were taken in the wetland at each site as 

described in Carmichael & Smith (2016). Salinity was monitored using a YSI 

EcoSense EC300A portable conductivity, salinity, and temperature meter (YSI, 

Yellow Springs, OH). Surface water pH was monitored using a YSI EcoSense 

pH100A portable pH, mV, and temperature meter. All instruments were calibrated 

in the field prior to measurements. In addition to mesoclimate and water quality 

measurements, and water depth at each site was measured (Carmichael et al., 2018). 

 

Water-atmosphere greenhouse gas fluxes 

Water-atmosphere GHG fluxes were measured using a static chamber 

approach, following a protocol previously used at TOWeR (Carmichael et al., 2018; 

Helton et al., 2014). Floating static flux chambers (Figure 2b) were constructed 

from 10L gas sampling bags as described in detail in Helton et al. (2014). Static 

flux chambers were deployed at three sites (Inflow, Outflow, and Roadside) at 

TOWeR (Figure 2a) over a 24 h period in July 2016. Data for the Wetland site are 

included in this manuscript with permission from Carmichael et al. (2018) for  

comparison. At the beginning of each sampling interval, air temperature, 

barometric pressure, and wind speed were recorded using a Kestrel 4000 weather 

and environmental meter (Kestrel Instruments, Boothwyn, PA). Triplicate 10 mL 

gas samples were collected from each chamber as described in Helton et al. (2014) 

and Carmichael et al. (2018) at three time points over a 24 h incubation: 0, 8, and 

24 hours. 
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Gas analyses 

All gas samples were stored at room temperature for less than one week before 

analysis via gas chromatography at the Duke River Center. Gas samples were ana-

lyzed for CO2 and CH4 concentrations at the Duke River Center following the 

protocol outlined in Carmichael et al. (2018), Carmichael & Smith (2016), Helton 

et al. (2014), and Morse et al. (2012). Samples were injected by a Tekmar 7050 

Headspace Autosampler into a Shimadzu 17A gas chromatograph with an electron 

capture detector and flame ionization detector (Shimadzu Scientific Instruments, 

Columbia, MD) retrofitted with six-port valves and a methanizer to allow the 

determination of the three gases from the same sample. Ultra-high purity N2 was 

used as the carrier gas, and a P5 mixture served as the make-up gas for the electron 

capture detector. A Nafion tube (Perma Pure, Toms River, NJ) and counter-current 

medical breathing air were used to remove water vapor from the sample stream. 

Gas concentrations were determined by comparing the peak areas of samples and 

certified primary standards (range of standards 100–10,000 μL L−1 for CO2 and 

0.3–5000 μL L−1 for CH4; Airgas, Morrisville, NC) using GCsolution software 

(Shimadzu Scientific Instruments). 

 

Water-atmosphere greenhouse gas flux calculations 

Under ideal conditions in a static chamber incubation, gases either accumulate 

or are consumed linearly over time (Livingston & Hutchinson, 2009); GHG fluxes 

are determined by regression analysis of the change in gas concentration over time 

in the chamber. Static flux chambers are sensitive to disturbance, so rigorous 

quality control measures (see description below) must be applied. Measured gas 

concentrations were initially converted from ppmv to μg m−3 using the ideal gas 

law and field measurements of air temperature and barometric pressure. Quality 

control measures, as described in detail in Carmichael et al. (2018), Helton et al. 

(2014), and McInerney & Helton (2016), were then applied to the data set. 

For GHG flux calculations, we began by calculating the average of all sample 

replicates that were within 10% of one another (McInerney & Helton, 2016). Next, 

these values were used to calculate the minimum detectable concentration 

difference (MDCD) for each sampling date (Yates et al., 2006). Incubations that 

did not exceed the MDCD were excluded from the analysis. Gas fluxes are reported 
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as a flux per unit exchanging surface area. Therefore, some additional transfor-

mations were required before regression analyses could be completed (Carmichael 

et al., 2018). In calculating water-atmosphere fluxes, the volume to surface area 

ratio of the static flux chambers obtained by Helton et al. (2014) was used for con-

versions. Once these conversions were completed, linear regression was used to 

calculate GHG fluxes. An incubation met the assumption of linearity when r2 > 

0.85; all incubations below this value were discarded from the analysis (Carmichael 

et al., 2018). 

 

Statistical analyses  

 Data were tested for normality using a Shapiro-Wilk test. A one-way analysis 

of variance was then used to compare GHG fluxes among sites (threshold for sig-

nificance, P<0.05). When necessary, multiple comparisons were conducted using 

Tukey-Kramer HSD tests. Statistical analyses were completed using Sigma Plot v. 

12 (Systat Software, San Jose, CA). 

 

 

3. Results  

 

Site mesoclimate and environmental measurements 

Mesoclimate data indicate that the daily temperature profile in July 2016 was 

similar to both the 10-year weather averages (average maximum daily temperature, 

30.77±1.99°C; average daily temperature, 25.90±2.08°C; average minimum daily 

temperature, 21.02±2.37°C) and the 30-year climate normal (average maximum 

daily temperature, 30.67°C; average daily temperature, 25.50°C; average minimum 

daily temperature, 20.28°C) for Tyrrell County, North Carolina. Fresh surface 

water conditions (salinity = 0.1 ± 0.0 ppt) and relatively constant surface water pH 

(pH = 4.69 ± 0.07) were maintained throughout the study period. Mean surface 

water depth at the Inflow, Outflow, Roadside, and Wetland were 0.42 ± 0.01 m 

(range, 0.39 - 0.44 m), 1.2 ± 0.2 m (range, 0.8 - 1.7 m), 0.37 ± 0.05 m (range, 0.24 

- 0.51 m), and 0.31 ± 0.03 m (range, 0.19 - 0.45 m) respectively. 
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Water-Atmosphere greenhouse gas fluxes 

The mean water-atmosphere GHG fluxes at the Inflow, Outflow, and Roadside 

ranged from 144.1 ± 11.6 - 189.3 ± 33.4 mg CO2 m-2h-1 and 3.1 ± 0.6 - 12.1 ± 6.2 

mg CH4 m-2h-1 (Figure 3). For CO2, there was no significant difference in water-

atmosphere fluxes between the Inflow, Outflow, and Roadside; however, all sites 

had significantly lower fluxes of CO2 when compared to the Wetland (P<0.001). 

For CH4, the only significant difference was between the Roadside and Wetland, 

with the Wetland site having a significantly larger flux (ca. 10×, P<0.05). The 

Inflow, Outflow, and Roadside were statistically indistinguishable.  

 

 
 

 
Figure 3: Water-atmosphere greenhouse gas fluxes of CO2 (a) and CH4 (b). Asterisks 

indicate a significant difference between the mean greenhouse gas flux at a given sample 

site compared to the Wetland. Error bars represent standard error. 

 

 

 

4. Discussion 

 

GHG fluxes across the water-atmosphere interface have historically been 

understudied (Bastviken et al., 2004; Stanley et al., 2016). In this study, GHG emis-

sions were measured across the water-atmosphere interface in agricultural drainage 

canals, a form of cryptic wetland that is common in cropland of low-lying coastal 
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regions. Data from this study show that including agricultural drainage canals in 

the measured GHG fluxes from TOWeR increases site CO2 and CH4 emissions by 

ca. 1% each. 

 

Greenhouse gas fluxes from TOWeR 

 The present study augments the existing pool of research regarding GHG 

fluxes from TOWeR across the three primary pathways of gas exchange in wet-

lands: the water-atmosphere, sediment-atmosphere, and plant-atmosphere inter-

faces. GHG flux via the water-atmosphere interface at TOWeR was previously 

studied by Carmichael et al. (2018) and Helton et al. (2014). As stated before, GHG 

flux data from Carmichael et al. (2018) was used as a point of comparison for the 

drainage canal fluxes reported in the present study. In Helton et al. (2014), a site 

located upstream of the Inflow site in this study received a high concentration of 

agricultural runoff and was found to have consistent CH4 fluxes of < 8 mg m-2 h-1 

between May and October 2012. The Inflow site of the present study had a stronger 

CH4 flux of 12.1 ± 6.2 mg m-2 h-1. Helton et al. (2014) did not report values for CO2 

fluxes.  

GHG flux across the sediment-atmosphere interface at TOWeR was studied by 

Morse et al. (2012). Data from sites within the regularly flooded portion of the 

restored wetland showed mean GHG fluxes of 150 mg CO2 m-2 h-1 and 1.2 mg CH4 

m-2 h-1 (Morse et al., 2012). While the present study reports similar CO2 fluxes to 

Morse et al. (2012), CH4 exchanges in this study appear to be stronger than those 

across the sediment-atmosphere interface.  

GHG exchanges via standing dead trees, a pathway of gas flux across the plant-

atmosphere interface, were studied by Carmichael et al. (2018), with results show-

ing a mean CH4 flux of 0.4 ± 0.1 mg m-2 h-1 and a mean CO2 flux of 114.6 ± 23.8 

mg m-2 h-1. A comparison of data from Carmichael et al. (2018) to data from the 

present study indicates that CH4 and CO2 fluxes across the water-atmosphere inter-

face at TOWeR represent the larger source of these GHGs to the atmosphere.  

Results indicate that taking CO2 and CH4 fluxes from agricultural drainage 

canals into account during the calculation of total GHG flux from TOWeR 

increases site CO2 and CH4 emissions by ca. 1% each. Thus, including GHG fluxes 
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from these cryptic wetlands is an important consideration in calculating total GHG 

emissions from the site.   

 

Patterns in water-atmosphere greenhouse gas fluxes at TOWeR 

In this study, CH4 and CO2 fluxes from the drainage canal sites were lower than 

those from the Wetland. This disparity most likely stems from differences in vege-

tation, C quality, and sediment decomposition rates between these sites. The drain-

age canals at TOWeR lack abundant aquatic vegetation, which has been shown to 

increase the availability of high-quality carbon substrates in wetland sediments 

(Fonesca et al., 2017). This high-quality C can be classified as labile organic matter, 

which is more readily decomposed by sediment microbial communities (Barré et 

al., 2016), thus stimulating decomposition pathways and the evolution of CO2 and 

CH4 (Corteselli et al., 2017). In fact, higher CH4 fluxes have been observed in veg-

etated drainage ditches compared to those that lack vegetation (Schrier-Uijl et al., 

2010; Schrier-Uijl et al., 2011). Thus, the presence of vegetation in the wetland 

proper likely increased C-gas emissions, as compared to the sparsely-vegetated 

agricultural drainage canals.  

Among the three drainage canal sites, the Inflow showed the greatest CO2 and 

CH4 emissions. Although we did not measure porewater concentrations of nitrogen 

(N) and phosphorous (P) in this study, the observed trend might be explained by 

the proximity of the Inflow site to agricultural runoff containing nutrients. Studies 

have shown that additions of specific amounts of N and P to water can lead to 

increased CH4 emissions, especially in the presence of carbon (Kim et al., 2015). 

Juutinen et al. (2018) found that CH4 flux in peatlands increased with the addition 

of an N/P/K fertilizer. However, N and P additions to soil have also shown widely 

varying effects on CH4 evolution, including stimulation of CH4 oxidation, a process 

which may result in decreased CH4 fluxes to the atmosphere (Veraart et al., 2015). 

Similarly, the response of soil respiration (i.e. CO2 flux) to nutrient addition is 

highly variable and inconsistent both spatially and temporally (Cleveland & Town-

send, 2006; and as reviewed in Schlesinger & Andrews, 2000 and Raich & 

Schlesinger, 1992). 
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Conclusions 

Cryptic wetlands have traditionally been understudied (Yavitt, 2010), though 

recent experimental evidence indicates the importance of including these wetlands 

in predictive models of ecosystem carbon-dynamics (Ullah & Moore, 2011; 

Martinson et al., 2010; Creed et al., 2003). In this study, including GHG fluxes 

from one type of cryptic wetland (i.e. previously-omitted agricultural drainage 

infrastructure) in the calculation of total GHG fluxes from TOWeR increased site-

based CO2 and CH4 fluxes. Although the localized spatial footprint of agricultural 

drainage infrastructure may be individually small, the collective impact of these 

human-engineered systems has the potential to be large, particularly in low-lying 

regions (i.e. < 2 m elevation) where land use is dominated by agriculture. As such, 

there is a need to further elucidate the processes and dynamics that influence GHG 

emissions from these cryptic wetland environments.   
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