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RESEARCH ARTICLE
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Abstract

Staphylococcus aureus causes acute and chronic infections resulting in significant morbid-

ity. Urease, an enzyme that generates NH3 and CO2 from urea, is key to pH homeostasis in

bacterial pathogens under acidic stress and nitrogen limitation. However, the function of ure-

ase in S. aureus niche colonization and nitrogen metabolism has not been extensively stud-

ied. We discovered that urease is essential for pH homeostasis and viability in urea-rich

environments under weak acid stress. The regulation of urease transcription by CcpA, Agr,

and CodY was identified in this study, implying a complex network that controls urease

expression in response to changes in metabolic flux. In addition, it was determined that the

endogenous urea derived from arginine is not a significant contributor to the intracellular

nitrogen pool in non-acidic conditions. Furthermore, we found that during a murine chronic

renal infection, urease facilitates S. aureus persistence by promoting bacterial fitness in the

low-pH, urea-rich kidney. Overall, our study establishes that urease in S. aureus is not only

a primary component of the acid response network but also an important factor required for

persistent murine renal infections.

Author summary

Urease has been reported to be crucial to bacteria in environmental adaptation, virulence,

and defense against host immunity. Although the function of urease in S. aureus is not

clear, recent evidence suggests that urease is important for acid resistance in various

niches. Our study deciphered a function of S. aureus urease both in laboratory conditions

and during host colonization. Furthermore, we uncovered the major components of the

regulatory system that fine-tunes the expression of urease. Collectively, this study estab-

lished the dual function of urease which serves as a significant part of the S. aureus acid

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007538 January 4, 2019 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zhou C, Bhinderwala F, Lehman MK,

Thomas VC, Chaudhari SS, Yamada KJ, et al.

(2019) Urease is an essential component of the

acid response network of Staphylococcus aureus

and is required for a persistent murine kidney

infection. PLoS Pathog 15(1): e1007538. https://

doi.org/10.1371/journal.ppat.1007538

Editor: Andreas Peschel, University of Tubingen,

GERMANY

Received: August 15, 2018

Accepted: December 18, 2018

Published: January 4, 2019

Copyright: © 2019 Zhou et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its supporting

information files.

Funding: This study was funded by a grant from

the National Institutes of Health (NIH)/National

Institute of Allergy and Infectious Disease (NIAID;

https://www.niaid.nih.gov) P01AI083211 to RP, TK

and PDF. VCT and SSC were funded by NIH/NIAID

R01AI125588. CZ was funded by the University of

Nebraska Medical Center Graduate Studies

http://orcid.org/0000-0003-1278-5901
http://orcid.org/0000-0002-3033-8438
http://orcid.org/0000-0002-3335-5284
http://orcid.org/0000-0002-7886-0727
http://orcid.org/0000-0002-9609-152X
http://orcid.org/0000-0001-9948-6837
http://orcid.org/0000-0001-7624-670X
http://orcid.org/0000-0003-0939-6884
https://doi.org/10.1371/journal.ppat.1007538
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007538&domain=pdf&date_stamp=2019-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007538&domain=pdf&date_stamp=2019-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007538&domain=pdf&date_stamp=2019-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007538&domain=pdf&date_stamp=2019-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007538&domain=pdf&date_stamp=2019-01-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007538&domain=pdf&date_stamp=2019-01-04
https://doi.org/10.1371/journal.ppat.1007538
https://doi.org/10.1371/journal.ppat.1007538
http://creativecommons.org/licenses/by/4.0/
https://www.niaid.nih.gov


response while also serving as an enzyme required for persistent kidney infections and

potential subsequent staphylococcal metastasis.

Introduction

Bacterial pathogens often encounter acidic environments within host tissues and employ sev-

eral direct and indirect defense measures [1]. Direct measures include the utilization of proton

pumps and generation of alkaline compounds such as ammonia to neutralize pH. Indirect

methods such as damage repair, biofilm formation, and metabolic alterations, are utilized to

rescue cell viability. Staphylococcus aureus is a leading cause of opportunistic infections in

community and health care settings [2, 3]. S. aureus resides in multiple acidic niches during

colonization and infection of the human host that include the surface of the skin and within

abscesses [4–6]. It is important to note that S. aureus is sensitive to acetic acid stress when

growing in the presence of excess glucose [7]. Weak acids such as acetic acid are unique in

potentiating stationary phase cell death, in that unlike strong acids that fully dissociate in

water, the undissociated weak acids can easily enter into the cytoplasm and reduce the intracel-

lular pH by releasing protons. Therefore, S. aureus must overcome different kinds of acid stress

to maintain viability. However, mechanisms of acid resistance in S. aureus are not well

described. It has been shown that sodA, which encodes a superoxide dismutase, is induced

upon acid stress and facilitates acid tolerance by alleviating the cell damage caused by reactive

oxygen species [8]. In addition, a σB–dependent acid-adaptive response has been described

that facilitates S. aureus survival in media with a pH of 2 after pre-exposure to a sub-lethal pH

of 4 [9]. Based on global transcriptional studies, increased urease activity is thought to be a

major contributor to acid resistance in S. aureus [10–13].

In humans, urea is produced in the liver via the urea cycle as a means to remove excess

nitrogen. Urea enters the bloodstream, becomes concentrated in the kidneys, and is excreted

during urination. The concentration of urea in the blood is normally 2.5–7.1 mM, and it is

found in other body fluids such as gastric acid, sweat, and saliva. The level of urea in the saliva

is 3–10 mM in healthy individuals but can reach 15 mM in patients with renal diseases [14].

Notably, the re-absorbance of urea from the collecting ducts makes the interstitium of the kid-

ney inner medulla a urea-rich environment.

Urease (EC: 3.5.1.5) is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of

urea into ammonia (NH3) and carbon dioxide (CO2) [15–17]. For some bacterial species, ure-

ase is an integral part of the bacterial acid response network, as the hydrolysis product ammo-

nia is readily protonated into ammonium (NH4
+), during which process protons are

consumed, resulting in an increase in pH [1]. Urease is crucial for niche adaptation of many

bacterial pathogens. For example, urease is essential for the survival of Helicobacter pylori in

the stomach lining, where the pH can be as low as 2.5 [18]. With a high affinity for urea, urease

from H. pylori is required not only for the establishment of infections but also for the mainte-

nance of a chronic infection [19]. Also, Streptococcus salivarius produces urease to utilize sali-

vary urea as a nitrogen source for growth while resisting acid stress [20]. Over 90% of S. aureus
strains are urease-producing [21], which is encoded by the urease gene cluster ureABCEFGD.

The α, β, and γ subunits that comprise the apoenzyme are encoded by ureC, ureB, and ureA,

whereas ureEFGD genes encode accessory proteins. Previous studies have shown that urease

genes are highly transcribed during biofilm growth conditions [13, 22]. However, the function

and utilization of urease in S. aureus has not been comprehensively studied.

Function of Staphylococcus aureus urease
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In this work, we explored the in vitro and in vivo functions of urease in S. aureus. We found

that S. aureus primarily utilizes urease to facilitate pH homeostasis under weak acidic stress,

but it does not utilize urea as a nitrogen source under neutral pH. Lastly, our data demonstrate

that urease is essential for S. aureus to persist in mouse kidneys, where a significant pH gradi-

ent exists and urea is an abundant nitrogen source.

Results

Urease rescues cell death potentiated by acetic acid via ammonia

generation in the presence of exogenous urea

Previous work has documented that aerobic growth of S. aureus in tryptic soy broth (TSB)

containing excess glucose (35–45 mM) impairs stationary phase survival of S. aureus [7].

Under these growth conditions, the acetate derived from glucose catabolism is not consumed

as a secondary carbon source, and the pH in the medium remains low, which potentiates cell

death. Based on those observations, we hypothesized that the presence of urea in TSB contain-

ing 45 mM glucose would rescue cell death due to ammonia generation via urease activity. To

test this hypothesis, we performed a growth assay in which JE2 wildtype (WT) and JE2 ureB::

FNS (ureB) were aerobically cultured in TSB containing 45 mM glucose with or without 10

mM urea. Over the period of 120 h, colony forming units (CFU/ml) and extracellular pH were

monitored every 24 h. In addition, culture supernatant was analyzed to measure glucose, ace-

tate, urea, and ammonia concentrations. In the absence of urea supplementation, both WT

and the ureB mutant showed a drastic decrease in cell viability (~9 log10 difference) while

maintaining an acidic extracellular pH (~4.8) (Fig 1A and 1B). However, we observed a ure-

ase-dependent increase in viability (~8 log10 difference) and medium pH (~4 pH unit differ-

ence) in the presence of exogenous urea (Fig 1A and 1B). Both pH and viability phenotypes of

the ureB mutant were complementable by integrating ureABCEFGD into the chromosomal

SaPI1 attC site (S1 Fig). Glucose in the medium was depleted by 24 h for both WT and the

ureB mutant either with or without urea supplementation (Fig 1C). However, only WT grown

in TSB supplemented with 10 mM urea consumed acetate (Fig 1D). Lastly, we observed a ure-

ase-dependent consumption of urea coincident with the generation of ~20 mM NH3 (Fig 1E

and 1F). Thus, these results suggested that the S. aureus urease functions as part of an acid

response network to facilitate pH homeostasis in the presence of urea. Weak acids and subse-

quent intracellular acidification has been previously shown to generate endogenous reactive

oxygen species and potentiate cell death [7]. Thus, to evaluate the physiological status of WT

and the ureB mutant in the above growth assay, flow cytometry was performed to assess cellu-

lar respiration and reactive oxygen species (ROS) levels. The results confirmed that urease-

mediated pH homeostasis rescued cellular respiration and protects cells from endogenous

ROS under weak acid stress in the presence of urea at 72 h of growth when viability differences

are evident (Fig 1A and S2 Fig). It is important to note that in TSB the concentration of argi-

nine, which can be catabolized to generate NH3 via arginase/urease, nitric oxide synthase

(NOS), or two separate arginine deiminase (ADI) systems (Fig 2A), is not sufficient to rescue

the survival of JE2 in this assay. Therefore, we repeated the assay with excess arginine (5 mM)

in TSB containing 45 mM glucose. As a result, excess arginine was unable to rescue viability of

JE2 to the same extent as urea, although we did observe an arginine deiminase-dependent

increase in viability (~2 log10) (S3A and S3B Fig). Collectively, these data suggest that urea

derived from arginine via RocF and subsequent urease activity is not functional in this assay.

However, Staphylococcus epidermidis catabolized either arginine (S3C and S3D Fig) [23] or

urea (S3E and S3F Fig) to rescue growth under weak acid stress.

Function of Staphylococcus aureus urease
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Fig 1. Urease rescues cell death potentiated by acetic acid via ammonia generation in the presence of exogenous urea. Three biological replicates

of S. aureus JE2 WT and JE2 ureB::FNS were cultured in TSB containing 45 mM glucose with and without 10 mM urea over 5 days. Every 24 h, (A)

Function of Staphylococcus aureus urease
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Urease transcription is induced by weak acid stress and regulated by CcpA,

Agr, and CodY

To further investigate the transcriptional regulation of the ure operon, a lacZ reporter plasmid

pNF315 was generated in which the promoter of ure was fused to the promoterless lacZ gene

and transduced into JE2. The previous experiments (Fig 1) suggested that ure transcription or

urease function is induced under weak acid stress [10]. Indeed, as the pH deceased due to the

accumulation of acetate, ure transcription was induced 3.3-fold at 6 h comparing to 2 h, in

cell viability (CFU/ml), (B) extracellular pH, (C) extracellular glucose levels (mM), (D) extracellular acetate levels (mM), (E) extracellular urea levels

(mM), and (F) extracellular ammonia levels (mM) were monitored and plotted with mean ± standard error of the mean [SEM]). Statistical

significance was assessed using two-way repeated measures ANOVA, followed by Bonferroni post-test compared to WT + urea in (A), (B), (D), (F),

and to ureB + urea in (E) at each timepoint; ��� P< 0.001.

https://doi.org/10.1371/journal.ppat.1007538.g001

Fig 2. Endogenous urea is not utilized as a nitrogen source. (A) S. aureus arginine catabolism and nitrogen flow (nos encodes nitric oxide synthase,

arcA1/arcA2 encodes arginine deiminases, rocF encodes arginase, ureABCEFGD encodes urease, and glnA encodes glutamine synthetase). (B) JE2 WT

was cultured in CDM containing 15N-serine whereas both JE2 WT and JE2 Δure were cultured in CDM containing 15N-arginine. The intracellular 15N-

glutamine levels were measured by NMR (n = 5/strain, mean ± SEM). Statistical significance was assessed using one-way ANOVA followed by Tukey’s

post-test; ��� P< 0.001; ns, not significant. (C) WT and Δure were cultured in CDM with 15N-arginine, and the extracellular 15N-urea levels were

measured by NMR (n = 5/strain, mean ± SEM).

https://doi.org/10.1371/journal.ppat.1007538.g002
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TSB containing 45 mM glucose with or without 10 mM urea (Fig 3A–3C). When the media

were buffered to a pH of 7.25 with 100 mM 3-(N-morpholino) propanesulfonic acid (MOPS),

the transcription of ure was significantly inhibited regardless of urea supplementation (Fig

3A). These results indicate that the transcription of urease genes is induced by weak acid stress.

Multiple global transcriptional studies have suggested that the accessory gene regulator (Agr)

quorum sensing system, as well as global regulators CcpA and CodY, function to regulate the

transcription of the urease operon [24–26]. To assess these relationships in our model, JE2

WT, ΔccpA::tetL (ΔccpA), Δagr::tetM (Δagr), and ΔcodY::ermB (ΔcodY) each containing

pNF315 were grown aerobically in TSB containing 45 mM glucose and 10 mM urea. β-galacto-

sidase activity assays were performed with cell lysate collected during early- (2 h), mid- (6 h),

and post- (10 h) exponential phases of growth. The transcription of the ure operon was signifi-

cantly decreased in ΔccpA/pNF315 (6 h) and Δagr/pNF315 (6 and 10 h), and significantly

increased in ΔcodY/pNF315 at 6 and 10 h (Fig 3D), indicating that the transcription of ure
genes is activated by CcpA and Agr and negatively regulated by CodY. However, it is unclear if

ure transcriptional regulation by CcpA, Agr, or CodY is via direct or indirect regulation. To

corroborate the effects of these regulators on urease activity, JE2 WT, Δure, ΔccpA, Δagr and

ΔcodY were grown in TSB containing 45 mM glucose and 10 mM urea for 120 h (Fig 3E–3H).

As expected based on the transcriptional analysis, ΔcodY essentially phenocopied WT with

regards to pH, acetate production and viability (Fig 3E–3H). However, since Δagr displayed

reduced ure transcription, it was predicted that the viability would be significantly reduced in

the 120-h growth assay. Indeed, the extracellular pH of Δagr was significantly different from

WT by 6 h of growth (Fig 3E) and remained at 5.1 from 24–120 h similar to Δure. Further, in

comparison to JE2 WT, the viability of Δagr decreased ~6 log10 to ~102 CFU/ml at 120 h simi-

lar to Δure. Lastly, based on Fig 3D and the β-galactosidase activity assay documenting a

decrease in ure transcription, we would expect the ΔccpA mutant to have decreased viability

similar to Δagr and Δure. However, we found that the pH was significantly higher than WT/

ΔcodY from 6–12 h of growth (Fig 3E). In addition, it produced less extracellular acetate than

WT (Fig 3F), presumably due to consumption of acetyl-CoA via the tricarboxylic acid (TCA)

cycle as CcpA represses TCA cycle activity [27–29]. Further, it survived as well as WT, and the

pH remained alkaline over the entire 120 h (Fig 3G and 3H).

Loss of ccpA promotes survival under weak acid stress

Based on our previous work documenting the function of CcpA in repressing amino acid

catabolism [30], we hypothesized that the survival of the ΔccpA mutant in the above growth

assay was urease-independent due to derepression of amino acid catabolism and subsequent

generation of ammonia. Previous investigations have documented that in the presence of a

preferred carbon source such as glucose, CcpA represses amino acid catabolic genes including

gudB (encoding glutamate dehydrogenase), rocF (encoding arginase), putA (encoding proline

dehydrogenase), and arcA1/arcA2 (encoding arginine deiminases) [23, 24, 30–32], all of which

produce ammonia as a byproduct. To determine whether the survival of ΔccpA was dependent

upon urease or catabolism of a particular amino acid, a growth assay was performed in which

JE2 WT, ΔccpA, ΔccpA/gudB::FNS, ΔccpA/Δure, ΔccpA/putA::FNS, and ΔccpA/arcA1::kan/
arcA2::FNS were cultured in TSB containing 45 mM glucose. In the absence of urea, JE2 WT

was unable to survive as expected, presumably due to a dramatic decrease in pH observed over

the 120 h experimental timeframe (Fig 4A and 4B). However, ΔccpA/gudB::FNS, ΔccpA/Δure,
ΔccpA/putA::FNS, ΔccpA/arcA1::kan/arcA2::FNS all phenocopied ΔccpA, suggesting that it

was not the catabolism of one specific amino acid that was responsible for cell survival in this

assay (Fig 4A and 4B). These data led to the hypothesis that the derepression of overall amino

Function of Staphylococcus aureus urease
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Fig 3. Urease transcription is induced by weak acid stress and regulated by CcpA, Agr, and CodY. (A)-(C) JE2/pNF315 was cultured in TSB containing 45

mM glucose alone (control), buffered with 100 mM MOPS (+ MOPS), supplemented with 10 mM urea (+ urea), or both (+ MOPS + urea). (A) β-galactosidase

assays of samples collected at 2 and 6 h. Miller units were normalized with the protein concentrations (n = 3/strain, mean ± SEM). (B) pH and (C) extracellular

acetate concentrations were measured at 2 and 6 h (n = 3/strain, mean ± SEM). Statistical significance was assessed using two-way repeated measures ANOVA; �

P< 0.05, �� P< 0.01, ��� P< 0.001. (D)-(F) JE2/pNF315, JE2 ΔccpA/pNF315, JE2 Δagr/pNF315, and JE2 ΔcodY/pNF315 were cultured in TSB containing 45 mM

glucose and 10 mM urea. (D) β-galactosidase assays of cells collected at 2, 6, and 10 h. Miller units were normalized with the protein concentrations (n = 3/strain,

mean ± SEM). (E) pH and (F) extracellular acetate concentrations were measured at 0–12 h (n = 3/strain, mean ± SEM). Statistical significance was assessed using

two-way ANOVA followed by Bonferroni post-test compared to JE2/pNF315 at each timepoint; ��� P< 0.001. (G) and (H) Growth assay of JE2 WT, JE2 Δure,
JE2 ΔccpA, JE2 Δagr, and JE2 ΔcodY in TSB containing 45 mM glucose and 10 mM urea. (G) Viability (CFU/ml) and (H) pH was monitored every 24 h (n = 3/

strain, mean ± SEM). Statistical significance was assessed using two-way ANOVA followed by Bonferroni post-test compared to JE2 WT at each timepoint; ��� P
< 0.001.

https://doi.org/10.1371/journal.ppat.1007538.g003
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Fig 4. Loss of ccpA promotes survival under weak acid stress. (A) and (B) Five-day growth assay of JE2 WT, JE2 ΔccpA, JE2 ΔccpA/gudB::FNS, JE2 ΔccpA/
Δure, JE2 ΔccpA/rocF::FNS, JE2 ΔccpA/putA::FNS, and JE2 ΔccpA/arcA1::kan/arcA2::FNS, cultured in TSB containing 45 mM glucose. (A) Viability (CFU/

Function of Staphylococcus aureus urease
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acid catabolism provides the ΔccpA mutant a growth advantage. Further, as shown in Fig 3F

and previously it is known that ΔccpA mutants produce less extracellular acetate due to dere-

pression of the TCA cycle [27–29]. To address this hypothesis, JE2 WT and ΔccpA were grown

in TSB containing 45 mM glucose. As expected, the ΔccpA mutant generated significantly

more ammonia and the extracellular acetate was eventually consumed by ΔccpA compared to

JE2 WT (Fig 4C). Amino acid analysis of the same supernatant demonstrated that the ΔccpA
mutant consumed histidine, aspartate, proline, glutamate, alanine, and arginine at a faster rate

than WT (Fig 4D–4H). Taken together, these data suggest that the absence of CcpA in S.

aureus facilitates survival in the presence of excess glucose due to decreased acetate generation

and increased ammonia generation by amino acid catabolism of multiple amino acids.

Endogenous urea is not utilized as a nitrogen source under non-acidic

conditions

In previous experiments using TSB containing 45mM glucose, catabolism of arginine in the

media is repressed by CcpA (Fig 4H). Therefore, we were unable to determine the potential func-

tion, if any, of endogenously derived urea. Further, it is unclear if urease is active at neutral pH

and generates NH3 for use in nitrogen metabolism. To determine if urease is functional in media

where arginine is rapidly catabolized thus generating urea from arginine via arginase (RocF), we

grew JE2 in buffered chemically defined medium (CDM) lacking glucose [32, 33]. CDM is a

defined medium that lacks glucose but contains 18 amino acids except glutamine and asparagine

[34], buffered at pH 7.5. We reasoned that if urease catalyzes the reaction generating NH3 from

urea, the ammonia would be actively utilized by glutamine synthetase to synthesize glutamine

from glutamate (Fig 2A). Both glutamine and glutamate are major amino donors for cellular reac-

tions [35]. Therefore, JE2 WT and the ureABCEFGD deletion mutant (Δure) were grown aerobi-

cally in CDM containing 0.1 g/L 15N-arginine (guanidino-labeled only) and cells were harvested

at 7 h, at which time both supernatant and intracellular components were assessed by nuclear

magnetic resonance (NMR) to detect 15N-glutamine [36]. Since the ammonia generated from

amino acid catabolism is also utilized for glutamine synthetase, the rapidly catabolized serine was

labeled with 15N as a control [31]. As a result, 17 times more 15N-glutamine was detected when
15N-serine was added to CDM than when 15N-arginine was added (Fig 2B). In addition, no differ-

ence was noted when comparing the 15N-glutamine detected from WT or Δure when grown in

CDM containing 15N-arginine. Therefore the small amount of detected 15N-glutamine was

derived from ADI or NOS-generated 15NH3 (Fig 2B). However, in CDM containing 15N-labeled

arginine, significant 15N-labeled urea was detected extracellularly in both WT and Δure (Fig 2C),

indicating that the nitrogen from arginine catabolism does not enter the intracellular nitrogen

pool, but is rather excreted as urea under neutral pH.

Urease is essential for the persistence of S. aureus during a mouse chronic

renal infection

Our data demonstrated that urease facilitates pH homeostasis and cell survival in vitro under

weak acid stress in the presence of urea. However, it is unclear if urease functions to facilitate

ml) and (B) pH was monitored every 24 h (n = 3/strain, mean ± SEM). Statistical significance was assessed using two-way repeated measures ANOVA followed

by Bonferroni post-test compared to JE2 WT at each timepoint; �� P< 0.01, ��� P< 0.001. (C)-(H) Growth assay of JE2 WT and JE2 ΔccpA cultured in TSB

containing 45 mM glucose over 30 h. (C) Extracellular ammonia and acetate levels were measured at 0, 3, 6, 9, 12, 24, and 30 h (n = 3/strain, mean ± SEM).

Statistical significance was assessed using two-way ANOVA, followed by Bonferroni post-test; ��� P< 0.001. (D)-(H) Amino acid analysis was performed with

culture supernatants of both strains at 0, 3, 6, 9, and 12 h to determine the free amino acid concentrations (ng/μl). Amino acid analysis experiments performed

with one replicate.

https://doi.org/10.1371/journal.ppat.1007538.g004

Function of Staphylococcus aureus urease

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007538 January 4, 2019 9 / 23

https://doi.org/10.1371/journal.ppat.1007538.g004
https://doi.org/10.1371/journal.ppat.1007538


staphylococcal colonization or virulence. One niche where urease may be important is the host

skin, where S. aureus resides within hair follicles and sweat glands [37]. Moreover, it is known

that human sweat contains 22.2 mM urea [38] and the pH of human skin is ~4 to ~6 [39].

However, animal models of S. aureus skin colonization are difficult to replicate since mice and

other rodents do not sweat. Therefore, we reasoned that another host niche where urease

might be required was in the colonization of the kidney, which has a low tissue pH and a rela-

tively high concentration of urea. In addition, it is well known that S. aureus causes chronic

kidney infections in mice and thus the kidney provides a nidus for subsequent staphylococcal

metastasis (S4 Fig) [40]. To test this hypothesis, we used a mouse bacteremia model in which

C57BL/6 mice were retro-orbitally injected with JE2 WT and Δure. On days 8, 12 and 19 post-

infection, bacterial burden in the kidney was determined (Fig 5). Although no difference

between WT and Δure was noted on day 8 (Fig 5A), kidneys infected with Δure had signifi-

cantly lower bacterial burden on days 12 and 19, with more kidneys below the limit of detec-

tion infection compared to WT (Fig 5B and 5C), indicating that urease contributes to the

persistence of S. aureus during a mouse chronic kidney infection. To determine if the host

immune response differed between mice infected with either WT or Δure, leukocyte popula-

tions were assessed from infected kidneys on day 8, an interval where bacterial burdens were

equivalent, to prevent bias from animals that had cleared the infection. However, no signifi-

cant differences were noted between these two groups (S5 Fig) suggesting the absence of ure
did not skew the immune response to facilitate enhanced clearance.

Discussion

Acid stress, along with other environmental risk factors such as extreme temperatures, osmotic

pressure, and nutrient depletion, is challenging for bacterial survival [41]. Accordingly, a vari-

ety of strategies are utilized to resist low pH which also contribute to bacterial virulence [1]. In

Escherichia coli, four main acid resistance systems (ARs) have been described: the oxidative

system AR1, the glutamate-dependent AR2, the arginine-dependent AR3, and the lysine-

dependent AR4 [42]. The amino acid-dependent ARs are composed of a decarboxylase which

consumes protons, and an inner membrane antiporter which imports the decarboxylase sub-

strate while exporting the product. Bacillus cereus activates not only the general stress response

Fig 5. Urease is essential for the persistence of S. aureus during a murine chronic renal infection. (A)-(C) S. aureus murine bacterial model, male and female

C57BL/6 mice were infected with JE2 WT and JE2 Δure. (A) On day 8 (number of mice: WT, n = 30; Δure, n = 24), (B) day 12 (number of mice: WT, n = 31; Δure,
n = 23), (C) day 19 (number of mice: WT, n = 16; Δure, n = 14) post-inoculation, bacterial burdens of were calculated as Log10 (CFU/g of tissue +1) and plotted

with medians. Statistical significance was assessed using Mann- Whitney test; �� P< 0.01, ��� P< 0.001; ns, not significant. Note that 31 out of 204 mice total died

due to the infection but were not further assessed in the analyses.

https://doi.org/10.1371/journal.ppat.1007538.g005

Function of Staphylococcus aureus urease

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007538 January 4, 2019 10 / 23

https://doi.org/10.1371/journal.ppat.1007538.g005
https://doi.org/10.1371/journal.ppat.1007538


genes via σB but also proton transporters and amino acid decarboxylases, as well as the ADI

system that produces ammonia [43]. H. pylori is known for the ability to proliferate in

extremely low pH environments such as the host gastric acid [44, 45]. In addition to amino

acid catabolism, enhanced urease activity sustains favorable intracellular pH by generating

ammonia [18, 45–48]. Mycobacterium tuberculosis resists acid stress through nitrogen assimi-

lation from asparagine hydrolysis [49], as well as urea hydrolysis [50]. However, there is little

known about acid resistance in S. aureus although it proliferates in multiple mildly acidic

niches of the human host.

In the aerobic growth assay of S. aureus cultured in TSB containing 45 mM glucose, the ace-

tate produced via glucose catabolism is excreted into the growth medium (Fig 1D). When the

extracellular pH of the growth medium reaches the pKa of acetic acid (4.8), acetate becomes

protonated and is able to traverse the cell membrane and release the proton in the near neutral

pH of the cytoplasm. The drop in intracellular pH potentiates cell death in S. aureus by intra-

cellular acidification and ROS generation [7]. We documented that in the presence of urea,

urease functions to facilitate pH homeostasis in a weak acid environment through the genera-

tion of ammonia that inhibits the acetate-dependent intracellular acidification (Fig 1E and 1F)

[7]. In addition, it was confirmed that the urease activity and subsequent NH3 generation res-

cued cellular respiration and prevented endogenous ROS generation (S2 Fig). The ammonia

generated facilitated acetate consumption through acetyl-CoA synthetase and the TCA cycle

for subsequent cell growth. Collectively, these data suggest that urease is a significant compo-

nent of the acid response network of S. aureus in the presence of urea.

Many gram-positive species, including S. epidermidis, utilize arginine catabolism as a rapid

mechanism to generate ammonia during acidic pH stress [23, 51]. The pathway most utilized

is the ADI pathway yielding ammonia, ornithine, and ATP. However, in contrast to S. epider-
midis [23] (S3C and S3D Fig), excess arginine was unable to remarkably rescue S. aureus dur-

ing weak acid stress suggesting that ammonia generating pathways via arginine are not

significantly active in our aerobic assay containing glucose (S3A and S3B Fig). These results

agree with a previous report documenting that the ADI pathway genes are not significantly

induced under weak acid stress in S. aureus [10]. In this work we also confirmed that in S. epi-
dermidis 1457, additional arginine and urea provided a growth advantage under weak acid

stress (S3C and S3E Fig), suggesting that both ADI and urease are active in S. epidermidis. This

result is consistent with another study documenting the differential transcriptional response

following sapienic acid stress in S. epidermidis and S. aureus [52]. Under these growth condi-

tions, S. aureus upregulates urease whereas S. epidermidis upregulates ADI, the NreABC nitro-

gen regulation system, in addition to the nitrate and nitrite reduction pathways. The lack of

NH3 generation via arginine catabolism in S. aureus is not unexpected as catabolism of argi-

nine via RocF is under the control of carbon catabolite repression and CcpA [30, 31]. Our

results suggest that when S. aureus is growing in the presence of glucose or another preferred

carbon source, urease must utilize exogenous urea to facilitate pH homeostasis. Previous

results from our laboratory demonstrated that when S. aureus grows in a defined medium

lacking glucose, arginine is catabolized via RocF generating ornithine and urea [31]. Thus, we

wanted to determine if urease was active under growth conditions where urea was generated

via arginine catabolism and the medium was not acidic. These NMR experiments suggested

that under neutral growth conditions, little ammonia from urea is detected (via detection of
15N-labeled glutamine). In fact, the majority of urea was detected in the culture medium as it is

excreted, and is potentially used as a nitrogen storage molecule. Indeed, we found that a ccpA
mutant grown in TSB lacking urea was able to survive weak acid stress via derepression of

global amino acid catabolism. This observation suggests that when S. aureus is growing in

acidic environments where peptide and amino acids are the major carbon source, arginine
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catabolism and urease activity is not required to facilitate pH homeostasis, which is due to

rapid catabolism of amino acids and subsequent NH3 release.

Previous transcriptional analyses have suggested that ureABCEFGD is upregulated upon

acid stress [10, 11, 53]. In the current study, we confirmed via β-galactosidase assays that the

transcription of the ure genes was inhibited when the medium was buffered to a pH of 7.25

with MOPS (Fig 2A). Moreover, we found that the transcription of the urease genes was acti-

vated by CcpA and Agr, while inhibited by CodY (Fig 2B). The regulation of urease transcrip-

tion by CcpA is supported by the putative catabolite-responsive element (cre) site identified

139 base pairs upstream of the ureA start codon [24]. Also, CcpA activation of ure transcrip-

tion agrees with a previous finding that S. aureus urease, as a part of the CcpA regulon, has

higher transcription as well as enzymatic activity in WT as compared to a ΔccpA mutant [24].

The significant decrease in ure gene transcription in the Δagr mutant that we observed is con-

sistent with the transcriptional array data documenting that urease genes are upregulated by

Agr [25]. The involvement of the urease genes in the Agr regulon strengthens the link between

urease activity and virulence in S. aureus. Importantly, phagosomal acidification induces Agr

activity, which is essential for S. aureus survival inside macrophages [54]. Under this circum-

stance, Agr may upregulate urease to counter acidic pH in coordination with enhanced viru-

lence. CodY is also a global regulator that controls the expression of a variety of genes in gram-

positive bacteria [55]. In particular, CodY senses the level of branched-chain amino acids and

intracellular GTP and controls the transcription of many metabolic genes that are involved in

amino acid synthesis, TCA cycle, and carbon overflow metabolism [56]. Our results agreed

with previous reports that CodY represses urease gene transcription in Bacillus subtilis [57, 58]

and S. salivarius [26]. Although urease genes are not the direct targets of CodY in S. aureus
UAMS-1 [59], it is possible that CodY negatively regulates urease gene transcription through

repressing Agr, since the agrA gene encoding the Agr response regulator is upregulated in the

UAMS-1 ΔcodY mutant [59]. More in-depth future studies are required regarding the regula-

tion of urease, as other transcriptional regulators such as Sae [60, 61], ClpP [62–64], and MgrA

[65], are suggested to contribute to the regulatory network that fine-tunes urease activity.

Lastly, it is interesting that CcpA activates ure transcription but represses rocF (arginase) tran-

scription. These data suggest that the generation of urea by arginase is not linked to urease

activity. Thus, ure transcription is activated when S. aureus is growing with a preferred carbon

source such as glucose, which generates weak acids such as lactate or acetate. However, this

also suggests that the urea utilized by urease must be exogeneous and not generated by argi-

nase activity, which is only active when S. aureus is growing on non-preferred carbon sources

such as peptides and amino acids.

To interrogate the function of urease in vivo, we hypothesized that the kidney is a favorable

niche for S. aureus colonization and resisting the host immune response for the following rea-

sons. First, renal blood flow is about 20% of the cardiac output [66]. Thus, S. aureus has ample

opportunities to invade kidney tissue during blood filtration. Second, as urea becomes concen-

trated when transported through renal tubules during the production of urine, the collecting

ducts in the inner medulla display the highest permeability to urea [67]; hence, not only the

renal tubules but also the medullary interstitium is rich in urea, providing sufficient substrates

for urease. Third, kidney medullary interstitium has a low pH (~5.5), comparing to the neutral

cortical interstitium pH (~7.4) [68, 69]. In our mouse S. aureus bacteremia model, the tempo-

ral distribution of the organ bacterial burden followed what has been previously documented

(S4 Fig) [40, 70, 71]. Among all the examined organs, the kidney was the only niche that devel-

oped a chronic infection over time. On days 12 and 19, mice inoculated with the Δure mutant

had a significant decrease in CFU count in the kidneys (Fig 5), indicating a selective pressure

in S. aureus to maintain urease function, similar to what has been reported in H. pylori [19].
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The increased persistence of JE2 WT over Δure during chronic kidney infections demon-

strated that urease functionality enhances the fitness of S. aureus within low pH and high urea

environments such as the kidney. In order to determine whether differences in leukocyte

recruitment are responsible for the changes in bacterial persistence between JE2 WT and Δure,
individual kidneys were analyzed by flow cytometry (S5 Fig). Overall, no significant changes

in the leukocyte populations were observed, indicating that urease primarily enhances bacte-

rial persistence rather than directly altering leukocyte infiltration. The reason why we chose to

evaluate the leukocyte populations on day 8 was that the kidney infections started to be cleared

on approximately day 12 (Fig 5). Thus the drastic differences in the bacterial burden between

JE2 WT and Δure could skew the immune responses on day 12. Further studies are required to

determine the mechanism of how urease facilitates survival during infection. It is also possible

that urease allows for persistence in the phagolysosomes upon phagocytosis by macrophages

[72]. As macrophages are found in renal medulla [73], S. aureus needs to employ strategies to

survive within or escape from the phagolysosomes during colonization in the kidney. More-

over, the phagolysosomes are acidic in pH, which may induce urease activity for acid resistance

and survival of S. aureus [74]. Indeed, anti-inflammatory macrophages, which are prevalent

during late stages of S. aureus infection, produce urea via arginase-1 [75]. For the above rea-

sons, it would be appropriate to expand our future studies to examine the function of urease in

phagolysosome survival or the escape of S. aureus, especially regarding kidney macrophages.

In summary, we identified that urease in S. aureus functions to facilitate pH homeostasis

and survival under weak acid stress in the presence of urea; in non-acidic conditions, the

endogenous urea derived from arginine is secreted extracellularly but not catabolized to fuel

nitrogen metabolism. We found that urease is induced by weak acid stress and is within the

regulation network that consists of CcpA, Agr, and CodY, interconnecting S. aureus stress

response, metabolism, and virulence. We illustrated that urease provides a fitness advantage

for S. aureus to persist during chronic kidney colonization of mice. These data all point to the

conclusion that urease is not only a critical component of the acid stress response system of S.

aureus, it is also an important factor in S. aureus pathogenesis.

Materials and methods

Ethics

Animal experiments were performed in ABSL2 facilities in accordance with a protocol (#11-

076-08-FC) approved by the Institutional Animal Care and Use Committee (IACUC). All ani-

mals at the University of Nebraska Medical Center are maintained in compliance with the Ani-

mal Welfare Act and the Department of Health and Human Service “Guide for the Care and

Use of Laboratory Animals.” Animals were anesthetized with ketamine and xylazine. Post

injection of S. aureus retro-orbitally, all anesthesized mice were continuously monitored until

they regained sternal recumbency and were capable of holding their heads up. The animals

were monitored once/day on a daily basis following infection to ensure animal welfare. At all

monitoring intervals, post-infection general appearance and body weights were recorded. Ani-

mals were euthanized by exposure to CO2 in a chamber (chamber was not pre-charged). Ani-

mals were in the CO2 filled chamber for 5 minutes after all evidence of respiration and cardiac

function was absent. CO2 was chosen as a method of euthanasia because it has a rapid anes-

thetic effect and quickly results in loss of consciousness and respiratory arrest.

Bacterial strains, plasmids and growth conditions

The E. coli, S. aureus, and S. epidermidis strains, plasmids, as well as primers used in this study

are listed in S1 Table. E. coli cultures were grown in Luria-Bertani broth (LB; Difco; Becton,
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NJ). S. aureus and S. epidermidis were grown in tryptic soy broth (TSB; Difco; Becton, NJ) con-

taining 14 or 45 mM glucose. CDM was prepared essentially as previously described [34], and

no glucose was added. Overnight cultures grown in TSB were washed with phosphate-buffered

saline (PBS) twice before inoculation to an optical density at 600 nm (OD600) of 0.05. Cultures

were grown aerobically at 37˚C in flasks with a 10:1 flask-to-volume ratio shaking at 250 rpm.

When necessary, antibiotics were added to cultures as follows: ampicillin (50 μg/ml); erythro-

mycin (10 μg/ml); tetracycline (10 μg/ml); and chloramphenicol (10 μg/ml). Bacterial growth

yield was assessed by measuring the OD600. Culture pH was measured with a pH meter (Met-

tler Toledo, Columbus, OH). Bacterial viability was measured as CFU/ml by serial dilutions on

TSB agar plates.

Molecular genetic techniques

PCR amplifications were performed using Q5 High-Fidelity DNA polymerase (New England

Biolabs, Beverly, MA), Midas Mix (Monserate Biotechnology Group, San Diego, CA), and oli-

gonucleotides (S1 Table) synthesized by Sigma-Aldrich (St. Louis, MO). Restriction endonu-

cleases and ligase from New England Biolabs (Beverly, MA) were used for DNA digestion and

ligation. Purification of DNA fragments prior to subsequent cloning steps was achieved by

recovery from agarose gels using a DNA Clean and Concentrator-5 Kit (Zymo Research,

Orange, CA). Recombinant plasmids were purified using a Zyppy Plasmid Miniprep Kit

(Zymo Research, Orange, CA). All plasmid inserts were sequenced at Eurofins Genomics

(Louisville, KY) to ensure the absence of mutations.

The reporter plasmid pNF315 was constructed by amplifying the intergenic region

upstream of ureA with primers 2833 and 2835 so that the native ribosomal binding site (RBS)

was replaced with a plasmid-encoded RBS. The DNA fragment was digested and ligated into

the BamHI and XhoI sites of the vector plasmid pJB185, which contains a promoterless lacZ
[76]. pNF315 was electroporated into S. aureus RN4220 and subsequently transduced into JE2

strains using bacteriophage F11-mediated transduction [77].

To create the markerless JE2 Δure mutant, the allelic exchange plasmid pNF320 was gener-

ated by inserting the DNA sequences 1 kb upstream and 1 kb downstream of the ureAB-
CEFGD operon into the temperature-sensitive E. coli-S. aureus shuttle vector plasmid pJB38

[78], using a NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolabs, Beverly,

MA), with primers 2980 and 2983, as well as primers 2986 and 2987. pNF320 was electropo-

rated into S. aureus RN4220 and subsequently transduced into JE2 WT using bacteriophage

F11-mediated transduction. Once the plasmid pNF320 was introduced into JE2, the allelic

replacement to introduce the deletion mutation into the S. aureus chromosome was performed

as previously described [79]. The deletion of the urease operon was confirmed phenotypically

by plating on a Christensen’s urea agar plate and by PCR using primers 2984 and 2985.

Chromosomally complementation of Δure was performed as previously described [80].

Briefly, plasmid pNF363 was constructed containing ureABCEFGD genes with their native

promoter by amplifying an approximately 5.5 kb region from the JE2 genome using primers

2991 and 3306. The resulting DNA fragment was inserted into BamHI and PstI sites of the

shuttle vector pJC1111 yielding pNF363. pJC1111 and pNF363 were subsequently transformed

into RN9011 for chromosomal integration. F11 mediated transduction was performed to

move the integrated pJC1111 and pNF363 into both JE2 WT and JE2 ureB::FNS.

Metabolite assays

For all metabolite assays, 1 ml bacterial culture was collected and pelleted for 2.5 min at 15,000

rpm. The supernatant was collected and stored at -80˚C until use. Glucose, acetate, urea, and
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ammonia concentrations were determined using commercial kits (R-Biopharm AG, Darm-

stadt, Germany) according to the manufacturer’s instructions.

NMR sample preparation

As previously described [31, 36], five independent 50 ml cultures of S. aureus JE2 WT and the

Δure mutant were grown to stationary phase (OD600 = 1.9) in CDM containing 15N2-labeled argi-

nine (Isotec, Sigma-Aldrich, Miamisburg, OH) or 15N-labeled serine (Isotec, Sigma-Aldrich, Mia-

misburg, OH). For each culture, a total OD600 of 40 was collected and pelleted by centrifugation at

4000 rpm for 5 min at 4˚C. 2 ml culture supernatant was collected as the media sample. Pellets

were washed with 10 ml of cold sterile water twice and resuspended in 1 ml cold sterile water. The

cells were lysed using a bead ruptor (OMNI International, Kennesaw, GA) and centrifuged at

15,000 rpm for 15 min at 4˚C. The pellet was re-extracted with 1 ml cold sterile water. The com-

bined cell lysate supernatant from both extractions, as well as the culture supernatant, were snap

frozen in liquid nitrogen and lyophilized using a FreeZone freeze dryer.

NMR data collection and analysis

The data collection and analysis of NMR was conducted as previously described [36]. A Bruker

AVANCE IIIHD 700 MHz spectrometer equipped with a 5 mm quadruple resonance QCI-P

cryoprobe (1H, 13C, 15N, and 31P), an automatic tune and match system (ATM), and a Sample-

Jet automated sample changer system with Bruker ICON-NMR software were utilized. The 2D
1H−15N HSQC spectra collected for S. aureus cell lysates and culture media were assigned

using a database of 2D 1H−15N HSQC reference spectra for known metabolites [36]. A chemi-

cal shift tolerance of 0.08 ppm for 1H and 0.25 ppm for 15N were used to match metabolites to

our reference database.

β-galactosidase assays

Beta-galactosidase assays were performed essentially as previously described [81]. Briefly, over-

night cultures of JE2/pNF315 grown in TSB were inoculated in TSB containing 45 mM glu-

cose, TSB containing 45 mM glucose buffered with 100 mM MOPS, TSB containing 45 mM

glucose with 10 mM urea, and TSB containing 45 mM glucose with 10 mM urea buffered with

100 mM MOPS. At 2 h and 6 h, 2 ml and 0.5 ml of cells were collected and centrifuged (Fig

3A). Additionally, overnight cultures of JE2/pNF315, ΔccpA/pNF315, Δagr/pNF315, ΔcodY/

pNF315 grown in TSB were inoculated to TSB containing 45 mM glucose and 10 mM urea. At

2 h, 6 h, and 10 h, 2 ml, 0.5 ml, and 0.5 ml of cells were collected and centrifuged respectively

(Fig 3D). The cell pellets were resuspended in 1.2 ml Z-buffer (60 mM Na2HPO4, 40 mM

NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol, pH 7.0) and lysed with a

bead ruptor (OMNI International, Kennesaw, GA). 700 μl supernatant of the cell lysate was

collected, and 140 μl of 4 mg/ml ortho-nitrophenyl-β-galactoside (ONPG) was added. The

samples were incubated at 37˚C until the color turned slightly yellow (under OD420 1.0). 200 μl

of 1 M Na2CO3 was added to stop the reaction. Protein concentrations were determined by

Bradford assays using the Protein Assay Dye Solution (Bio-Rad, Hercules, California). Absor-

bances at 420 nm and 550 nm were measured with an Infinite 200 plate reader (Tecan, Männe-

dorf, Switzerland).

Amino acid analysis

Overnight cultures of JE2 WT and ΔccpA were inoculated to an OD600 of 0.05 in TSB contain-

ing 45 mM glucose. At 0 h, 3 h, 6 h, 9 h, and 12 h, 0.5 ml culture was collected and pelleted for
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3 min at 15,000 rpm. Supernatant was collected and filtered through the Pierce Protein Con-

centrators (3,000 molecular weight cutoff; Thermo Scientific, Rockford, IL) according to the

manufacturer’s instructions. Amino acid analysis was performed with a Hitachi L-8800 amino

acid analyzer by the Protein Structure Core Facility, University of Nebraska Medical Center.

Flow cytometry

The flow cytometry analyses following the growth assays were performed as previously

described [7], using a BD LSRII flow cytometer (Becton and Dickinson, San Jose, California).

Cells collected at 24 h and 72 h from the growth assay where JE2 WT and ureB::FNS were cul-

tured in TSB containing 45 mM glucose and 10 mM urea. Cell samples were washed with PBS

to a final concentration of 107 cells/ml and stained with 5-cyano-2,3-ditolyl tetrazolium chlo-

ride (CTC, 5 mM) and 3-(p-hydroxyphenyl) fluorescein (HPF, 15 μM). The fluorescence-acti-

vated cell sorting (FACS) was performed at a flow rate of *1,000 cells per second with 10,000

events per sample. Samples were excited at 488 nm, with HPF emission being detected at 530

±30 nm, and CTC emission being detected at 695±40 nm. The FlowJo software was used to

analyze the raw data.

For the flow cytometry analyses following the animal experiments, kidneys were collected

in 1.0 mL of FACS buffer, which was composed of PBS and 2% heat-inactivated fetal bovine

serum (FBS). Kidneys were homogenized with the blunt end of a 3.0 mL syringe and filtered

through a 70 μm filter (BD Falcon, BD Biosciences). Filtrate was washed with PBS and col-

lected by centrifugation (300 x g, 5 min), whereupon the filtrate was digested with Collagenase

A and DNase while mixing at 37˚C. The reaction was stopped after 15 minutes with heat-inac-

tivated FBS on ice, filtered, and washed with FACS buffer, whereupon red blood cells (RBC)

were lysed using the RBC Lysis Buffer (BioLegend, San Diego, CA). Single cell suspensions

were washed and resuspended in FACS buffer and incubated with TruStain fcX (BioLegend,

San Diego, CA) to minimize non-specific antibody binding. Samples were divided in two to

analyze innate immune cell (MDSCs, neutrophils, monocytes, and macrophages) populations

and lymphocyte (CD3, CD4, CD8, and γδ T cells) populations separately. Both samples were

stained with Live/Dead Fixable Blue Dead Cell Stain (Invitrogen, Eugene, OR). Innate immune

cells were stained with CD45-APC, Ly6G-PE, Ly6C-PerCP-Cy5.5, and F4/80-PE-Cy7, CD11b-

FITC (BioLegend, San Diego, CA). Lymphocytes were stained with CD45-PE-Cy7, CD3-APC,

CD4-PacBlue, CD8-FITC, and γδTCR-PE. An aliquot of pooled cells was stained with isotype-

matched control antibodies to assess the degree of non-specific staining per treatment group

[82]. For individual samples, 10,000–100,000 events were analyzed using BD FACSDiva soft-

ware with cell populations expressed as percentage of total viable CD45+ leukocytes.

Animal experiments

Seven-week-old male and female C57BL/6 mice (Charles River Laboratories, Wilmington,

MA) were used in all animal experiments. Overnight cultures of S. aureus JE2 WT and Δure in

TSB were washed with PBS twice and suspended in PBS to yield an OD600 of 10. The cultures

were further diluted 1:50 with PBS, prior to the retro-orbital injection of 50 μl (106 CFU) final

bacterial suspension. The inocula were verified by serial dilution plating and colony enumera-

tion on TSB agar plates. Mice were anesthetized by intraperitoneal injection of ketamine/xyla-

zine (60 mg/kg and 3 mg/kg, respectively). Mice were euthanized for the quantification of

bacterial burden (expressed as Log [(CFU/g of tissue) +1]), by serial dilution plating and col-

ony enumeration of homogenized organs.
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Statistical methods

For all studies, statistical analysis was performed using GraphPad Prism 5.0 software (La Jolla,

CA). P-values < 0.05 were considered significant. For comparisons of two groups, Mann-

Whitney test was used. One-way analysis of variance (ANOVA) was performed to compare

three or more groups. Two-way repeated measures ANOVA was performed to compare differ-

ences between groups with two independent variables.

Supporting information

S1 Fig. Complementation of JE2 ureB::FNS mutant. (A) Cell viabilities (CFU/ml) and (B)

pH of JE2, JE2 SaPI1 attC::pJC1111 (vector control), JE2 SaPI1 attC::pNF363 (complement),

JE2 ureB::FNS, JE2 ureB::FNS SaPI1 attC::pJC1111, JE2 ureB::FNS SaPI1 attC::pNF363 were

monitored every 24 h over 5 days in TSB containing 45 mM glucose and 10 mM urea (n = 3/

strain, mean ± SEM). Starter cultures were grown overnight in TSB containing 14mM glucose

and 10mM urea. Statistical significance was assessed using two-way repeated measures

ANOVA followed by Bonferroni post-test compared to JE2 at each timepoint; ��� P< 0.001.

(TIF)

S2 Fig. Urease rescues cellular respiration and prevents reactive oxygen species production

under weak acid stress in the presence of exogenous urea. (A)-(D) JE2 WT and JE2 ureB::

FNS were cultured in TSB containing 45 mM glucose with and without 10 mM urea. Flow

cytometry density plots of cells collected at 24 h and 72 h, and double stained with HPF and

CTC. Data shown are a representative of 3 biological replicates. (A) 24 h, CTC staining. (B) 24

h, HPF staining. (C) 72 h, CTC staining. (D) 72 h, HPF staining. CTC accumulates in the

actively respiring cells, and HPF is indicative of ROS production.

(TIF)

S3 Fig. Different than S. epidermidis, S. aureus arginine deiminase is less active than urease

in rescuing cell death under weak acid stress. (A) and (B) Five-day growth assay of S. aureus
JE2 WT and JE2 arcA1::kan/arcA2:: FNS in TSB containing 45 mM glucose with and without

5 mM arginine. Every 24 h, (A) cell viability (CFU/ml) and (B) extracellular pH were moni-

tored (n = 3, mean ± SEM). (C) and (D) Five-day growth assay of S. epidermidis 1457 WT in

TSB containing 35 mM glucose with and without 5 mM arginine. Every 24 h, (C) cell viability

(CFU/ml) and (D) extracellular pH were monitored (n = 3, mean ± SEM). Statistical signifi-

cance was assessed using two-way repeated measures ANOVA followed by Bonferroni post-

test; � P< 0.05, ��� P< 0.001. (E) and (F) Five-day growth assay of S. epidermidis 1457 WT in

TSB containing 35 mM glucose with and without 5 mM urea. Every 24 h, (E) cell viability

(CFU/ml) and (F) extracellular pH were monitored (n = 3, mean ± SEM). Statistical signifi-

cance was assessed using two-way repeated measures ANOVA followed by Bonferroni post-

test; � P< 0.05.

(TIF)

S4 Fig. S. aureus JE2 WT persists in murine kidneys over time. (A)-(D) S. aureus murine

bacteremia model, male and female C57BL/6 mice were infected with JE2 WT. On day 2

(number of mice: n = 8), day 5 (number of mice: n = 9), day 8 (number of mice: n = 6), day 12

(number of mice: n = 8), and day 19 (number of mice: n = 7) post-inoculation, heart (A), liver

(B), spleen (C), and kidneys (D) were harvested. Bacterial burdens were calculated as Log10

(CFU/g of tissue +1) and plotted with medians.

(TIF)
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S5 Fig. S. aureus urease does not influence infiltrating leukocyte populations during renal

infection. Infiltrating leukocyte populations from day 8 kidneys isolated from animals infected

with S. aureus JE2 WT or JE2 Δure were evaluated by flow cytometry. Leukocyte populations

were reported as a percentage of total CD45+ leukocytes (mean ± SEM). (A) MDSCs

(Ly6GhighLy6C+CD11bhighF4/80-) (B) Neutrophils (Ly6GhighLy6C+CD11blowF4/80-) (C)

Monocytes (Ly6G-Ly6C+CD11b+F4/80-) (D) Macrophages (Ly6G-Ly6C-CD11b+F4/80+) (E) T

cells (CD3+) (F) CD4+ T cells (CD3+γδTCR-CD4+CD8-) (G) CD8+ T cells

(CD3+γδTCR-CD4-CD8+) (H) γδ T cells (CD3+γδTCR+CD4-CD8-). Statistical significance

was assessed using the Mann- Whitney test; ns, not significant.

(TIF)

S1 Table. Strains, plasmids and primers.
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