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A B S T R A C T

Medulloblastoma (MB) and ependymoma (EP) are the most common pediatric brain tu-

mors, afflicting 3000 children annually. Radiotherapy (RT) is an integral component in

the treatment of these tumors; however, the improvement in survival is often accompa-

nied by radiation-induced adverse developmental and psychosocial sequelae. Therefore,

there is an urgent need to develop strategies that can increase the sensitivity of brain tu-

mors cells to RT while sparing adjacent healthy brain tissue. Apurinic endonuclease 1

(Ape1), an enzyme in the base excision repair pathway, has been implicated in radiation

resistance in cancer. Pharmacological and specificity limitations inherent to small mole-

cule inhibitors of Ape1 have hindered their clinical development. Here we report on a

nanoparticle (NP) based siRNA delivery vehicle for knocking down Ape1 expression and

sensitizing pediatric brain tumor cells to RT. The NP comprises a superparamagnetic

iron oxide core coated with a biocompatible, biodegradable coating of chitosan, polyeth-

ylene glycol (PEG), and polyethyleneimine (PEI) that is able to bind and protect siRNA

from degradation and to deliver siRNA to the perinuclear region of target cells. NPs loaded

with siRNA against Ape1 (NP:siApe1) knocked down Ape1 expression over 75% in MB and

EP cells, and reduced Ape1 activity by 80%. This reduction in Ape1 activity correlated

with increased DNA damage post-irradiation, which resulted in decreased cell survival in

clonogenic assays. The sensitization was specific to therapies generating abasic lesions

as evidenced by NP:siRNA not increasing sensitivity to paclitaxel, a microtubule disrupting

agent. Our results indicate NP-mediated delivery of siApe1 is a promising strategy for cir-

cumventing pediatric brain tumor resistance to RT.

ª 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.

Abbreviations: Ape1, apurinic endonuclease 1; EP, ependymoma; MB, medulloblastoma; NP, nanoparticle; PEI, polyethyleneimine; PEG,
polyethylene glycol; RT, radiotherapy; siApe1, siRNA targeting Ape1; siGFP, siRNA targeting GFP.
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1. Introduction

Pediatric primary brain tumors afflict approximately 3000 chil-

drenannually andare the leading causeof cancerdeath in chil-

dren (Dolecek et al., 2012). Effective treatments for

medulloblastoma (MB) and ependymoma (EP),which comprise

about 25% of pediatric brain tumors, remain elusive, and as a

consequence these diagnoses contribute disproportionably to

mortality. Due to the rarity of these childhood cancers, they

are relatively understudied and there is a lack of novel treat-

ment development. Radiotherapy (RT) is an integral compo-

nent of the treatment for MB and the only effective adjuvant

therapy for EP (Kilday et al., 2009; Mueller and Chang, 2009;

Tamburrini et al., 2009; Witt et al., 2012). Despite advances in

RT technique the 5-year survival, especially for younger chil-

dren, remains low (Dolecek et al., 2012), and effective therapies

for recurrent disease have yet to be developed. Moreover, sur-

vival is frequently accompanied by one or more radiation-

induced adverse developmental and psychosocial sequelae

as MB and EP most frequently occur in children less than 10

years old (Northcott et al., 2012). These considerations empha-

size the need to develop new strategies to enhance the tumor-

icidal action of RT while sparing adjacent normal tissue.

The cytotoxic action of RT is primarily caused by the for-

mation of double-strand DNA breaks that arise as a conse-

quence of oxidative free radical-induced DNA lesions that

impede DNA replication fork progression. Single-strand

breaks containing fragmented deoxyribose and abasic sites

are the most common replication blocking lesions produced

by radiation (Abbotts and Madhusudan, 2010; Demple and

Harrison, 1994). The multifunctional DNA repair protein

Ape1 initiates the excision of fragmented deoxyribose and

intact abasic sites (hereafter referred to collectively as abasic

lesions) and is essential for radiation resistance in human

cells (Robertson et al., 2009). Suppression of Ape1 expression

in MB and EP cell lines is accompanied by significantly

elevated sensitivity to radiation as well as to abasic site

inducing alkylating agents (Bobola et al., 2005, 2011). More

importantly, overall and progression free survival following

RT is inversely associated with the abasic lesion endonuclease

activity of Ape1 in MB and EP tissue (Bobola et al., 2005, 2011).

These findings strongly suggest that Ape1 promotes treatment

resistance in MB and EP and that Ape1 is a target for anti-

resistance therapies.

There have been a number of chemical Ape1 inhibitors

developed (Abbotts et al., 2014; Al-Safi et al., 2012; Dorjsuren

et al., 2012; Liu and Gerson, 2004; Srinivasan et al., 2012; Sul-

tana et al., 2012), although only one, methoxyamine, an indi-

rect inhibitor of Ape1 has progressed to Phase I and II

clinical trials (Wilson and Simeonov, 2010). As opposed to

chemical Ape1 inhibitors, delivery of short interfering RNAs

(siRNAs) is advantageous owing to the potency and specificity

of the RNA interference (RNAi) pathway that minimizes the

off-target effects inherent with small molecule drugs

(Whitehead et al., 2009). However, clinical utilization of RNAi

has been impeded by the lack of optimal siRNA delivery vehi-

cles (Whitehead et al., 2009). Significant effort has been placed

on the development of nanoparticle (NP) carriers of siRNA

(Davis et al., 2010; Pecot et al., 2011; Whitehead et al., 2014).

NPs for siRNA deliverymust be able to bypass numerous phys-

iological and cellular barriers to deliver siRNA to the intracel-

lular site of action (Kievit and Zhang, 2011a,b). First, NPs must

efficiently condense and protect siRNA from degradation

upon injection into the blood, while maintaining a size of be-

tween 10 and 100 nm to avoid clearance through the kidneys

and reticuloendothelial system. Second, NPs must be able to

extravasate from the blood across the bloodebrain barrier,

into the tumor. Third, the NPs must escape lysosomal degra-

dation during cellular uptake by endocytosis, and traffic to

the perinuclear region for siRNA to act with the RNA-

induced silencing complex to mediate gene knockdown.

Herewe report on a NP delivery vehicle that effectively pro-

tects and transports siRNA to pediatric MB and EP cells. The

NPs comprise an iron oxide (Fe3O4) core coated with a poly-

meric shell consisting of three materials: chitosan, low

molecular-weight polyethyleneimine (PEI), and polyethylene

glycol (PEG). Chitosan is a biocompatible, biodegradable natu-

ral polymer that provides a stable coating on the NP and bears

active sites for covalent binding of PEI and PEG. Polycationic

PEI avidly binds nucleic acids electrostatically, enabling

loading of large quantities of siRNA, and provides protection

against degradation by serum nucleases. Although the use of

PEI has been limited due to its cytotoxicity, our studies have

shown that NPs coated with low molecular-weight PEI

(1200 Da) grafted to PEG-chitosan demonstrate high gene de-

livery in brain cancer cells with no detectable cytotoxicity

both in vitro and in vivo (Kievit et al., 2009, 2010; Veiseh

et al., 2010). We show that siApe1 suppresses Ape1 expression

and abasic lesion endonuclease activity inMB and EP cells.We

also show that siApe1-mediated suppression increases abasic

lesion and double-strand break abundance and reduces tumor

cellular resistance to 137Cs-g-rays. Our results suggest a new

strategy to circumvent RT resistance in order to improve clin-

ical outcome for MB and EP.

2. Materials and methods

2.1. Materials

All cell culture reagents were purchased from Invitrogen un-

less otherwise noted. All chemicals were purchased from

Sigma unless otherwise noted. The MB-derived UW228-1

(Bobola et al., 2005) and EP-derived Res196 (Bobola et al.,

2011) cell lines were maintained in DMEM supplemented

with 10% FBS and 1% antibioticeantimycotic in a 37 �C humid-

ified 95/5% air/CO2 incubator. siApe1 was purchased as a

SMARTpool consisting of four validated siRNA sequences

against APEX1 (Thermo Scientific). The anti-green fluorescent

protein siRNA (siGFP) was used as a non-specific sequence

control as previously described (Mok et al., 2010; Veiseh

et al., 2010). Fluorophore labeled siRNA (siRNA-Dy677) was

purchased from Dharmacon.

2.2. Nanoparticle synthesis

Nanoparticles were synthesized with slight modification to

previous methods (Kievit et al., 2009, 2010; Veiseh et al.,
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2010). Iron oxide nanoparticles (NP) with a core size of 4e6 nm

coated with chitosan-g-PEG copolymer (CP) were prepared via

a co-precipitation method in the presence of copolymer as

described (Veiseh et al., 2009) to generate NPeCP. NPeCP

were then thiolated using Traut’s reagent (Molecular Biosci-

ences, Boulder, CO) at 5 mg Traut’s reagent to 1 mg NPs (Fe

equivalent) for 1.5 h in thiolation buffer (100 mM sodium bi-

carbonate, pH 8.0, 5 mM EDTA). Unreacted Traut’s reagent

was then removed by size exclusion chromatography using

S-200 Sephacryl (GE Healthcare). PEI (1.2 kDa) was activated

with succinimidyl iodoacetate (SIA) at a 1:1 M ratio of PEI:SIA.

PEI was diluted in thiolation buffer to 150 mg/mL and SIA dis-

solved in dimethylformamide (DMF) at 150 mg/mL was added

and reacted for 30 min. Activated PEI was conjugated to thio-

lated NPeCPs at 62.5mg PEI per 1 mg of NPs (Fe equivalent) for

2 h at room temperature and then at 4 �C overnight. Unreacted

PEI was removed by S-200 Sephacryl chromatography to

generate NPeCPePEI, called NP hereafter. NPs were stored at

4 �C in 10 mM HEPES, pH 7.4 and used within one week of

synthesis.

2.3. Nanoparticle characterization

The sizes and zeta potentials of the NPs were determined us-

ing dynamic light scattering on a Zetasizer Nano (Malvern).

Protection of siRNA was determined using a protection and

release assay where NP-bound or free siRNA was incubated

with FBS for 30min prior to releasing siRNA from the NP using

heparin. Degradation was then assessed by polyacrylamide

gel electrophoresis using unincubatedNP-bound or free siRNA

as standards. Endosomal escapewas evaluated using a calcein

assay (Veiseh et al., 2010) in which cells were co-incubated

withNPs at 10 mg/mL and calcein at 0.25mM for 2 h prior to im-

aging by fluorescence microscopy.

2.4. NP:siRNA treatment

NPswere loadedwith siRNA (siApe1, siGFP, or siRNA-Dy677) at

a 10:1 NP:siRNAweight ratio and a nanoparticle concentration

200 mg Fe/mL Fe. NP:siRNA complexes were allowed to form

for 30 min before treating cells. For siRNA-Dy677 treatments,

100,000 cells were plated on 22 � 22 mm cover slips in 2 mL

fully supplemented culture medium in 6-well plates prior to

4 h treatment with 2 mg NP-bound siRNA-Dy677. After 24 h,

cells were washed, fixed with 4% formaldehyde, counter-

stained with DAPI, and imaged by fluorescence microscopy.

For siApe1 and siGFP treatments, cells were plated in 12-well

plates at 100,000 cells per well in 1mL fully supplemented cul-

ture medium and treated with 1 mg NP-bound siRNA (w75 nM

siRNA) prior to attachment. Three days after treatment, cells

were harvested by trypsinization and washed pellets were

stored at �80 �C prior to subsequent analyses.

2.5. Ape1 expression

2.5.1. mRNA
RNA was extracted from cells using the RNeasy mini kit (Qia-

gen) following the manufacturer’s protocol. cDNA was pre-

pared using the iScript cDNA synthesis kit (Bio-Rad), Ape1

mRNA levels were determined by qRT-PCR using CYBR green

master mix (Bio-Rad) and normalized to b-actin mRNA con-

tent. Primers used for Ape1 were forward: CAACACACCC-

TATGCCTACA, reverse: GTAACAGAGAGTGGGACAA, and for

b-actin were forward: AGCGAGCATCCCCCAAAGTT, reverse:

GGGCACGAAGGCTCATCATT.

2.5.2. Protein
Cell pellets were solubilized by incubation for 15 min on ice in

0.1% Triton X-100 in PBS. Extracts were diluted 1:1 with

Laemmli sample loading buffer containing 2% b-mercaptoe-

thanol. After heating at 100 �C for 5 min, 10 mg of extract pro-

tein was resolved by SDS-PAGE and transferred onto

nitrocellulose membranes. Membranes washed three times

with TBS were incubated with 3% QuickBlocker (Chemicon)

in TBS for 1 h at room temperature and then incubated over-

night at 4 �C with 1 mg/mL antibody against Ape1 (rabbit poly-

clonal; Abcam, ab105081) or b-actin (rabbit polyclonal; Abcam,

ab75186) in TTBS containing 3% QuickBlocker. Membranes

were washed with TTBS before being incubated for 1 h at

room temperature with alkaline phosphatase-conjugated

goat anti-rabbit secondary antibody (Bio-Rad) diluted 1:3000

in 3% QuickBlocker. Membranes were then washed thrice

with TTBS and antibody binding visualized by chemilumines-

cence (Immun-Star detection kit; Bio-Rad) and quantified us-

ing the ChemiDoc system running the Quantity One

software package (Bio-Rad).

2.6. Abasic endonuclease activity and abasic lesion
quantitation

Abasic site endonuclease activity wasmeasured in cleared su-

pernatants of whole cell extracts using a sensitive assay that

measures the conversion of acid-treated, super-coiled

plasmid DNA to relaxed form caused by incision at abasic sites

as detailed elsewhere (Bobola et al., 2005). This highly sensi-

tive assay measures the abasic lesion endonuclease activity

of cell extracts using supercoiled plasmid DNA substrate con-

taining 1.5 abasic sites per plasmid (Bobola et al., 2001, 2005,

2011; Silber et al., 2002). In the presence of Ape1 activity, the

cleaved abasic site relaxes the supercoiled plasmid to its

open circular form (Figure 3a and b). Relaxed plasmid is quan-

titated by comparison with known amounts of linearized sub-

strate allowing estimation of activity expressed as fmoles

lesions incised per minute per cell (fmol/min/cell). Abasic

lesion content in genomic DNA of radiation-treated cells was

measured by conjugation with an aldehyde reactive probe

(Dojindo) that reacts with intact abasic sites (Kubo et al.,

1992). Probe-labeled DNA was stored at 4 �C overnight before

quantification of abasic sites per the manufacturer’s protocol.

2.7. Radiation and drug sensitivity

The clonogenic assay was used for assessing radiation and

drug sensitivity as it is the gold-standard assay for assessing

replicative cell death as it provides the best indication of

long-term cell death, as apposed to measuring changes in

cell density or metabolism (e.g., XTT, Alamar blue, CellTiter

Glo). NP-treated cells were harvested by trypsinization, resus-

pended in medium and were immediately irradiated at 4 Gy/
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min with 137Cs-g-rays. Six well trays were then inoculated

with 250, 500 or 1000 irradiated cells in 2 mL supplemented

medium. For drug exposure, cells were plated as above 66 h af-

ter initiating NP treatment and incubated for an additional 6 h

to allow attachment and resumption of proliferation before

treating with bleomycin or paclitaxel for 0.5 h and 4 h, respec-

tively. After treatment, cells were changed to fresh medium,

and incubation continued until colonies of �50 cells were

formed after 10e14 days. Colonies were stained with 0.5%

methylene blue inmethanol/water (1:1 v/v) and counted using

a dissecting microscope. Survival is the fraction of colonies

formed by treated cells compared to untreated controls.

2.8. gH2AX immunostaining

After NP:siRNA and radiation treatment as described above,

cells were plated on cover slips in 6-well plates and allowed

to attach for 24 h. After fixation with 4% formaldehyde and

permeabilization with 0.1% Triton X-100 in PBS, cells were

incubated in PBS containing 10% FBS and 1% sodium azide

(PSA) for 30 min. Cells were then incubated overnight at 4 �C
with rabbit gH2AX monoclonal antibody (Thermo Scientific,

1:400 dilution) in PSA. After 3 washes with PSA, incubation

was resumed with PSA containing FITC-conjugated goat

anti-rabbit secondary antibody (Abcam, 1:1000 dilution).

Washed cells were counterstained with DAPI and mounted

onto slides using ProLong Gold antifade reagent (Invitrogen).

Cells were visualized at 600� by fluorescence microscopy us-

ing a Nikon Ri1 Color Cooled Camera System (Nikon Instru-

ments, Melville, NY). gH2AX foci were manually counted

from at least 15 cells in each of five fields of view.

2.9. Statistical analyses

Data shown are mean � standard deviation. Statistical signif-

icance was determined using Student’s t-test where p-values

of less than 0.05 were considered significant. Survival param-

eters were estimated from kill curves (log survival versus dose)

by linear regression.

3. Results

3.1. NP bound siRNA is protected against degradation

NP physicochemical properties are important to ensure

proper trafficking within the body and cell. Our NP comprises

an iron oxide core coated with a biocompatible cationic copol-

ymer of chitosan, PEG, and PEI (Figure 1a). The NPwas approx-

imately 40 nm as determined by dynamic light scattering

(Figure 1b), and had a positive zeta potential, a measure of

NP surface charge, of around 15 mV (Figure 1c). Binding and

protection of siRNA against GFPwas tested using a gel retarda-

tion, protection, and release assay (Figure 1d). Complete bind-

ing of siRNAwas observed at a NP:siRNAweight ratio of 10:1 as

evidenced by the lack of detectable free siRNA by gel electro-

phoresis (lane 4). Full-length siRNA was released from the

NP by incubation with heparin, an anionicmolecule that com-

petes for binding sites on the NP (lane 5). Importantly, the

degradation of unbound siRNA by serum nucleases (lane 3)

was not detectible for NP-bound siRNA (lane 6), indicating

that siRNA remains bound to the NP in serum and binding af-

fords protection against serum nucleases. Earlier work from

our laboratory revealed that NPs enter the cell via endocytosis

(Fang et al., 2012; Veiseh et al., 2010). Uptake by and release

from endosomes of NP:siRNA was evaluated by treatment of

MB cells in the presence and absence of NP:siRNA with cal-

cein, a fluorescent dye sequestered in intact endosomes

(Figure 1e, left). In contrast, calcein fluorescence (green) was

detected throughout cells treated concurrently with

NP:siRNA, indicating endosomal release (Figure 1e, right).

These results provide evidence of NP:siRNA uptake by endocy-

tosis and subsequent release into the cell.

3.2. NP:siRNA suppresses Ape1 expression and activity

To evaluate the efficacy of our NP as an siRNA delivery vehicle,

we assayed suppression of Ape1 expression in UW228-1 and

Res196 incubated with NP:siRNA for 72 h. As illustrated in

Figure 1 e NP characteristics. a) Schematic illustration of NP with encapsulated siRNA. b) Hydrodynamic size of the NP as determined by DLS

by volume and number average. c) Zeta potential of the NP. d) siRNA protection and release assay. Lanes of the polyacrylamide gel correspond to

1. 10 bp ladder, 2. siRNA, 3. siRNA D FBS, 4. NP:siRNA, 5. NP:siRNA D heparin, 6. NP:siRNA D FBS D heparin. e) fluorescence images of

cells treated with calcein (left) and cells treated with NP:siRNA and calcein (right). Scale bar corresponds to 25 mm. f) Model of NP trafficking

within the cell. NPs are taken up through endocytosis and escape the endosome to deliver siRNA to the perinuclear region.
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Figure 2, treatment reducedApe1mRNAabundance to 25� 6%

( p< 0.001) and 15� 2% ( p< 0.001) of that of untreatedUW228-

1 and Res196 cells, respectively (Figure 2b). Treating cells with

NP-bound siRNA targeting green fluorescent protein

(NP:siGFP, as control) had no significant effect on Ape1

mRNA levels in UW228-1 (87 � 11%) and in Res196

(99 � 11%) cells. As shown in Figure 2ced, Ape1 protein

expression was also reduced relative to untreated controls in

AP:siApe1-treated UW228-1 (11 � 7.1%, p < 0.001) and Res196

(7.2 � 1.4%, p < 0.001) cells while NP:siGFP had little effect on

Ape1 protein content in UW228-1 (107 � 21%) and Res196 cells

(82 � 12%). These data provide strong evidence that NP:siApe1

protects siApe1 against lysosomal degradation after endocy-

tosis and facilitates release to the intracellular site of action

for RNAi (Figure 1f).

Suppression ofApe1mRNAandprotein contentwas accom-

panied by significant reduction in abasic endonuclease activity

determined by a biochemical assay (Figure 3a). Both UW228-1

and Res196 treated with NP:siApe1 displayed reduced incision

at substrate abasic lesions compared to cells treated with

NP:siGFP (Figure 3b) and decreased rate of abasic lesions

cleaved/min with increasing cell number (Figure 3ced). As a

result, activity was approximately 4-fold lower in both

UW228-1 (0.07 � 0.007 vs 0.30 � 0.007 fmol sites/cell/min;

p � 0.001) and Res196 (0.055 � 0.03 vs 0.19 � 0.05 fmol sites/

cell/min;p� 0.001). In contrast, treatmentwithNP:siGFPhad lit-

tle effect on activity in UW228-1 (0.23� 0.07 vs 0.30� 0.007 fmol

sites/cell/min) and Res196 (0.22 � 0.05 vs 0.19 � 0.05 fmol sites/

cell/min). These results show that our NP can deliver a biologi-

cally active siRNA that suppresses both Ape1 expression and

Ape1-mediated cleavage at abasic lesions.

3.3. Nanoparticle-mediated knockdown of Ape1
enhances the DNA damaging effects of radiation

UW228-1 and Res196 cells treated with siRNA loaded NPs

were subjected to 2 Gy g-irradiation, and abasic sites were

quantified before, 30 min after, and 4 h after irradiation

(Figure 4). Prior to irradiation, untreated, NP:siGFP treated,

and NP:siApe1 treated cells all had similar numbers of abasic

sites in their genomic DNA. There were 32 � 17, 34 � 8, and

44 � 11 abasic sites per 105 bp for untreated, NP:siGFP treated,

and NP:siApe1 treated UW228-1 cells, respectively. There

were 31 � 20, 25 � 15, and 32 � 21 abasic sites per 105 bp

for untreated, NP:siGFP treated, and NP:siApe1 treated

Res196 cells, respectively. Although there was a slight in-

crease in the numbers of abasic sites in cells treated with

NP:siApe1, which would be expected for cells with a lowered

ability to repair these sites, this increase was not statistically

significant. Shortly after irradiation, an increase in the

Figure 2 e NP-mediated knockdown of Ape1 expression in UW228 (MB) and Res196 (EP) cells. a) Fluorescence images of cells treated with NPs

and NP-mediated intracellular delivery of fluorophore labeled siRNA (red) to the perinuclear region of cells. The scale bars correspond to 10 mm.

b) qRT-PCR analysis showing knockdown of Ape1 mRNA 72 h after treatment with NPs where UT: untreated cells; siGFP: NP:siGFP treated

cells; siApe1: NP:siApe1 treated cells. c) Western blot showing knockdown of Ape1 protein 72 h after treatment. d) Quantification of Western blot

band density from three independent experiments. Data shown is normalized to UT. ** indicates a statistical difference from untreated

( p < 0.001).
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numbers of abasic sites in the DNA was observed as ex-

pected. There were 41 � 29, 45 � 9, and 65 � 51 abasic sites

per 105 bp for untreated, NP:siGFP treated, and NP:siApe1

treated UW228-1 cells, respectively. There were 23 � 16,

31 � 19, and 54 � 19 abasic sites per 105 bp for untreated,

NP:siGFP treated, and NP:siApe1 treated Res196 cells, respec-

tively. No significant increase was observed for UW228-1 cells

treated with NP:siApe1 as compared to untreated ( p � 0.27)

and NP:siGFP ( p � 0.25) at this time point. Res196 cells treated

with NP:siApe1 showed a significant increase in the number

of abasic sites as compared to untreated ( p < 0.05) and

NP:siGFP ( p < 0.01) at this time point. After four hours, abasic

sites in untreated and NP:siGFP treated cells reached their

baseline levels at 35 � 27 and 29 � 10 abasic sites per

105 bp, respectively for UW228-1 and at 21 � 14 and 21 � 9

abasic sites per 105 bp, respectively for Res196. NP:siApe1

Figure 3 e Knockdown of Ape1 activity. Ape1 activity assay showing reduced abasic site endonuclease activity 72 h after treatment with siApe1

loaded NPs. a) Principle of the Ape1 activity assay. Supercoiled (SC) plasmid DNA substrate containing a single abasic site relaxes to open circular

(OC) form in the presence of active Ape1 enzyme. b) Agarose gel electrophoresis used to resolve the shift in abasic site containing SC plasmid

substrate to OC form after treatment with UW228 (top) and Res196 (bottom) cell extracts. Lanes: 1. Untreated (UT) cells; 2. NP:siGFP treated

cells; 3. NP:siApe1 treated cells; 4. Substrate only. ced) Plot of numbers of abasic sites removed at various extract dilutions from c) UW228 and d)

Res196 cells. Data is from three independent experiments. e) Quantification of Ape1 activity as determined from the slopes in (ced). ** indicates a

statistical difference from UT cells p < 0.001.

Figure 4 e Abasic site quantification after UW228 (left) and Res196 (right) cells were exposed to 2 Gy 137Cs-g-rays. Abasic sites were repaired in

untreated and NP:siGFP treated cells with high Ape1 activity within 4 h, but abasic sites persisted for at least 4 h in NP:siApe1 treated cells with

low Ape1 activity. Data is from three independent experiments. * indicates a statistical difference from untreated (UT) and NP:siGFP treated cells

( p < 0.05).
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treated cells maintained a significantly higher number of

abasic sites after four hours at 85 � 45 ( p < 0.05 vs untreated;

p < 0.01 vs NP:siGFP) abasic sites per 105 bp for UW228-1 and

at 49 � 22 ( p < 0.05 vs untreated; p < 0.01 vs NP:siGFP) abasic

sites per 105 bp for Res196.

The evolution of abasic sites into double-strand breakswas

probed through gH2AX immunostaining and foci counting

(Figure 5). Untreated and NP:siGFP treated UW228-1 cells had

1.7 � 1.1 and 1.5 � 0.8 foci per cell, respectively, 24 h after

2 Gy irradiation whereas NP:siApe1 treated UW228 cells had

6.5 � 3.6 foci per cell. In Res196 cells, untreated and NP:siGFP

treated cells had 2.5 � 1.0 and 5.8 � 2.5 foci per cell, respec-

tively, 24 h after 2 Gy irradiation whereas NP:siApe1 treated

cells had 9.3 � 2.3 foci per cell.

3.4. Nanoparticle-mediated knockdown of Ape1
enhances the sensitivity of cells to low doses of radiation

The effect of NP:siApe1 on the radiosensitivity of UW228-1

and Res196 was evaluated by clonogenic survival assays. As

shown in Figure 6, both lines treatedwith NP:siApe1 displayed

greater sensitivity to 137Cs-g-rays compared to untreated and

NP:siGFP-treated cells. The effect of NP:siApe1 was most

notable at doses less than 2 Gy, the standard fractionated

dose in most RT treatment regimens (Lannering et al., 2012;

Stuben et al., 1997). The detectible shoulder of resistance dis-

played by untreated and NP:siGFP-treated cells was elimi-

nated with NP:siApe1 treatment, indicating that repair of

radiation damage by Ape1 was the predominant determinate

of the insensitivity of UW228-1 and Res196 at low doses. The

effect of NP:siApe1-mediated reduction of the shoulder of

resistance is also reflected in the greater than 3-fold reduction

of LD50 (Table 1) compared to untreated (1.3 � 0.5 vs

4.5 � 0.9 Gy; p � 0.01) and NP:siGFP-treated (1.3 � 0.5 vs

4.3 � 0.3 Gy; p � 0.001) in UW228-1, and the approximately

3-fold reduction of LD50 compared to untreated (0.9 � 0.4 vs

2.7 � 0.1 Gy; p � 0.01) and NP:siGFP-treated (0.9 � 0.4 vs

3.0 � 0.2 Gy; p � 0.01) in Res196. We note that an appreciable

fraction of NP:siApe1-treated UW228-1 and Res196 displace

similar radiation sensitivity at doses greater than 2 Gy as un-

treated and NP:siGFP-treated cells (Table 1). In light of the near

complete reduction of Ape1 expression (Figures 2 and 3), it is

unlikely that this reflects failure of NP:siApe1 to suppress

Ape1-mediated repair, but rather reflects the dominant action

of other repair activities to foster recovery (Lord and

Ashworth, 2012).

Importantly, NP:siApe1 also increased the sensitivity of

both lines to bleomycin, an oxidizing agent that also produces

abasic sites and strand breaks containing fragmented deoxyri-

bose moieties (Figure 6). In contrast, NP:siApe1 had no effect

on sensitivity to paclitaxel, a microtubule disrupting agent

(Figure 6). These results indicate the radiosensitization

afforded by NP:siApe1 was specific to the suppression of

Ape1-mediated repair and not the consequence of a non-

specific sensitization to cytotoxic agents.

4. Discussion

The promise of RNAi to effect gene-specific therapies in can-

cer therapy has been stymied by the lack of a means to

circumvent numerous anatomic, biochemical, and physiolog-

ical barriers to the delivery of biologically active siRNA to tu-

mors. Our prototype NP was designed to circumvent these

Figure 5 e Double-strand break quantification as determined by gH2AX foci counting. aeb) Fluorescence images of gH2AX immunostaining

(green) with DAPI counterstaining (blue) in (a) UW228 and (b) Res196 cells. Scale bars correspond to 5 mm. ced) Quantification of foci per cell

through manual counting in (c) UW228 and (d) Res196 cells. Data shown are mean ± SD of greater than 15 cells per condition in at least three

independent experiments. * indicates a statistical difference between pre and post-irradiation ( p < 0.05).
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limitations in order to transport siRNA to pediatric brain tu-

mors. Inclusion of PEI to the biocompatible copolymer of chi-

tosan and PEG bound to an iron oxide core together with the

positive zeta potential of the resulting NP promoted binding

and protection of siRNA while preserving the ability of the

polymer to facilitate cellular uptake and perinuclear localiza-

tion (Kievit et al., 2009). Importantly, our NP protects siRNA

from degradation by serum nucleases, an essential defense

for active siRNA to survive passage through the circulation.

Also critical, the small size of our NP, approximately 40 nm,

promotes internalization by target cells and minimizes clear-

ance from circulation (Chithrani and Chan, 2007; Chithrani

et al., 2006; Wang et al., 2013; Zhang et al., 2009). In toto, these

properties suggest our NP can function in vivo as a systemic

delivery vehicle.

To evaluate the potential clinical utility of our NP, we

examined the ability of NP:siApe1 to reduce radioresistance

in cell lines derived from pediatric MB and EP. RT is an essen-

tial part of the standard adjuvant care for both tumors (Kilday

et al., 2009; Tamburrini et al., 2009; Witt et al., 2012), but

efficacy is frequently limited by intrinsic resistance and the

potential of adverse effects that accompany treatment in the

pediatric population (Mueller and Chang, 2009). Ape1 cata-

lyzes the vast majority (w95%) of abasic site endonuclease ac-

tivity in human tumors, which are estimated to harbor

105e106 molecules/cell (Bobola et al., 2005, 2011; Kelley et al.,

2012). Other considerations guiding this study were the essen-

tial role Ape1 plays in the repair of radiation-induced precur-

sors of lethal double-strand breaks (Kelley et al., 2012), and the

strong inverse association between tumor abasic endonu-

clease activity and progression-free survival following RT for

bothMB (Bobola et al., 2005) and EP (Bobola et al., 2011). Our re-

sults document that NP:siApe1 produces near quantitative

suppression of Ape1 expression and abasic endonuclease ac-

tivity in cell lines with activities greater than the mean

observed in MB and EP tissue (Bobola et al., 2005, 2011). Impor-

tantly, reduced expression produced near total ablation of

resistance to radiation at clinically relevant doses, resulting

in a 3-fold decrease in LD50 for both UW228-1 and Res196

(Figure 6). Our data also indicate that increased sensitivity

was specific to a diminished ability to repair damage sub-

strates of Ape1 rather than non-specific effects of NP:siApe1

on survival. We cannot, however, rule out that suppression

of other Ape1 activities such as the redox function of Ref-1

(Kelley et al., 2012) contributed to circumventing radiation

resistance. Overall, our findings provide strong evidence that

NP:siApe1 is an effective vehicle for delivering biologically

active siRNA to pediatric brain tumor cells.

The survival curves for NP:siApe1-treated UW228-1 and

Res196 are biphasic, both harboring a population of cells

that show the same sensitivity to g-rays as untreated and

siGFP-treated cells, as shown by the similar slopes of the

curves for the three groups at higher doses (Figure 6). The

magnitude of reduction of gene expression and abasic endo-

nuclease activity by NP:siApe1 strongly suggests that a large

majority of treated cells received active siRNA. We note the

Figure 6 e Clonogenic survival after exposure to 137Cs-g-rays, bleomycin, and paclitaxel. UW228 and Res196 cells were left untreated or treated

with siGFP or siApe1 loaded NPs for three days prior to g-ray, bleomycin, or paclitaxel exposure. NP-mediated knockdown of Ape1 sensitized

cells specifically to therapies that generate abasic sites in genomic DNA. Data is from three independent experiments.

Table 1 e NP-mediated suppression of Ape1 activity in pediatric
brain cancer cells increases radiosensitivity. Data is from three
independent experiments.

D10
a D37

a LD50
a

UW228 UT 12 � 2.7 5.9 � 1.1 4.5 � 0.9

siGFP 12 � 2.5 5.7 � 0.7 4.3 � 0.3

siApe1 7.0 � 0.6 2.4 � 0.3 1.3 � 0.5

Res196 UT 8.0 � 0.7 3.7 � 0.2 2.7 � 0.1

siGFP 8.8 � 0.6 4.0 � 0.3 3.0 � 0.2

siApe1 5.2 � 1.0 1.7 � 0.5 0.9 � 0.4

a Gy.

M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 0 7 1e1 0 8 01078

http://dx.doi.org/10.1016/j.molonc.2015.01.006
http://dx.doi.org/10.1016/j.molonc.2015.01.006
http://dx.doi.org/10.1016/j.molonc.2015.01.006


possibility that a single treatment with NP:siApe1 was insuffi-

cient to suppress repair long enough in some cells for abasic

lesions to be converted to lethal double-strand breaks by

blocking DNA replication. Importantly, it is estimated that

50% of double-strand breaks result from incision by Ape1 at

closely opposed lesions on opposite DNA strands

(Georgakilas et al., 2004; Sutherland et al., 2000; Yang et al.,

2006). As closely opposed lesions are more likely to form at

higher doses, it is possible that suppression of Ape1 may

reduce the burden of double-strand breaks (Fung and

Demple, 2011), facilitating survival via double-strand break

repair mechanisms. Suppressing these activities along with

Ape1 would be expected to further increase radiosensitivity.

The clinical potential of NP:siApe1will next be evaluated in

animal models of MB and EP (Huse and Holland, 2009). To be

effective, the NP must protect siRNA integrity while circum-

venting a variety of anatomic and physiological barriers to

reach tumors in the central nervous system. Our previous

experience is that iron core NPs with similar size and polymer

compositions are not rapidly cleared from circulation (Kievit

and Zhang, 2011b), and can effectively deliver nucleic acids

to animal models of brain tumors (Kievit et al., 2009). Notably,

attaching the targeting agent chlorotoxin, a peptide derived

from the venom of the giant Israeli scorpion that binds to

the vast majority of brain tumors (Lyons et al., 2002;

Soroceanu et al., 1998; Veiseh et al., 2007), enhancedNP uptake

and distribution throughout the tumor (Kievit et al., 2010).

Importantly, we previously observed that chlorotoxin-

targeted chitosan-based NPs cross the bloodebrain barrier in

a transgenicmousemodel ofMB (Veiseh et al., 2009). These re-

sults inspire confidence that NP:siApe1 will be able to deliver

an effective dose of siApe1 tomodel MB and EP tumors in vivo.
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