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CHTOSAN-ALGINATE SCAFFOLD CELL 
CULTURE SYSTEMAND RELATED 

METHODS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application claims the benefit of U.S. patent applica 
tion Ser. No. 61/478,429, filed Apr. 22, 2011, expressly incor 
porated herein by reference in its entirety. 

STATEMENT OF GOVERNMENT LICENSE 
RIGHTS 

This invention was made with Government support under 
EEC9529161 awarded by the National Science Foundation, 
and under R01EB006043, RO1CA134213, and 
T32CA138312 awarded by the National Institutes of Health. 
The Government has certain rights in the invention. 

BACKGROUND OF THE INVENTION 

In vitro studies are an essential component of the initial 
screening for any anti-cancer therapy, allowing for high 
throughput, cost-efficient exploration of potential therapeu 
tics. However, traditional in vitro cell culture on two-dimen 
sional (2D) tissue culture substrates fails to simulate the 
structure of the tumor microenvironment (TME) present in 
Vivo (i.e., complex cell-cell organization and extracellular 
matrix (ECM)-cell interactions, which have significant 
effects on cell phenotype and malignancy). Cells in 2D cul 
ture are forced to adhere to a rigid surface and are geometri 
cally constrained, adopting a flat morphology which alters the 
cytoskeleton regulation that is important in intracellular sig 
naling, and consequently can affect cell growth, migration, 
and apoptosis. Moreover, organization of the ECM, which is 
essential to cell differentiation, proliferation, and gene 
expression, is absent in 2D cultured tumor cell models. These 
limitations of 2D cultures often result in biological responses 
to drugs and potentially curative treatments in vitro strikingly 
different from what is observed in vivo. The ideal in vitro 
TME model should provide a platform for in vitro drug 
screening that will better translate to in vivo testing by mim 
icking both the spatial arrangement of cells and ECM signal 
ing found in tumors in Vivo, resulting in the expression of the 
native in Vivo phenotype in these cells. 

Often in vitro results often do not translate well to in vivo 
systems. As a result, costly in vivo animal models remain the 
most sophisticated and faithful models of the disease. The 
development of anticancer drugs has been hindered by the 
lack of effective tumor models that closely mimic the human 
disease. 

Three-dimensional (3D) culture systems are designed to 
bridge the gap between in vitro and in Vivo cancer models. 
These 3D Systems are intended to increase cancer cell malig 
nancy and retain the in vivo phenotype by mimicking the 
structure of the tumor microenvironment. Natural extracellu 
lar matrix materials such as collagen, fibrin, and the commer 
cially available Matrigel matrix (BD Biosciences) have been 
used, but these animal-source products are expensive, and can 
potentially transmit pathogens. Synthetic polymers such as 
poly(lactide-co-glycolide) (PLGA) have also been studied, 
but they can release acidic degradation products that are toxic 
to cells, and negatively affect experimental results. 
A need exists for improved in vitro models of human can 

cer that will allow researchers to reduce in vivo experiments 
by in vitro pre-testing that will defray costs, shorten experi 
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2 
mental time, provide a much more controllable environment, 
and reduce loss of animal life. The present invention seeks to 
fulfill this need and provides further related advantages. 

SUMMARY OF THE INVENTION 

The present invention provides methods for culturing can 
cer cells in vitro using a three-dimensional scaffold, Scaffolds 
that include cultured cancer cells, and methods for using the 
cultured cancer cells and the scaffolds that include cultured 
cancer cells in anticancer therapeutic drug development. 

In one aspect, the invention provides a method for culturing 
cancer cells in vitro. In the method, a porous chitosan-algi 
nate scaffold is seeded with cancer cells to provide a scaffold 
comprising cancer cells and then the seeded cancer cells are 
cultured in the scaffold for a time sufficient to provide a 
scaffold comprising cultured cancer cells. In one embodi 
ment, the cultured cancer cells comprise tumor spheroids. 

In another aspect of the invention, a scaffold comprising 
cultured cancer cells is provided. 

In one embodiment, the scaffold is a three-dimensional 
scaffold, comprising a porous chitosan-alginate scaffold and 
cultured cancer cells. 

In one embodiment, the scaffold is produced by the method 
of the invention. 

In certain of the above embodiments, the cultured cancer 
cells comprise tumor spheroids. 

In another embodiment, the invention provides an in vitro 
cancerous tumor model. In the model, cancerous tumor sphe 
roids are contained in a three-dimensional scaffold compris 
ing chitosan and alginate. 

In certain embodiments, cultured cells produced by the 
methods of the invention and provided in the chitosan-algi 
nate scaffolds of the invention have increased tumor malig 
nancy compared to two-dimensionally cultured cancer cells, 
increased expression of growth factors compared to two 
dimensionally cultured cancer cells, increased expression of 
the enzyme MMP-2 compared to two-dimensionally cultured 
cancer cells, increased expression of the extracellular matrix 
proteins compared to two-dimensionally cultured cancer 
cells, increased tumorigenicity in vivo compared to two-di 
mensionally cultured cancer cells, and/or increased CD31' 
cell recruitment in vivo compared to two-dimensionally cul 
tured cancer cells. 

In a further aspect, the invention provides a method for 
producing a cancerous tumor in a Subject. In the method, 
cultured cells obtained from the method of the invention for 
culturing cancer cells or cultured cells from a scaffold of the 
invention that includes cultured cancer cells are implanted in 
the Subject. In one embodiment, implanting cultured cells 
comprises implanting a scaffold of the invention comprising 
cultured cancer cells. 

In another aspect of the invention, a method for Screening 
a candidate chemotherapeutic agent in vitro is provided. In 
the method, cultured cells obtained from the method of the 
invention for culturing cancer cells are contacted with a can 
didate chemotherapeutic agent. In one embodiment, contact 
ing cultured cells obtained from the method of the invention 
for culturing cancer cells comprises contacting the candidate 
chemotherapeutic agent with the scaffold of the invention 
comprising cultured cancer cells. In certain embodiments, the 
method further comprises measuring cell proliferation inhi 
bition, measuring the cell viability, and/or measuring protein 
expression levels. 

In further aspect of the invention, a method for Screening a 
candidate chemotherapeutic agent in vivo is provided. In the 
method, cultured cells obtained from the method of the inven 
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tion for culturing cancer cells are implanted in a Subject and a 
candidate chemotherapeutic agent is administered to the Sub 
ject. In one embodiment, implanting cultured cells obtained 
from the method of the invention for culturing cancer cells 
comprises implanting the scaffold of the invention compris 
ing cultured cancer cells. In the method, administering the 
candidate chemotherapeutic drug comprises administering 
the drug after a pre-determined period of time. In certain 
embodiments, the method further comprises comparing the 
tumor mass or Volume measured prior to drug administration 
and after a pre-determined period of time after drug admin 
istration and/or harvesting the tumor mass after a pre-deter 
mined period of time after drug administration and analyzing 
the tumor. 

DESCRIPTION OF THE DRAWINGS 

The foregoing aspects and many of the attendant advan 
tages of this invention will become more readily appreciated 
as the same become better understood by reference to the 
following detailed description, when taken in conjunction 
with the accompanying drawings, wherein: 

FIGS. 1A-1C compare the ability of chitosan-alginate (Ca 
lif.) scaffolds to provide a growth environment for tumor cells 
in vitro. Proliferation of (1A) C6, (1B). U-87 MG, and (1C) 
U-118 MG glioma cells cultured on 2D culture 24-well 
plates, Matrigel matrix, and CA Scaffolds, respectively, after 
2, 4, 6, 8, and 10 days of cell culture, as determined by the 
Alamar Blue viability assay. 

FIGS. 2A-2C compare the morphology of (2A) C6, (2B) 
U-87 MG, and (2C) U-118 MG glioma cells grown on 2D 
culture plates, Matrigel matrix, and CA scaffolds, respec 
tively, visualized by SEM imaging. The background is col 
ored for enhanced contrast and the scale bar corresponds to 40 
lm. 
FIGS. 3A-3D compare phenotypic changes in glioma cells 

based on in vitro pre-culture conditions, assessed by ELISA 
and dot blot analyses. The secretion of (3A) VEGF and (3B) 
Matrix metalloproteinase-2 in C6, U-87 MG, and U-118 MG 
cells pre-cultured on 2D 24-well culture plates, Matrigel 
matrix, and CA Scaffolds, respectively, as determined by 
ELISA. Fibronectin (3C) and laminin (3D) secretion in cells 
pre-cultured on the three matrices as determined by dot blot 
analyses. *, P<0.01; **, P<0.001: ***, P<0.0001, by stu 
dent's t-test (N=4). 

FIGS. 4A and 4B compare in vivo tumorigenesis of glioma 
cells pre-cultured under various in vitro culture conditions. 
Growth rates of tumors formed from implants of 2D, Matrigel 
matrix, and CA scaffold pre-cultured (4A) C6 or (4B) U-87 
MG cells as determined by caliper measurements. *, P<0.01; 
**, P<0.001: ***, P<0.0001, by one-way ANOVA (N=6). 
FIGS.5A and 5B compare histological analyses of glioma 

tumors grown in athymic nude mice 3 weeks after implanta 
tion of pre-cultured glioma cells under various in vitro culture 
conditions. Masson’s trichrome stained histology slides of 
(5A) C6 and (5B) U-87 MG tumors formed from cells pre 
cultured on 2D culture 24-well plates, Matrigel matrix, and 
CA scaffolds, respectively. Cell nuclei are stained dark red, 
cytoplasm is stained light red, connective tissue is stained 
dark blue, and Matrigel is stained light blue. Scale bar corre 
sponds to 50 Lum. 

FIGS. 6A and 6B are images comparing angiogenesis 
around tumors formed from glioma cells pre-cultured on 2D 
culture 24-well plates, Matrigel matrix, and CA scaffolds, 
respectively. Vasculature surrounding (6A) C6 and (6B) U-87 
MG tumors were photographed in live, anesthetized mice. 
Scale bars correspond to approximately 5 mm. 
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4 
FIGS. 7A and 7B compare immunohistochemistry of 

tumors grown from glioma cells pre-cultured on 2D culture 
24-well plates, Matrigel matrix, and CA Scaffolds, respec 
tively. C6 (7A) and U-87 MG (7B) tumor sections were 
harvested 3 weeks after implantation of the pre-cultured cells, 
stained with anti-CD31 to visualize blood vessels (green), 
and counterstained with DAPI (blue) with inlays to provide 
more details of the blood vessel structure. Scale bars corre 
spond to 100 um and 10 um for the main display and inlay, 
respectively. 

FIGS. 8A and 8B compare the effect of culture conditions 
on hepatocellular carcinoma cell proliferation. Populations of 
(8A) PLC and (8B) HepG2 cells cultured for a period of 8 
days on 2D plates, Matrigel matrices, and CA Scaffolds, 
respectively. Cellular proliferation was determined by the 
Alamar Blue assay. Results are shown as meants.d., and * 
indicates at least one of the group means is statistically dif 
ferent from the others at that time point, p<0.05, n=4. 

FIGS. 9A and 9B compare images showing the effect of 
culture conditions on hepatocellular carcinoma cell morphol 
ogy as observed by SEM. PLC (9A) and HepG2 (9B) cells 
were cultured on 2D tissue culture plates, Matrigel matrices, 
and CA scaffolds, respectively, for 10 days. The scale bar 
represents 10 Lum. 

FIGS. 10A-10C compare growth factor expression profiles 
of hepatocellular carcinoma cells cultured in vitro for 10 
days: (10A) IL-8, (10B) bFGF, and (10C) VEGF secretion by 
PCL and HepG2 cells cultured on 2D tissue culture plates, 
Matrigel matrices, and CA Scaffolds, respectively, as deter 
mined by ELISA. Results are meants.d., and * indicates at 
least one of the means in that group is statistically different 
from the others, p<0.05, n=4. 

FIG. 11 compares glypican-3 (GPC-3) expression by 
HepG2 hepatocellular carcinoma cells cultured in vitro for 10 
days on 2D tissue culture plates, Matrigel matrices, and CA 
scaffolds, respectively, as determined by dot blot analysis. 
Results are meants.d., and * indicates at least one of the 
means is statistically different from the others, p<0.05, n=4. 

FIGS. 12A and 12B compare the effect of pre-culture con 
ditions on tumor growth in vivo. Tumor volume induced by 
subcutaneously implanted (12A) PLC and (12B) HepG2 cells 
pre-cultured on 2D tissue culture plates, Matrigel matrices, 
and CA Scaffolds, respectively, as determined by caliper mea 
Surements. Results are meants.d. and * indicates at least one 
of the group means is statistically different from the others at 
that time point, p<0.05, n=4. 

FIGS. 13A and 13B are images comparing hematoxylin 
and eosin stained histological sections of tumors induced by 
implanted (13A) PLC and (13B) HepG2 cells pre-cultured on 
2D tissue culture plates, Matrigel matrices, and CA scaffolds, 
respectively. The implants were harvested 4 weeks post 
implantation in nude mice. Nuclei are stained dark purple, 
cytoplasm is stained light red, erythrocytes are stained bright 
red, and connective tissue is stained pink. Arrows indicate 
extravascular erythrocytes. The scale bar represents 20 Lum. 

FIGS. 14A and 14B compare drug resistance of hepatocel 
lular carcinoma cells cultured under different conditions. 
Viability of (14A) PCL and (14B) HepG2 cells cultured on 
2D tissue culture plates, Matrigel matrices, and CA scaffolds, 
respectively, relative to untreated cells, as determined by the 
Alamar Blue assay after doxorubicin treatment. PLC cells 
were treated with 5 uM doxorubicin and HepG2 cells were 
treated with 10 uM doxorubicin. Results are meants.d., and 
indicates at least one of the group means is statistically dif 
ferent from the others at that time point, p<0.05, n=4. 

FIGS. 15A and 15B compare dose-dependent cytotoxic 
response of hepatocellular carcinoma cells to doxorubicin: 
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(15A) PLC and (15B) HepG2 cells were cultured on 2D tissue 
culture plates, Matrigel matrices, and CA Scaffolds, respec 
tively, for 10 days before treatment with doxorubicin. Cell 
viability relative to untreated cells was determined by the 
Alamar Blue assay at 24 h. 48 h and 72 h after doxorubicin 
treatment. LDso was calculated based on viability data. 
Results are meants.d., and * indicates at least one of the 
group means is statistically different from the others at that 
time point, p<0.05, n=4. 

FIGS. 16A-16C compare the morphology of (16A) 
LNCaP (16B) C4-2, and (16C) C4-2B human prostate cancer 
cells were grown on 2D culture plates, Matrigel matrices, and 
CA scaffolds, respectively, for 15 days before analysis. Scale 
bars are 40 um. 

DETAILED DESCRIPTION OF THE INVENTION 

The present invention provides methods for culturing can 
cer cells in vitro using a three-dimensional scaffold, Scaffolds 
that include cultured cancer cells, and methods for using the 
cultured cancer cells and the scaffolds that include cultured 
cancer cells in anticancer therapeutic drug development. 
As noted above, tumor cells cultured on standard two 

dimension (2D) tissue culture flasks are exposed to a dramati 
cally altered structural microenvironment as compared to in 
Vivo tumors, and thus display altered cell function and 
response to drug treatment. The present invention provides an 
in vitro model that can more closely mimic the structure of the 
tumor microenvironment (TME) and that can dramatically 
improve the translation of novel chemotherapeutics from in 
vitro to in vivo testing. 

In one aspect, the invention provides a method for three 
dimensional cell culture in vitro. In one embodiment, the 
method includes seeding a porous chitosan-alginate scaffold 
with cancer cells to provide a scaffold comprising cancer 
cells; and culturing the cancer cells in the scaffold for a time 
Sufficient to provide a scaffold comprising cultured cancer 
cells. 

In one embodiment, cultured cancer cells form into aggre 
gates known as tumor spheroids. Thus, in one embodiment, a 
method for producing tumor spheroids in vitro is provided. In 
the method, a porous chitosan-alginate scaffold is seeded 
with cancer cells to provide a scaffold comprising cancer 
cells; and the cancer cells seeded in the scaffold are cultured 
for a time and under conditions sufficient to provide tumor 
spheroids in the scaffold. 
As used herein, the term “tumor spheroids’ refers to 

spherical, heterogeneous aggregates of proliferating, quies 
cent, and necrotic cells in culture that retain three-dimen 
sional architecture and tissue-specific functions. Tumor sphe 
roids represent an in vitro model for studies of the biology of 
both normal and malignant cells. 

Representative tumor spheroids produced in chitosan-algi 
nate scaffolds by the methods of the invention are illustrated 
in FIGS. 2A-2C (from C6, U-87 MG, and U-118 MG gliomas 
cell lines, respectively), FIGS. 9A and 9B (PLC and HepG2 
hepatocarcinoma cell lines, respectively), and FIGS. 16A 
16C (LNCaP. C4-2, and C4-2B human prostate cancer cell 
lines, respectively). 
As described in detail below, in certain embodiments, the 

cultured cancer cells (e.g., tumor spheroids) produced in chi 
tosan-alginate scaffolds by the methods of the invention have 
increased tumor malignancy compared to two-dimensionally 
cultured cancer cells as well as Matrigel cultured cells. The 
cultured cancer cells having increased tumor malignancy are 
cancer cells that do not ordinarily show Such malignancy in 
2D culture, C6 cells show no increased malignancy because 
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6 
they are predisposed to being highly malignant. C6 cells 
cultured in the chitosan-alginate scaffold show the unique cell 
mass (tumor spheroids) like other less malignant cancer cells. 
Although the generation of the tumor spheroid increases 
malignancy, the unique matrix/growth environment provided 
by the chitosan-alginate scaffold further contributes to malig 
nancy. For example, hepatocarcinoma cells cultured in accor 
dance with the method of the invention, GPC, a biomarker for 
malignant transformation for these cells, is upregulated. 

In certain embodiments, the cultured cancer cells (e.g., 
tumor spheroids) produced in chitosan-alginate scaffolds by 
the methods of the invention have increased expression of 
growth factors (e.g., pro-angiogenic growth factors such as 
VEGF, bFGF, and IL-8) compared to two-dimensionally cul 
tured cancer cells as well as Matrigel cultured cells. 

In certain embodiments, the cultured cancer cells (e.g., 
tumor spheroids) produced in chitosan-alginate scaffolds by 
the methods of the invention have increased expression of the 
enzyme MMP-2 compared to two-dimensionally cultured 
cancer cells as well as Matrigel cultured cells. 

In certain embodiments, the cultured cancer cells (e.g., 
tumor spheroids) produced in chitosan-alginate scaffolds by 
the methods of the invention have increased expression of the 
extracellular matrix proteins (e.g., fibronectin and laminin) 
compared to two-dimensionally cultured cancer cells as well 
a Matrigel cultured cells. 

In certain embodiments, the cultured cancer cells (e.g., 
tumor spheroids) produced in chitosan-alginate scaffolds by 
the methods of the invention have increased tumorigenicity in 
Vivo compared to two-dimensionally cultured cancer cells as 
well as Matrigel cultured cells. 

In certain embodiments, the cultured cancer cells (e.g., 
tumor spheroids) produced in chitosan-alginate scaffolds by 
the methods of the invention have increased CD31" cell 
recruitment (i.e., angiogenesis ability) in vivo compared to 
two-dimensionally cultured cancer cells as well as Matrigel 
cultured cells. 

In the methods of the invention, culture of cancer cells in 
the scaffolds does not require any conditions beyond standard 
tissue culture conditions. In general, tumor spheroids typi 
cally form between 3 and 15 days of culture on the scaffolds. 

In another aspect, the invention provides an in vitro can 
cerous tumor model, comprising a cancer cells (e.g., tumor 
spheroids) cultured in a three-dimensional (3D) scaffold 
comprising chitosan and alginate. 

In a related aspect of the invention, Scaffolds comprising 
cultured cells are provided. In one embodiment, the invention 
provides a three-dimensional scaffold comprising a porous 
chitosan-alginate scaffold and cultured cancer cells (e.g., 
tumor spheroids). In another embodiment, the scaffold com 
prising cultured cancer cells is produced by the method of the 
invention. 
The scaffolds useful in the compositions and methods of 

the invention advantageously support cancer cell prolifera 
tion and cancerous tumor formation. These scaffolds are 
porous scaffolds that include a chitosan and an alginate. In 
these scaffolds, the chitosan is ionically linked to the alginate. 
In certain embodiments, the scaffolds are further crosslinked 
by divalent metal atoms. The porous scaffolds useful in the 
compositions and methods of the invention that include chi 
tosan and alginate are referred to herein as "chitosan-algi 
nate' scaffolds or “CA' scaffolds. 

Chitosan and alginate are biocompatible, non-mammalian 
sourced natural polymers with properties ideal forcell culture 
scaffold formation. The chitosan and alginate can be used to 
create a 3D interconnected, CA complex porous structure. 
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Chitosans, natural polysaccharides derived from the partial 
deacetylation of chitin, shares structural similarities to gly 
cosaminoglycans present in the native ECM. Chitosans are 
linear polysaccharides composed of randomly distributed 
f-(1-4)-linked D-glucosamine (deacetylated unit) and 5 
N-acetyl-D-glucosamine (acetylated unit). Chitosans useful 
for making the scaffolds have an average molecular weight 
from about 10 kDa to about 1000 kDa. Generally, scaffolds 
made from higher molecular weight chitosans have greater 
mechanical strength than scaffolds made from lower molecu 
lar weight chitosans. An exemplary range of percentage 
deacetylation of chitosan useful for making the scaffolds is 
from about 80% to about 100% deacetylation. Alginates area 
family of polyanionic copolymers derived from brown sea 
algae. Alginates are linear, 1.4-linked polysaccharides of 
B-D-mannuronic acid and C-L-guluronic acid. In these scaf 
folds, chitosan is ionically linked to alginate. As used herein, 
the term "ionically linked’ refers to a non-covalent chemical 
bond or associative interaction between two ions having 
opposite charges (e.g., electrostatic association between a 
chitosan amine group and an alginate carboxylic acid group 
present on alginate). 
The scaffolds comprising chitosan and alginate may be 

crosslinked to increase their mechanical strength. In one 
embodiment, the porous chitosan/alginate scaffold is 
crosslinked with divalent metal ions. Thus, in one embodi 
ment, in addition to the ionic linkages between chitosan and 
alginate, the scaffolds include ionic linkages formed between 
alginate carboxylic acid groups and divalent metalions (e.g., 
Ca", Ba'", Mg", Sr"). While not wishing to be bound by 
theory, it is believed that the divalent metal cations form ionic 
linkages between adjacent alginate chains, thereby ionically 
crosslinking adjacentalginate molecules. 

In one embodiment, the scaffold further comprises one or 
more growth factors or inhibitory factors effective for cancer 
cell proliferation and cancerous tumor formations. 

Suitable scaffolds have a porosity of from about 85 to about 
96 percent. In one embodiment, the scaffold has a porosity of 
from about 91 to about 95 percent. In another embodiment, 
the scaffold has a porosity of from about 94 to about 96 
percent. 

Suitable scaffolds have an average pore size diameter of 
from about 50 to about 200 um. In one embodiment, the 
scaffold has an average pore size diameter of from about 40 to 45 
about 90 m. In another embodiment, the scaffold has an 
average pore size diameter of from about 60 to about 150 lum. 
In one embodiment, the scaffold has a porosity of from about 
85 to about 96 percent and an average pore size diameter of 
from about 50 to about 200 um. 
The porous scaffold possesses mechanical strength. The 

scaffold has a compressive yield strength of at least 0.35 MPa. 
In one embodiment, the scaffold has a compressive yield 
strength of from about 0.35 MPa to about 0.5 MPa. The 
scaffold has a compressive modulus of from about 5 MPa to 
8 MPa. In one embodiment, the scaffold has a compressive 
yield strength of from about 0.35 MPa to about 0.5 MPa and 
a compressive modulus of from about 5 MPa to 8 MPa. 

In one embodiment, the scaffold has a porosity of from 
about 85 to about 96 percent, an average pore size diameter of 60 
from about 50 to about 200 um, a compressive yield strength 
of from about 0.35 MPa to about 0.5 MPa, and a compressive 
modulus of from about 5 MPa to 8 MPa. 

In one embodiment, the scaffold useful in the invention is 
a porous structure comprising a chitosan, an alginate, and 
divalent metal cations, wherein the chitosan is ionically 
linked to the alginate; and wherein the alginate is further 
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8 
crosslinked with divalent metal cations. In one embodiment, 
the ratio of the chitosan to the alginate is from 1:1 to 4:1. 
The preparation of suitable chitosan/alginate Scaffolds use 

ful in the methods of the invention are described in Li Z., 
Ramay H. R. Hauch K. D., Xiao D., Zhang M. Chitosan 
alginate hybrid Scaffolds for bone tissue engineering, Bioma 
terials 2005, 26:3919-3928: Li Z., Zhang M. Chitosan-algi 
nate as scaffolding material for cartilage tissue engineering, J 
Biomed Mater Res A 2005, 75:485-493; and U.S. Pat. No. 
7,736,669, each expressly incorporated herein by reference in 
its entirety. The preparation and characteristics of a represen 
tative scaffold useful in the methods of the invention are 
described in Example 1. 

In a further aspect, the invention provides a method for 
producing a cancerous tumor in a Subject. In the method, 
cultured cells (e.g., tumor spheroids) obtained from the 
method of the invention for producing a scaffold comprising 
cultured cancer cells are implanted in a Subject. Representa 
tive Subjects include animals such as mice, rats, and dogs. 

Cultured cancer cells (e.g., tumor spheroids) can be sepa 
rated from the scaffold and implanted or the scaffolds com 
prising cancer cells can be implanted directed. In one embodi 
ment, implanting cultured cells obtained from the method of 
the invention for producing a scaffold comprising cultured 
cancer cells, comprises implanting a scaffold comprising cul 
tured cancer cells. 

Implant of cultured cancer cells (e.g., tumor spheroids) can 
be done between 1-45 days (or even longer if cells are still 
growing) of culture on the scaffolds. Time depends on the cell 
line and how it responds to culture in the scaffold. Typically, 
cells are implanted after 10 days of culture. 

In another aspect of the invention, methods for screening 
candidate anticancer therapeutic drugs are provided. 

In one embodiment, the invention provides a method for 
screening a candidate chemotherapeutic agent in vitro, com 
prising contacting cultured cells obtained from the method of 
the invention for producing a scaffold comprising cultured 
cancer cells with a candidate chemotherapeutic agent. In one 
embodiment of this method, contacting cultured cells with a 
candidate chemotherapeutic agent comprises contacting the 
candidate chemotherapeutic agent with the scaffold compris 
ing cultured cancer cells. 

In vitro drug screening can be conducted between 3-45 
days (or even longer if cells are still growing) of culture on the 
scaffolds. Typically, cells are cultured for 10 days before in 
vitro drug screening. 

In one embodiment, the method further comprises measur 
ing cell proliferation inhibition. In another embodiment, the 
method further comprises measuring the cell viability. In a 
further embodiment, the method further comprises measur 
ing protein expression levels. 

In one embodiment, the invention provides a method for 
screening a candidate chemotherapeutic agent in Vivo, com 
prising implanting in a Subject cultured cells obtained from 
the method of the invention for producing a scaffold compris 
ing cultured cancer cells; and administering a candidate che 
motherapeutic agent to the Subject. In one embodiment of this 
method, implanting cultured cells comprises implanting the 
scaffold comprising cultured cancer cells. 

Drugs can be administered before tumor implant (tumor 
vaccine type studies), within 1-2 weeks of implant (growth 
inhibition studies), or once the tumor has reached a certain 
size, typically 100 mm after 2-8 weeks (cell kill and growth 
inhibition studies). administering the drug after a pre-deter 
mined period of time. 

In one embodiment, the method further comprises compar 
ing the tumor mass or Volume measured prior to drug admin 
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istration and after a pre-determined period of time after drug 
administration. In another embodiment, the method further 
comprising harvesting the tumor mass after a pre-determined 
period of time after drug administration and analyzing the 
tumor. 

As described herein, in the compositions and methods of 
the invention, a biocompatible chitosan-alginate complex 
scaffold was used to model the structure of the TME of cancer 
cells in vitro. The differences in proliferation rate observed 
between 2D, Matrigel matrix, and CA scaffold culture con 
ditions can be attributed to the diffusion-limitations imposed 
by 3D culture environments. The TME is inherently hetero 
geneous, with the cells at the periphery of a tumor mass 
receiving the most nutrients and oxygen, while the cells 
closer to the center are typically hypoxic, whereas 2D mono 
layer cultured cells have no barrier to this exchange. 3D CA 
scaffolds allow for cell clusters to formen masse, creating 3D 
multicellular microenvironments that permit additional inter 
actions between cells that cannot be generated by 2D culture. 
Changes in ECM deposition patterns and the ability to form 
tight junctions with neighboring cells in the 3D CA scaffold 
likely facilitate the formation of these cell clusters. This com 
plex arrangement of cells cultured in CA scaffolds resembles 
that of multicellular spheroid cultures used to model tumor 
behavior. 

Further analysis of differently cultured cancer cells 
revealed that expression of the angiogenic factors (e.g., IL-8, 
bFGF, and VEGF) were elevated in CA scaffold cultured cells 
compared to both 2D and Matrigel cultured cells. This sug 
gests that the cell-cell and cell-ECM interactions created 
upon culture in CA scaffolds more faithfully mimicked the 
native TME conditions that regulate angiogenic factor secre 
tion. Also, for cultured HCC cancer cells, GPC-3 expression, 
which is correlated with poor patient Survival, and is a poten 
tial prognostic factor, was significantly elevated in CA cul 
tured HepG2 cells. CA scaffolds stimulate the concurrent 
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expression of multiple markers for increased malignancy, 
consistent within vivo observations, Suggesting that CA Scaf 
folds provide microenvironmental cues that neither 2D nor 
Matrigel microenvironments simulate faithfully. 
The rapid in vivo tumor expansion by the CA scaffold 

pre-cultured cells may be a result of the rapid establishment of 
neovasculature because the growth factors vital for the 
recruitment and maturation of blood vessels were highly 
expressed in CA tumor models. The increased pro-angio 
genic growth factor secretion by CA scaffold pre-cultured 
cells promptly overcame the initial lack of vascularization 
within the flank tumor implant providing sufficient nutrients 
for rapid tumor formation. As described herein, observed 
blood vessel formation in histological sections revealed that 
blood vessel morphology and organization varied tremen 
dously based on pre-treatment. Extravascular pockets of 
bright red erythrocytes associated with poorly formed leaky 
vasculature, which is indicative of angiogenesis, were visible 
in Matrigel pre-cultured HepG2. CA scaffold pre-cultured 
HCC tumors contained large, round, well endothelialized 
blood vessels without intraluminal bridging, characteristic of 
VEGF induced tumor vasculature. Compared to Matrigel 
pre-cultured HepG2 tumors, there were a large number of 
erythrocytes in the blood vessel and no notable extravascular 
erythrocytes in CA HCC samples. Blood vessel formation 
after 4 weeks of in vivo growth correlated well with angio 
genic growth factor expression in vitro, Suggesting persistent 
phenotypical changes induced by in vitro cell culture condi 
tions. 
The methods of the invention and the scaffolds provided by 

the methods are effective for culturing cancer cells. The 
nature of the cancer cell cultured in the compositions and 
methods of the invention is not critical. Representative cancer 
cell lines that have been cultured in the chitosan-alginate 
scaffold and their properties are summarized in Table 1. 

TABLE 1 

Properties of cancer cell lines cultured in chitosan-alginate scaffolds. 

Cell line 

U-87 MG 

U-118 
MG 

HepG2 

PLC 

Species 

Rat 

Human 

Human 

Human 

Human 

Disease Property 

Glioma Increased tumor spheroid 
generation 
Increased tumor spheroid 
generation, increase 
secretion, increase 
secretion, increase 
secretion, increased laminin 
secretion, enhanced tumorigenicity, 
increased resistance to 
temozolomide 
Increased tumor spheroid 
generation, increased VEGF 
secretion, increased MMP-2 
secretion, increased fibronectin 
secretion, increased laminin 
secretion, enhanced tumorigenicity 
Increased tumor spheroid 
generation, increased IL-8 
secretion, increased bFGF 
secretion, increased VEGF 
secretion, increased GPC-3 
expression, increased resistance to 
doxorubicin, enhanced 
tumorigenicity 
Increased tumor spheroid 
generation, increased IL-8 
secretion, increased bFGF 
secretion, increased VEGF 
secretion, increased GPC-3 
expression, increased resistance to 

Glioblastoma 

MMP-2 
fibronectin 

Glioblastoma 

Hepatocellular carcinoma 

Hepatoma 
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Properties of cancer cell lines cultured in chitosan-alginate Scaffolds. 

Cell line Species Disease Property 

doxorubicin, enhanced 
umorigenicity 

LNCaP Human Prostate carcinoma increased tumor spheroid 
generation, increased interaction 
with PBLS 

C4-2 Human Prostate carcinoma (Subline increased tumor spheroid 
generated from LNCaP injected generation, increased interaction 
castrated mice) with PBLS 

C4-2B Human Prostate carcinoma (Subline increased tumor spheroid 
generated from bone metastases generation, increased interaction 
in LNCaP injected castrated with PBLS 
mice) 

TRAMP- Mouse Prostate adenocarcinoma increased tumor spheroid 
C2 generation 
SF767 Human Glioblastoma increased resistance to 

emozolomide 
MMC Mouse Mammary carcinoma increased tumor spheroid 

generation 

The following is a description of representative cancer cell 
growth in chitosan-alginate (Calif.) scaffolds in accordance 
with the method of the invention. 

Gliomas 

Gliomas are the most common and lethal type of brain 
cancer, accounting for 80% of brain tumors, with a 2-year 
survival of 17-43%. Recent advances in the understanding of 
glioma biology have revealed effective therapeutic targets, 
translating to improved patient outcomes. Despite these 
improvements, the development of anticancer drugs has been 
hindered by the lack of effective tumor models that closely 
mimic the human disease. 
The present invention demonstrates that CA scaffolds can 

be used to better mimic the tumor microenvironment of 
glioma in vitro by promoting a more malignant phenotype. 
These tumors were developed in vitro by seeding U-87 MG 
and U-118 MG human glioma cells on CA scaffolds. As a 
comparison, a cancer stem-like cell line (C6 rat glioma), 
which is known to be highly invasive and tumorigenic, was 
also tested. Developed tumor malignancy was assessed by 
ELISA and dot blot analyses of secreted key growth factors 
and extracellular matrix. Further assessment of invitro devel 
oped U-87 MG tumors was performed by implantation into 
mice and monitoring tumor growth and blood vessel forma 
tion. In vitro tumors from C6 cells were also implanted as a 
control. 

Glioma Cell Incorporation into CA Scaffolds 
CA Scaffolds are prepared by lyophilizing and crosslinking 

a physical mixture of chitosanandalginate. The formed Scaf 
folds are highly porous to allow for the influx of cells through 
out the scaffold, and provide a large Surface area for cell 
attachment and proliferation, ideal for modeling the tumor 
microenvironment. 
The preparation of a representative chitosan-alginate Scaf 

fold and its seeding with cancer cells is described in Example 
2 
The tumor model was established by seeding U-87 MG and 

U-118 MG human glioma cells on the scaffolds and allowing 
the tumor cells to proliferate in vitro for 10 days. A control 
tumor model was established using C6 ratglioma cells which 
have a highly malignant phenotype, and thus should be rela 
tively unresponsive to culture conditions. 
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Cell incorporation into CA scaffolds was monitored 
through proliferation and Scanning Electron Microscopy 
(SEM) analyses. All cell lines were able to proliferate within 
the CA scaffolds indicating the biocompatibility of the scaf 
fold. Cells were also grown on standard 2D culture wells 
(24-well plates) and in 3D Matrigel matrix for comparison. 
The proliferation of cells grown on CA scaffolds was slightly 
retarded compared to 2D and Matrigel cultures (FIG. 1). This 
behavior more closely resembles that of tumors in vivo which 
grow more slowly than in standard in vitro cell cultures. 2D 
cultures Supply cells with unlimited amounts of nutrients and 
Sufficient oxygen allowing them to grow rapidly, whereas in 
vivo tumors must recruit blood vessels before they can begin 
to proliferate rapidly. A slower rate of diffusion of oxygen and 
nutrients to cells in the interior of the CA scaffolds may 
account for the retarded growth rate observed, whereas nutri 
ents and oxygen readily diffuse to the interior of the Matrigel 
gel matrix. 
To examine cell morphology, SEM images were acquired 

of cells grown under the three different conditions (FIG. 2). 
All three cell lines displayed altered morphologic phenotypes 
dependent on the culture environment. Cells cultured on 2D 
wells displayed a linear and elongated morphology, whereas 
those grown in the 3D culture condition created by the Matri 
gel matrix developed many invadopodia. Glioma cells cul 
tured on CA Scaffolds had a more rounded appearance. 
Although invadopodia is an indicator of malignancy, this 
morphology is seen in invading cells rather than glioma cells 
of solid tumors. Cells in solid tumors exhibit a more rounded 
and interconnected morphology, similar to that seen in cells 
grown on CA scaffolds. Therefore, the CA scaffolds are able 
to provide a growth environment that promotes the formation 
of solid tumor-like cells. 

Differential Growth Factor Expression in Cells Pre-Cul 
tured on CA Scaffolds 
To determine the effect of 3D culture on the malignant 

potential of glioma cells, we performed ELISA analyses on 
the secreted growth factor VEGF (FIG. 3A) and the enzyme 
MMP-2 (FIG. 3B). Additionally, dot blot analyses were per 
formed to quantify the secretion of extracellular matrix 
(ECM) proteins, laminin (FIG. 3C) and fibronectin (FIG. 
3D). These particular growth factors were evaluated as they 
play a significant role in angiogenesis and various other path 
ways in glioma which promote growth, invasion, and resis 
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tance to chemotherapeutic drugs. Overexpression of these 
factors contributes to an increase in cancer malignancy. 
VEGF secretion plays a pivotal role in blood vessel recruit 

ment to the tumor. As shown in FIG. 3A, VEGF secretion by 
C6 cells grown in CA scaffolds was 0.47+0.16 fold (P<0.01, 
N=3) lower than those grown on 2D culture wells. U-87 MG 
cells in CA scaffolds, on the other hand, showed a 13.98+3.58 
fold (P<0.001, N=3) higher VEGF secretion than those on 2D 
culture wells. U-118 MG cells in CA scaffolds also showedan 
increase in VEGF secretion (1.91+0.50 fold, P-0.01, N=3), as 
compared to 2D cultured cells. 
MMP-2 breaks down the extracellular matrix to provide 

room for cell proliferation and endothelial cell recruitment 
for angiogenesis. As shown in FIG.3B, MMP-2 secretion did 
not change significantly in C6 cells cultured in CA Scaffolds, 
whereas secretion increased 16.24+3.58 fold (P<0.0001, 
N=3) in U-87 MG cells and 2.17+0.50 fold (P<0.01, N=3) in 
U-118 MG cells cultured in CA scaffolds as compared to 2D 
cultures. 

Fibronectin and laminin equip cells for angiogenesis by 
providing a signal and structure for endothelial cell attach 
ment and proliferation. Secretion of these extracellular matrix 
proteins were not significantly changed in C6 cells cultured in 
CA scaffolds as compared to 2D culture wells, shown in 
FIGS. 3C and 3D. Fibronectin Secretion increased 3.13-0.13 
fold (P<0.0001, N=4), and laminin secretion increased 
1.81+0.01 fold (P<0.0001, N=4) in U-87 MG cells cultured 
on CA scaffolds as compared to 2D culture wells. For U-118 
MG cells cultured on CA scaffolds, fibronectin secretion 
increased 2.38+0.57 fold (P<0.001, N=4) and laminin secre 
tion increased 5.39+1.19 fold (P<0.0001, N=4) as compared 
to 2D culture wells. Matrigel samples were not tested because 
they contain both fibronectin and laminin. 

From these data it is apparent that CA scaffolds promote 
the formation of a more malignant phenotype in human 
glioma cell lines as compared to standard 2D and Matrigel 
culture conditions. The up-regulation of growth factors 
observed upon culture in CA scaffolds indicates these cells 
have an enhanced ability to modify their extracellular space, 
and are able to create a niche conducive to their progression. 
This behavior is more representative of the human glioma 
tumor in vivo because cells in vivo must restructure the extra 
cellular matrix and secrete growth factors to promote angio 
genesis. As expected, C6 cells were relatively unresponsive to 
their environment. This may be due to the fact that this cell 
line comprises mainly cancer stem cells which favor the 
expression of factors that promote growth and tumorgenicity, 
even in standard long-term in vitro growth conditions. The 
highly malignant phenotype of C6 cells in standard 2D cul 
ture conditions were not further increased upon culture in the 
3D environment supplied by either Matrigel matrix or CA 
scaffolds. 

Tumorigenesis of Cells Pre-Cultured on CA Scaffolds 
To further assess the malignancy of glioma cells cultured in 

CA scaffolds as compared to 2D and Matrigel cultures, and to 
confirm the increase in malignancy was physiologically rel 
evant, the tumorigenicity of U-87 MG cells was determined 
by implantation of the pre-cultured matrices into nude mice. 
2D, Matrigel, and CA scaffold pre-cultured C6 cells were also 
implanted as a control. As anticipated, C6 cells implanted into 
mice formed tumors at approximately the same rate regard 
less of pre-culture condition (FIG. 4A). This is attributable to 
the minimal difference in growth factor and extracellular 
matrix secretion in these already highly malignant cells. U-87 
MG cells implanted in mice showed a positive correlation 
between accelerated tumor growth rate and pre-culture in CA 
scaffolds (FIG. 4B). This increased rate of tumor formation 
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over weeks one (P<0.0001, N=6) and two (P<0.0001, N=6) 
provides further support that the CA scaffolds were able to 
mimic the tumor microenvironment as U-87 MG cells were 
able to develop a malignant profile prior to implantation, 
allowing for rapid tumor development. However, this rapid 
tumor growth was not Sustained; after an initial burst of tumor 
growth, the implanted CA Scaffold pre-cultured tumors began 
to grow at a similar rate to the 2D and Matrigel pre-cultured 
tumors. 

Masson’s trichrome histological analysis of C6 tumors 
after 3 weeks of implantation showed no significant changes 
in cell morphology or deposition of extracellular matrix 
regardless of pre-culture condition (FIG. 5A), which agrees 
with the in vitro findings. Masson’s trichrome histological 
analysis of U-87 MG tumors 4 weeks following implantation 
showed an enhanced extracellular matrix secretion in tumors 
formed from CA scaffold pre-cultured cells (FIG. 5B). This 
increased deposition of the extracellular matrix provides fur 
ther evidence of higher malignancy in U-87 MG cells cul 
tured in CA scaffolds. 

Angiogenesis in Tumors Formed from CA Scaffold Pre 
Cultured Cells 
A key hallmark of malignant tumor progression is angio 

genesis. Xenograft tumors formed from 2D cultured cells, 
Matrigel matrix cultured cells, and CA scaffold cultured cells 
were photographed in live mice to show vasculature (FIG. 6). 
Visible blood vessel formation in C6 tumors was not affected 
by pre-culture conditions as expected from the similarity in 
growth factor expression levels and tumor growth rate (FIG. 
6A). Angiogenesis was highly visible in vasculature to U-87 
MG tumors from cells pre-cultured in CA scaffolds (FIG. 
6B). No blood vessel recruitment was evident around tumors 
formed from 2D or Matrigel pre-cultured U-87 MG cells. 
Even if blood vessels are not visible on the tumor surfaces, 
endothelial cells can still penetrate the tumor for angiogen 
esis. To visualize the recruitment of endothelial cells and 
established blood vessels within the tumors, CD31" cells 
were visualized using immunohistochemistry (FIG. 7). There 
was no apparent difference in CD31" cell recruitment in C6 
tumors regardless of pre-culture condition (FIG. 7A). Fur 
ther, these cells were randomly distributed throughout the 
tumor and lacked blood vessel structure. On the other hand, 
U-87 MG tumors formed from CA scaffold pre-cultured cells 
showed a greatly enhanced recruitment of CD31" cells indi 
cating an improved ability for angiogenesis (FIG.7B). This is 
further corroborated by the numerous circular blood vessel 
structures visible in these tumors, whereas the tumors formed 
from 2D and Matrigel matrix pre-cultured U-87 MG cells 
showed fewer, randomly distributed CD31" cells. This accel 
erated rate of structured angiogenesis in tumors formed from 
CA scaffold pre-cultured U-87 MG cells can be attributed to 
the increased expression levels of growth factors in these 
cells, indicating their enhanced malignant potential. 
As described above, U-87 MG cells in CA scaffolds exhib 

ited a slower proliferation rate when cultured invitro (FIG.1), 
while CA scaffold cultured U-87 MG cells showed acceler 
ated tumor growth in vivo (FIG. 4B). The proliferation rate in 
vitro is affected by the cells’ ability to acquire the oxygen and 
nutrients which diffuse more slowly in CA scaffolds than on 
2D culture plates and Matrigel, which resulted in a slower 
proliferation rate in CA scaffolds. The tumor growth rate in 
vivo is significantly affected by its ability to recruit blood 
vessels that provide pathways for biofluid exchange. The 
results shown in FIG. 7B further confirms the correlation 
between blood vessel formation and tumor growth rate. 
CA scaffolds are able to provide a growth environment for 

glioma cells in vitro which is similar to the tumor microen 
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Vironment structure encountered in Xenograft tumors in vivo. 
This reproducible and easily modifiable experimental system 
offers a number of advantages: they can be easily transferred 
into mice for rapid Xenograft tumor growth, they can be used 
to pre-screen therapies to reduce the amount of in Vivo Screen 
ing, and they can be easily degraded to harvest single, viable 
cells for analyses such as PCR and flow cytometry. This will 
not only reduce the amount of time needed to complete 
experiments, but also reduce the enormous costs and loss of 
animal life associated with in vivo models. 

Hepatocellular Carcinoma 

Hepatocellular carcinoma (HCC) is one of the most com 
mon Solid malignancies with over a million new cases diag 
nosed annually worldwide. Most patients with HCC present 
in an advanced stage are not amenable to potentially curative 
treatments (e.g., orthotopic liver transplantation and Surgical 
liver resection). Even the most recent advancements in che 
motherapeutics (e.g., Sorafenib) prolong Survival by merely 
three month. This result reflects an urgent need for the devel 
opment of new and more effective therapies. 

Unfortunately, experimental models used to test novel 
HCC therapies are limited. Costly in vivo animal models 
remain the most sophisticated and faithful models of the 
disease. 
CA scaffolds were used to mimic the structure of the in 

vivo TME of HCC in vitro by inducing a biological response 
in the HCC cell lines, PLC/PRF/5 (PLC) and HepG2. This in 
vitro HCC tumor model more closely resembles the in vivo 
tumor than traditional 2D cell culture or Matrigel, and can be 
used as a platform to rapidly evaluate anti-cancer therapies 
that will translate better to in vivo studies and promote effec 
tive treatment of this deadly disease. 

In Vitro Cell Response 
In vitro models of hepatocellular carcinoma (HCC) were 

generated by culturing human PLC/PRF/5 (PLC) or HepG2 
cells in either a 2D surface, Matrigel, or CA scaffold environ 
ment. The proliferative response of these cells was compared 
using the Alamar Blue assay. As shown in FIGS. 8A and 8B, 
Successful expansion and propagation was observed for both 
PLC and HepG2 cell lines in all three substrate conditions. 
Statistically significant differences in PLC proliferation were 
observed at 2 (p<0.01), 4 (p<0.01), 6 (p<0.01) and 8 (p<0.01) 
days. Similarly, HepG2 also exhibited statistically significant 
changes in proliferation at 2 (p<0.01), 4 (p<0.01), 6 (p<0.01), 
8 (p<0.01) days. However, the proliferation rates in 3D cul 
ture conditions (i.e., Matrigel and CA Scaffolds were signifi 
cantly lower than the rates in the 2D condition). 
The effect of the culture microenvironment on cell mor 

phology was evaluated by SEM, which showed significant 
differences in cell morphology and organization between 2D 
and 3D culture conditions for both HCC cell lines (FIGS. 9A 
and 9B). PLC cells cultured on a flat monolayer 2D condition 
exhibited an elongated morphology, whereas when cultured 
in Matrigel, cells exhibited an enlarged spherical morphol 
ogy, and clustered together within the provided ECM. This 
3D organization of PLC cells was also observed when cul 
tured in CA scaffolds, where spherical cells formed large 
dense aggregates within the pores of the scaffold. Similarly, 
HepG2 cells exhibited a spherical morphology when cultured 
in either Matrigel or CA scaffolds, and demonstrated greater 
organization by formation of Stacked groupings of cells that 
filled the scaffold pores. 

Cellular Protein Expression 
The protein expression profile of the cultured cells was 

examined to determine if the various culture conditions 
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would affect the secretion of growth factors or cytokines that 
may stimulate tumor expansion and promote malignancy. 
The expansion of malignant tumors has been shown to be 
dependent on the development and maintenance of the Sur 
rounding vascular network in Vivo, therefore, the expression 
of pro-angiogenic growth factors IL-8, bFGF, and VEGF, 
secreted by HCC cells, was evaluated using ELISA assays. 
IL-8 has been implicated in cell proliferation, invasion, and 
recruitment of blood vessels for cancer cell survival. As illus 
trated in FIG. 10A, IL-8 expression was upregulated by both 
PLC and HepG2 cells cultured in CA scaffolds, by a factor of 
2.86+0.38 fold (p<0.01) and 4.37+0.84 fold (p<0.01), respec 
tively, as compared to 2D cultured cells. bFGF is a chemot 
actic signal that induces endothelial cell migration, an angio 
genic phenotype, stimulating proliferation, and the release of 
ECM remodeling enzymes. As shown in FIG. 10B, CA scaf 
fold-cultured PLC and HepG2 cells both increased the 
expression of bFGF by a factor of 1.83+0.22 fold (p<0.01) 
and 3.16+0.81 fold (p<0.01), respectively, as compared to 
their 2D counterparts. VEGF is a multi-functional cytokine 
that plays an important role in angiogenesis. VEGF expressed 
by PLC and HepG2 cells cultured in CA scaffolds was sig 
nificantly higher than that of 2D cultured cells, by a factor of 
2.28+0.27 fold (p<0.01) and 2.54+0.43 fold (p<0.01), respec 
tively (FIG. 10C). 

Glypican-3 (GPC-3) is a surface proteoglycan expressed in 
up to 83% of HCC's and has been used as a specific marker of 
a cells malignant transformation (26-28). HepG2 is knownto 
express a high level of this gene, while PLC does not. Dot 
blots used to determine the GPC-3 expression level showed 
that GPC-3 expression in HepG2 cells cultured in 3D Matri 
gel and CA scaffolds was greatly increased, by 2.6+0.37 fold 
and 5.5+0.42 fold (p<0.01), respectively, compared to 2D 
culture (FIG. 11). 

In Vivo Tissue Response 
The in vivo tissue response to implantation of HepG2 and 

PLC cells pre-cultured in the three in vitro conditions (i.e., 
2D, Matrigel, and CA scaffold cultures) was evaluated in a 
Subcutaneous Xenograft model in athymic nude mice. Initial 
cell numbers were normalized to the number of cells in CA 
scaffold culture. Tumor volumetric measurements over a 
four-week period demonstrated significant increases in tumor 
size for CA scaffold pre-cultured HCC cells compared to both 
2D and Matrigel pre-cultured HCC cells (FIGS. 12A and 
12B). CA pre-cultured PLC cells generated final in vivo 
tumor Volumes nearly twice as large as that generated by PCL 
cells pre-cultured in 2D or Matrigel, while maintaining con 
sistent proliferation rates between pre-culture conditions 
(FIG. 12A). Statistically significant differences were 
observed between PLC cultured samples at 1 (p<0.01), 2 
(p<0.01), 3 (p<0.01), and 4 (p<0.01) weeks. Similarly, CA 
pre-cultured HepG2 cells expanded to form tumors over four 
times the size of 2D cultured cells, and significantly larger 
than those pre-cultured in Matrigel, again maintaining con 
sistent proliferation rates for this cell line (FIG. 12B), with 
statistically significant differences between samples at the 2 
(p<0.01), 4 (p<0.01), 6 (p<0.01) and 8 (p<0.01) week time 
points as well. The CA pre-cultured cells effected favorable 
conditions for tumor expansion in vivo without altering 
expansion rates for either HCC cell line. 
Tumors were harvested 4 weeks post-implantation, forma 

lin-fixed, and sectioned for histological imaging. Hematoxy 
lin and eosin staining revealed significant differences in blood 
vessel morphology based on pre-culture condition (FIGS. 
13A and 13B). Both 2D and Matrigel pre-cultured cells dis 
played consistently small and irregularly shaped blood ves 
sels with poorly endothelialized thin walls which did not 
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consistently delineate the vessel from the Surrounding tissue. 
In contrast, CA pre-cultured cells induced the formation of 
large, well rounded blood vessels with well-defined endothe 
lial linings, carrying large numbers of erythrocytes. Addition 
ally, the original porous structure of the CA scaffold was not 
observed in the histological samples, indicating the scaffold 
is completely removed by the remodeling action of the cells, 
confirming the scaffold's excellent biodegradability. 

Cellular Response to Chemotherapy 
To determine if the in vitro microenvironment is capable of 

inducing an environment-mediated drug response in the 
tumor models, cell viability in response to doxorubicin treat 
ment was evaluated. Cell viability was then assessed over a 
72-hour period using the Alamar Blue assay (FIGS. 14A, 
14B, 15A, and 15B). Successive viability measurements of 
doxorubicin treated cells revealed significantly different 
cytotoxic responses between cell types and culture conditions 
(FIGS. 14A and 14B). PLC cell viability declined rapidly in 
2D culture, with statistically significant differences in cell 
viability observed at 24 hours (p<0.01) and 48 hours (p<0.01) 
after treatment between culture conditions when treated with 
5uM doxorubicin (FIG. 14A). After 24 hours of drug induc 
tion, a differential, dose-dependent Survival response was 
observed where viability of 2D cultured PLC cells was sig 
nificantly lower than either Matrigel or CA cultured cells after 
treatment with 1 uM (p<0.01), 5 uM (p<0.01), and 10 uM 
(p<0.01) doxorubicin (FIG.15A). At 48 hours, differences in 
the survival of PLC cells based on culture condition became 
more apparent, and viability of CA cultured cells was also 
observed to be significantly higher than other culture models 
in 1 uM (p<0.01), 5 uM (p<0.01), and 10 uM (p<0.01) doxo 
rubicin treatments (FIG.15A). Finally, significant differences 
in PLC viability between culture conditions was observed 72 
hours after 1 uM (p<0.01) doxorubicin treatment (FIG.15A). 
In a similar fashion, HepG2 cells also responded differen 
tially to doxorubicin dose over time. Differences in HepG2 
viability between cell culture conditions were not apparent 
until 72 hours post treatment (p<0.01) when treated with 10 
uM doxorubicin (FIG. 14B). While the onset of cell death in 
HepG2 cells was much less pronounced at 24 and 48 hours 
compared to PLC cells, the viability was notably decreased in 
2D cultures compared to both Matrigel and CA 3D cultures, 
statistically significant differences observed in HepG2 viabil 
ity observed at 72 hours when treated with 1 uM (p<0.01), 5 
uM (p<0.01), and 10 uM (p<0.01) doxorubicin (FIG. 15B). 
Interestingly, at 72 hours, the viability of HepG2 cells cul 
tured on CA scaffolds and exposed to 1 uM doxorubicin 
increased slightly to 88.6+2.75% compared to 86.7+2.4% at 
48 hours (FIG. 15B). The viability measurements indicated 
that a population of HepG2 cells cultured in CA scaffolds had 
survived doxorubicin treatment that had eliminated cells cul 
tured on 2D plates. 

The LDs of a drug is defined as the median lethal dose and 
commonly used as a measure of the effectiveness of a drug in 
inhibiting biological or biochemical function. The LDs of 
doxorubicin in each of the conditions was evaluated post 
induction, where both HCC cell types displayed significant 
differences in cell viability across culture conditions (FIGS. 
15A and 15B). The LDs of doxorubicin was 0.2+0.13 uM for 
PLC cells cultured on 2D surfaces, 3+1.1 uM for Matrigel 
cultured, and 4+1.4LMCA cultured cells as determined at 72 
hours post treatment (FIG. 15A). Similarly, the LDs for 
doxorubicin treated HepG2 cells cultured in 2D substrate was 
0.45+0.18 uM, increasing to 7+2.2 LLM in Matrigel, and 
finally to 13+1.7 uM in CA at 72 hours post treatment (FIG. 
15B). 
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The microenvironment conditions produced in the CA 

tumor models induced significant changes in cellular behav 
ior as compared to conventional 2D culture environments. 
Doxorubicin is an anthracyline antibiotic that induces apop 
tosis in HCC by intercalating DNA and interfering with topoi 
somerase II DNA replication. Doxorubicin is a cytotoxic 
agent commonly incorporated in catheter-based therapies for 
metastatic disease, ideal for measuring and comparing 
response of systemic therapies against HCC. 2D, Matrigel, 
and CA scaffold cultured HCC cells were treated with doxo 
rubicin Supplemented media for 24 hours at a physiologically 
relevant dose based on the clearance rate of doxorubicin in 
vivo. Overall, CA cultured cells exhibited significantly 
greater viability than either 2D or Matrigel cultured cells 
when exposed to doxorubicin, Suggesting that the CA 
microenvironment induced greater resistance to chemo 
therapy. The LDs for doxorubicin treated PLC cells 
increased significantly, by nearly twenty times in 3D culture 
compared to 2D culture, and for HepG2, tumor models 
formed in CA scaffolds had an LDso nearly thirty times 
greater than 2D cultured cells. The tumor cell clusters that 
formed exclusively upon culture in CA scaffolds reduced the 
exposure of the cells to therapeutic agents because diffusion 
of therapeutic agents into the tumor mass is limited by the 
distance of the core to the Supply, and may induce drug 
resistant properties typical to spheroid culture. The upregu 
lation of the P-glycoprotein multidrug transporter, strongly 
linked to doxorubicin resistance, has been associated with the 
3D tumor microenvironment and also likely contributed to 
observed doxorubicin resistance. Additionally, hypoxic con 
ditions at the core of the tumor cluster may trigger cell qui 
escence, making these cells less susceptible to the action of 
doxorubicin that interrupts the cell cycle during DNA repli 
cation. This was confirmed by the elevated levels ofbFGF and 
VEGF expression, which have been associated with interca 
lating agent resistant quiescent tumor phenotypes, in CA 
HCC tumor models. Finally, GPC-3 over-expression, which 
has been implicated in the increased resistance to topoi 
Somerase II inhibitors such as doxorubicin, was displayed by 
HepG2 cells cultured in CA scaffolds. The greatly increased 
resistance of 3D CA HCC tumor models to chemotherapy 
more closely resembles the in vivo levels of resistance, where 
standard dosing schemes result in peak plasma concentra 
tions of approximately 15 uM doxorubicin minutes after 
treatment, declining to nearly complete clearance at 48 hours 
post treatment. The CA scaffolds were shown to be capable of 
stimulating cooperative signaling between cells and the envi 
ronment that led to the expression of a highly malignant, drug 
resistant phenotype. 
The following examples are provided for the purpose of 

illustrating, not limiting, the invention. 

EXAMPLES 

Materials and Methods 

Materials. 
All chemicals were purchased from Sigma-Aldrich (St. 

Louis, Mo.) unless otherwise specified. Chitosan (Poly 
Sciences, Pa., 15,000 MW) and sodium alginate powders 
were used as received. Antibiotic-antimycotic, Dulbecco's 
Modified Eagle Medium (DMEM), Antibiotic-antimycotic, 
Dulbecco's phosphate buffered saline (D-PBS), and Alamar 
Blue reagent were purchased from Invitrogen (Carlsbad, 
Calif.). Fetal bovine serum (FBS) was purchased from 
Atlanta Biologicals (Atlanta, Ga.). C6 ratglioma, U-87 MG 
human glioma, and U-118 MG human glioma cell lines, and 
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PLC/PRF/5 (PLC) and HepG2 human hepatocellular carci 
noma cell lines, and Minimum Essential Media (MEM) were 
purchased from American Type Culture Collection (ATCC, 
Manassas, Va.). Cells were maintained according to manu 
facturers instructions in fully supplemented DMEM (C6 and 
U-118 MG) or MEM (U-87 MG) with 10% FBS and 1% 
antibiotic-antimycotic) at 37° C. and 5% CO, in a fully 
humidified incubator. Reduced growth factor Matrigel matrix 
was purchased from BD Biosciences (San Jose, Calif.). 
VEGF and MMP-2 ELISA kits were purchased from R&D 
Systems (Minneapolis, Minn.). PVDF membrane and 
Immun-star chemiluminescent reagent for dot blotting were 
purchased from BioRad (Hercules, Calif.), while antibodies 
were purchased from Abcam (Cambridge, Mass.). 

Cell Proliferation Analysis. 
Proliferation of cells cultured on 2D wells, Matrigel 

matrix, and CA Scaffolds was determined using the Alamar 
Blue assay following the manufacturer's protocol. Briefly, 
cells cultured on 2D wells and 3D scaffolds were washed with 
D-PBS before adding 1 mL of Alamar Blue solution (10% 
Alamar Blue in fully supplemented phenol red free DMEM or 
MEM) to each well. 

Forglioma cells, after 1.5 hrs the Alamar Blue solution was 
transferred to a 96-well plate to obtain absorbance values on 
a microplate reader. The cell number was calculated based on 
standard curves created previously. Cells were again washed 
with D-PBS to remove Alamar Blue solution and fresh fully 
Supplemented media was added to each well. 

For human hepatocellular carcinoma cells, after 2 hrs the 
Alamar Blue solution was transferred to a 96-well plate to 
obtain fluorescent values on a SpectraMax M2 microplate 
reader (Molecular Devices, Sunnyvale, Calif.) at 550 nm. 
excitation, 590 nm emission. Standard curves were generated 
by seeding cells counted using a hemocytometer onto cell 
culture materials in triplicate, and performing Alamar Blue 
assay to generate a plot of linear regression of fluorescent 
values vs. cell number for each material. The cell number in 
an experimental sample was calculated based on the standard 
curve. No background fluorescence was generated by CA 
scaffolds. Cells were again washed with D-PBS to remove 
Alamar Blue solution and fresh fully-supplemented media 
were added to each well. 

Cellular Morphology Analysis by SEM. 
Samples for SEM analysis were first fixed with cold Kar 

novsky's fixative overnight followed by dehydration in a 
series of ethanol washes (0%, 50%, 75%, 90%, 100%). 
Samples were critical point dried and sputter coated with 
platinum before imaging with a JSM 7000 SEM (JEOL, 
Tokyo, Japan). False color was added to SEM images using 
Adobe Photoshop in order to improve the contrast between 
cells and Substrate. 

Growth Factor and Extracellular Matrix Secretion Analy 
S1S. 

After 7 and 9 days of culture for C6 and both U-87 MG and 
U-118 MG cells, respectively, media of differently cultured 
cells were replaced with a low serum counterpart (media 
containing 1% FBS and 1% antibiotic-antimycotic) and cells 
were incubated for 24 hrs. Media were collected and stored at 
-80° C. for future use. VEGF and MMP-2 secretion was 
determined following the manufacturer's protocol, protein 
concentration per cell was calculated based on cell number in 
the well, and the values were normalized to 2D culture con 
ditions. Laminin and fibronectin were detected using dot blot 
analyses and protein concentration per cell was normalized to 
2D culture conditions using Image.J. 

For human hepatocellular carcinoma cells, after 9 days of 
culture, media from cell cultures were replaced with a low 
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serum counterpart (media containing 1% FBS and 1% anti 
biotic-antimycotic) and cells were incubated for 24 hrs. 
Media were collected and stored at -80° C. for future use. 
Growth factor (bFGF, IL-8, and VEGF) secretion was deter 
mined via ELISA assays following the manufacturer's pro 
tocol. The protein concentration per cell was calculated based 
on cell number in the well, and the values were normalized to 
2D culture conditions. Glypican-3 was detected usingdot blot 
analysis and protein concentration per cell was normalized to 
2D culture conditions using Image.J (NIH, Bethesda, Md.). 

In Vivo Studies. 
All animal studies were performed in accordance with 

University of Washington IACUC approved protocols. Athy 
mic nude male mice (nu/nu,088 strain, Charles River, Wilm 
ington, Mass.) 6-8 weeks of age were anesthetized with a 
solution of ketamine and xylazine before CA scaffolds con 
taining cells were implanted Subcutaneously into the left and 
right flank. 2D and Matrigel matrix pre-treated cells were 
diluted into 100 uL media to a cell number matching that on 
the CA scaffolds as determined by Alamar Blue assay, and 
mixed with 100 uL Matrigel before injecting subcutaneously 
into the left and right flanks of the anesthetized mice. 

For gliomas cell-containing scaffolds, tumors were mea 
Sured using calipers and the Volume was calculated using the 
formula of a cylinder, volume-lengthxwidthxheightxt/4, for 
CA scaffold tumors (cell-CA scaffold construct has an cylin 
drical shape), and using the formula for the Volume of an 
ellipsoid, volume-lengthx(width)xt/6, for 2D and Matrigel 
tumors. CA scaffold tumor sizes were normalized by sub 
tracting the volume of an empty scaffold (265 mm) from the 
calculated tumor volume. After 3 weeks and 4 weeks of 
implantation for C6 and U-87 MG tumors, respectively, mice 
were sacrificed by CO, inhalation followed by cervical dis 
location, and the tumors were resected, fixed in a 10% for 
malin Solution, and Submitted for histological analyses. 

For human hepatocellular carcinoma cell-containing scaf 
folds, four mice were tested per group. CA scaffold tumors 
were measured using calipers and Volume was calculated 
using the formula of a cylinder, i.e., volume-radius'xheightx 
it, subtracting initial dimensions of the scaffold (265 mm), 
and the formula for an ellipsoid volume (22) 
(volume-lengthxwidth x1/6) was used for 2D and Matrigel 
tumors. 4 weeks post-implantation of PLC and HepG2 
tumors, mice were sacrificed by CO inhalation followed by 
cervical dislocation, and the tumors were resected, fixed in a 
10% formalin solution, and submitted for histological analy 
SCS. 

Immunohistochemistry. 
Excised tumors were embedded in optimal cutting tem 

perature (OCT) compound and frozen on dry ice. The frozen 
tumor tissue sections (8 um) were washed thrice with PBS to 
remove excess OCT compound and fixed for 10 min inform 
aldehyde. CD31" cells were stained with an anti-mouse CD31 
primary antibody (Abcam, Cambridge, Mass.) and visualized 
with an anti-goat IgG FITC conjugated secondary antibody 
(Abcam, Cambridge, Mass.) following the manufacturers 
protocol. The slides were counterstained with 4,6-diamidino 
2-phenylindole (DAPI) in mounting medium (ProLong Gold, 
Invitrogen, Carlsbad, Calif.) and imaged using a Zeiss LSM 
510 confocal microscope. 

Cellular Response to Chemotherapeutic Agents. 
For human hepatocellular carcinoma cell-containing scaf 

folds, after 10 days of culture, media from cell cultures were 
replaced with 1 mL fully supplemented cell culture media 
containing various concentrations of doxorubicin. Cells were 
induced with doxorubicin containing media for 24 h, after 
which media was replaced with standard fully supplemented 
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cell culture media. Cell viability was assessed using the 
Alamar Blue assay following the manufacturer's protocolas 
described above. LDso was estimated via a polynomial 
approximation. 

Statistical Analysis. 
Acquired data are expressed as meantSD. Statistical sig 

nificance was determined by one-way analysis of variance 
(ANOVA) and Student's t test. Values of P-0.01 were con 
sidered significant. 

For cellular response to chemotherapeutics, all experi 
ments were performed in quadruplicate (n=4). Data are pre 
sented as meansistandard deviation. Statistical analysis at 
each sampling point was performed using one-way analysis 
of variance (ANOVA) comparing each treatment condition. 
Differences were considered significant for p-0.05. 

Example 1 

The Preparation and Seeding of a Representative 
Chitosan-Alginate Scaffold 

Chitosan-alginate (Calif.) scaffolds were prepared as 
described in Li Z., Ramay H. R. Hauch K. D., Xiao D., Zhang 
M. Chitosan-alginate hybrid scaffolds for bone tissue engi 
neering. Biomaterials 2005, 26:3919-3928: Li Z., Zhang M. 
Chitosan-alginate as scaffolding material for cartilage tissue 
engineering, J Biomed Mater Res A 2005, 75:485-493; and 
U.S. Pat. No. 7,736,669, expressly incorporated herein by 
reference in its entirety. 

Briefly, a 4 wt % chitosan and 2 wt % acetic acid solution 
was mixed under constant stirring in a blender for 7 minutes 
to obtain a homogeneous chitosan solution. A 4 wt % alginate 
Solution was added to the chitosan solution, and mixed in a 
blender for 5 minto obtain a homogeneous CA solution. The 
CA solution was cast in 24-well cell culture plates and frozen 
at -20° C. for 8 hrs. The samples were then lyophilized, 
optionally sectioned into disks of 13 mm diameterx2 mm 
thickness, crosslinked in 0.2M CaCl solution for 10 minutes 
under vacuum, washed with deionized water several times to 
remove any excess salt, and sterilized in 70 v% ethanol for 1 
hr. The scaffolds were then transferred to a sterile PBS solu 
tion and placed on an orbital shaker for about 12hrs to remove 
any excess ethanol. 

Cells were seeded onto PBS damp CA scaffolds in 24-well 
plates at 50,000 cells per scaffoldin50 ul fully supplemented 
media. Cells were allowed to infiltrate the scaffold for 1 hr 
before 1 mL fully supplemented media was added to each 
well. For Matrigel pre-cultured samples, 50,000 cells in 200 
uL fully supplemented media was mixed with 200 uL Growth 
Factor Reduced Matrigel matrix to form a viscous liquid and 
added to 24-well plate wells to gel in situ. Samples were 
allowed to gel for 1 hr before 1 mL fully supplemented media 
was added to each well. For 2D pre-cultured samples, 50,000 
cells in 1 mL fully supplemented media were added to 
24-well plate wells. Media were replaced every 2 days. 

While illustrative embodiments have been illustrated and 
described, it will be appreciated that various changes can be 
made therein without departing from the spirit and scope of 
the invention. 
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The embodiments of the invention in which an exclusive 

property or privilege is claimed are defined as follows: 
1. A three-dimensional scaffold, comprising: 
(a) a porous chitosan-alginate scaffold; and 
(b) cultured cancer cells, 
wherein the cancer cells are seeded on the scaffold and are 

cultured for a time sufficient to produce tumor sphe 
roids. 

2. The scaffold of claim 1, wherein the cultured cancer cells 
have increased tumor malignancy compared to two-dimen 
sionally cultured cancer cells. 

3. The scaffold of claim 1, wherein the cultured cancer cells 
have increased expression of growth factors compared to 
two-dimensionally cultured cancer cells. 

4. The scaffold of claim 1, wherein the cultured cancer cells 
have increased expression of the enzyme MMP-2 compared 
to two-dimensionally cultured cancer cells. 

5. The scaffold of claim 1, wherein the cultured cancer cells 
have increased expression of the extracellular matrix proteins 
compared to two-dimensionally cultured cancer cells. 

6. The scaffold of claim 1, wherein the cultured cancer cells 
have increased tumorigenicity in vivo compared to two-di 
mensionally cultured cancer cells. 

7. The scaffold of claim 1, wherein the cultured cancer cells 
have increased CD31" cell recruitment in vivo compared to 
two-dimensionally cultured cancer cells. 

8. A method for producing a cancerous tumor in a subject, 
comprising implanting in a subject the scaffold of claim 1, 
and growing the cancer cells for a sufficient amount of time to 
produce a cancerous tumor in said subject. 

9. A method for screening a candidate chemotherapeutic 
agent in vitro comprising contacting in vitro the scaffold of 
claim 1 with a candidate chemotherapeutic agent and mea 
Suring growth of the cancer cells, wherein a decrease in 
growth of said cancer cells in said scaffold as compared to a 
control identifies said agent as a chemotherapeutic agent. 

10. The method of claim 9, wherein measuring growth of 
the cancer cells comprises measuring cell proliferation or 
measuring cell viability in said cancer cells. 

11. A method for screening a candidate chemotherapeutic 
agent in Vivo comprising: (a) implanting in a subject the 
Scaffold of claim 1; (b) administering a candidate chemo 
therapeutic agent to said subject; and (c) measuring growth of 
the cancer cells, wherein a decrease in growth of said cancer 
cells in said scaffold as compared to a control identifies said 
agent as a chemotherapeutic agent. 

12. The method of claim 11, wherein prior to administering 
the candidate chemotherapeutic agent to said subject the can 
cer cells of said scaffold grow for a sufficient amount of time 
to produce a tumor, wherein said measuring growth of the 
cancer cells encompasses measuring mass or volume of the 
tumor both prior to and after administering the candidate 
chemotherapeutic agent; and wherein said control is the mea 
Sured mass or Volume of the tumor prior to administering the 
candidate chemotherapeutic agent. 
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