
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

2018

Modeling craniofacial development reveals
spatiotemporal constraints on robust patterning of
the mandibular arch
Lina Meinecke
University of California, Irvine

Praveer P. Sharma
University of California, Irvine

Huijing Du
University of Nebraska - Lincoln, hdu@unl.edu

Lei Zhang
Peking University

Qing Nie
University of California, Irvine, qnie@math.uci.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/mathfacpub

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Meinecke, Lina; Sharma, Praveer P.; Du, Huijing; Zhang, Lei; Nie, Qing; and Schilling, Thomas F., "Modeling craniofacial
development reveals spatiotemporal constraints on robust patterning of the mandibular arch" (2018). Faculty Publications, Department
of Mathematics. 146.
http://digitalcommons.unl.edu/mathfacpub/146

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathfacpub/146?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Lina Meinecke, Praveer P. Sharma, Huijing Du, Lei Zhang, Qing Nie, and Thomas F. Schilling

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/mathfacpub/146

http://digitalcommons.unl.edu/mathfacpub/146?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages


RESEARCH ARTICLE

Modeling craniofacial development reveals

spatiotemporal constraints on robust

patterning of the mandibular arch

Lina Meinecke1,2☯, Praveer P. SharmaID
2,3☯, Huijing Du4, Lei ZhangID

5,6, Qing Nie1,2,3*,

Thomas F. SchillingID
2,3*

1 Department of Mathematics, University of California, Irvine, CA, United States of America, 2 Center for

Complex Biological Systems, University of California, Irvine, CA, United States of America, 3 Department of

Developmental and Cell Biology, University of California, Irvine, CA, United States of America, 4 Department

of Mathematics, University of Nebraska, Lincoln, NE, United States of America, 5 Beijing International Center

for Mathematical Research, Peking University, Beijing, China, 6 Center for Quantitative Biology, Peking

University, Beijing, China

☯ These authors contributed equally to this work.

* qnie@math.uci.edu (QN); tschilli@uci.edu (TFS)

Abstract

How does pattern formation occur accurately when confronted with tissue growth and sto-

chastic fluctuations (noise) in gene expression? Dorso-ventral (D-V) patterning of the man-

dibular arch specifies upper versus lower jaw skeletal elements through a combination of

Bone morphogenetic protein (Bmp), Endothelin-1 (Edn1), and Notch signaling, and this sys-

tem is highly robust. We combine NanoString experiments of early D-V gene expression

with live imaging of arch development in zebrafish to construct a computational model of the

D-V mandibular patterning network. The model recapitulates published genetic perturba-

tions in arch development. Patterning is most sensitive to changes in Bmp signaling, and the

temporal order of gene expression modulates the response of the patterning network to

noise. Thus, our integrated systems biology approach reveals non-intuitive features of the

complex signaling system crucial for craniofacial development, including novel insights into

roles of gene expression timing and stochasticity in signaling and gene regulation.

Author summary

Proper development of the body requires boundaries to form between regions in which

cells will form different structures, and these boundaries need to be properly organized in

space. This must occur accurately even in moving, dividing cells and in the presence of

the noise that is inherent in all biochemical processes. We use development of the upper

and lower jaw as a model to study boundary formation. In this work, we combine detailed

experimental measurements with computational modeling to investigate the role the tim-

ing of gene expression plays in organizing spatial boundaries, and find that the different

orders of gene expression navigate a tradeoff between precision and accuracy in boundary

positioning.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006569 November 27, 2018 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Meinecke L, Sharma PP, Du H, Zhang L,

Nie Q, Schilling TF (2018) Modeling craniofacial

development reveals spatiotemporal constraints on

robust patterning of the mandibular arch. PLoS

Comput Biol 14(11): e1006569. https://doi.org/

10.1371/journal.pcbi.1006569

Editor: Philip K. Maini, Oxford, UNITED KINGDOM

Received: June 28, 2018

Accepted: October 16, 2018

Published: November 27, 2018

Copyright: © 2018 Meinecke et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by National

Institutes of Health (www.nih.gov) grants

R01DE023050 (PPS, TFS and QN), R01DE013828

and R01AR0677979 (TFS), and U01AR073159

(QN), National Science Foundation (www.nsf.gov)

grants DMS1562176 and DMS1763272 (QN), and

a grant from the Simons Foundation (www.

simonsfoundation.org; 594598, QN). The funders

had no role in study design, data collection and

http://orcid.org/0000-0003-0502-7846
http://orcid.org/0000-0001-9972-2051
http://orcid.org/0000-0003-1798-8695
https://doi.org/10.1371/journal.pcbi.1006569
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006569&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006569&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006569&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006569&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006569&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006569&domain=pdf&date_stamp=2018-11-27
https://doi.org/10.1371/journal.pcbi.1006569
https://doi.org/10.1371/journal.pcbi.1006569
http://creativecommons.org/licenses/by/4.0/
http://www.nih.gov
http://www.nsf.gov
http://www.simonsfoundation.org
http://www.simonsfoundation.org


Introduction

A fundamental question in developmental biology is pattern formation, i.e. the acquisition of

positional identity in cells resulting in spatially organized domains of gene expression. Compu-

tational analyses have long sought to address how patterning occurs in growing tissues that

change their size and shape by modeling morphogen gradients, signaling between cells, geo-

metric transformations and other mathematically-amenable aspects of development [1–4].

More recently, computational modeling has revealed how signaling networks integrate with

one another and the importance of feedback loops in precise regulation of early developmental

patterning systems [5–11]. Models for more complex developing structures such as vertebrate

limb buds [12,13], hair follicles [14,15], pigment cells in the skin [16], the spinal cord [17,18]

or the palate [19,20] require integrating multiple signals within rapidly expanding three-

dimensional (3D) tissues.

Pharyngeal arches are bilateral, segmentally-repeated structures that form in the ventral

head of vertebrate embryos and give rise to skeletal, muscle and connective tissues of the face

and neck, including the upper and lower jaws. Arches are complex both in their 3D morpholo-

gies and in their embryonic cellular origins. Streams of cranial neural crest (NC) cells migrate

into each arch segment and surround cores of myogenic/vasculogenic mesoderm. The sur-

rounding ectodermal and endodermal epithelia produce signals that subsequently pattern the

arch along its dorso-ventral (D-V) axis, resulting in at least three early domains: ventral (V),

intermediate (I), and dorsal (D) [21–23]. D-V arch patterning involves a highly-conserved sig-

naling network consisting of the Bone morphogenetic protein 2/4/7 (Bmp) and Endothelin-1

(Edn1) signaling pathways, secreted by ventral arch epithelia [24–28], and dorsal Jagged1

(Jag1)/Notch signaling [29,30]. Errors in these signals can lead to craniofacial birth defects,

such as auriculocondylar syndrome in humans, in which Edn1 signal transduction is disrupted

leading to partial homeotic transformation of ventral skeletal elements to a dorsal fate [31,32].

Understanding how D-V domains arise in the midst of NC migration and arch growth is both

an experimental and a computational challenge.

Both Edn1 and Bmp are crucial for ventral and intermediate arch development, but with

distinct effects on gene expression [24,27,30,33–35]. Bmp, which acts as a morphogen in many

contexts [36–38], primarily induces and maintains genes expressed ventrally such as Hand2, a

critical transcription factor for ventral mandibular identity. In contrast, while Edn1 also

induces ventral genes initially in a concentration-dependent manner [26,39] it later becomes

primarily required for expression of intermediate genes such as Dlx5/6, which are required for

ventral/intermediate mandibular (lower jaw and jaw joint) development, and less dependent

on Bmp [24,29,30]. Craniofacial patterning defects in edn1-/- mutants can be largely rescued by

injection of Edn1 protein throughout the arch [27], and recent work suggests Edn1 plays a

more permissive than instructive role [40].

Given their common targets, what are the advantages of having these two ventral morpho-

gens acting in parallel during early D-V arch patterning? In addition, how does patterning

occur robustly in the face of continuous cell divisions, rearrangements, and noise in both the

signaling molecules and their downstream gene regulatory networks (GRNs)? To address

these questions, we have developed the first computational model of arch D-V patterning that

incorporates growth, migration, gene expression and different sources of noise. We represent

the known components of the arch GRN with a system of ordinary differential equations

(ODEs) that accurately reproduces published genetic perturbations of arch D-V patterning.

We establish the model using measurements of spatiotemporal patterns of gene expression

and 3D NC cell movements obtained from time-lapse movies of live zebrafish embryos. Quan-

titative temporal gene expression data reveal that intermediate domain genes are expressed
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before genes marking the ventral domain and dorsal genes are expressed last. The model confirms

that this temporal order of intermediate-ventral-dorsal (IVD) patterning improves some aspects

of robustness of D-V patterning (precision, referring to consistency across simulations/embryos),

while making other aspects (accuracy, referring to closeness to the theoretical ideal pattern) more

sensitive. The model further suggests that Bmp signaling primarily establishes the sizes and posi-

tions of patterning domains, while Edn1 plays a permissive role, and that noise in the GRN and

each of the signaling pathways affects patterning differently. Our model reveals novel features of

the early spatiotemporal dynamics of gene expression that are critical for patterning the complex

3D structure of the craniofacial skeleton during embryogenesis.

Materials and methods

Ethics statement

Institutional Animal Care and Use Committee protocol #2000–2149.

Biological experiments

Animals. hand2:eGFP [41], dlx5a:eGFP [42], sox10:lyn-tdTomato [43], fli1a:eGFP [44],

and sox10:dsRed [45] transgenic zebrafish lines have been previously described.

Live imaging. Whole zebrafish embryos were mounted laterally in 0.5% low-melt agarose

(Apex Bioresearch Products) inside glass-bottom microwell dishes (MatTek Corporation).

Imaging was performed on a Nikon Eclipse Ti confocal microscope, with excitation by 488nm

(eGFP) and 561nm (tdTomato and dsRed) lasers. All imaging was done at 28.5˚C, with

embryos staged as described previously [46].

Hybridization chain reaction (HCR) in situ hybridization. HCR was performed as

described [47]. Briefly, this in situ protocol involves DNA probes that bind to target mRNA

and subsequently trigger hybridization chain reactions in fluorescent-labeled hairpins that

self-assemble into localized polymers. The amount of HCR signal is directly proportional to

the amount of target mRNA, and thus provides a quantitative measure of gene expression,

unlike chromatogenic in situ hybridization, while preserving spatial information in whole-

mount embryos [48]. We used AB wild-type zebrafish embryos fixed overnight at 4˚C in 4%

paraformaldehyde. These were whole-mounted in low-melt agarose and imaged on a Nikon

Eclipse Ti confocal microscope. Probes were ordered from Molecular Instruments for the fol-

lowing genes (accession numbers shown) and their hairpins were labeled with the indicated

fluorophores: dlx2a: NM_131311.2, Alexa 647; dlx3b: NM_131322.2, Alexa 546; dlx5a:

NM_131306.2, Alexa 546; hand2: NM_131626.3, Alexa 488.

NanoString. NanoString technology was used for direct quantification of mRNA tran-

scripts [49]. Double-transgenic fli1a:eGFP;sox10:dsRed zebrafish embryos were dissociated as

described previously [50]. Fluorescence-associated cell sorting (FACS) was performed on a BD

Aria II sorter collecting only eGFP/dsRed double-positive cells. Cells were re-suspended in

1.5 μl buffer RLT (Qiagen) per 6500 cells, and delivered to the UC Irvine Genomics High

Throughput Sequencing Facility for processing. Approximately 20–30 embryos were used for

each biological replicate. The resulting NanoString data were processed using the nSolver

Analysis Software 3.0 (Nanostring Technologies Inc.). The expression values were normalized

using a panel of housekeeping genes and represent average per-cell values.

Modeling

The one-dimensional (1D) model. Since the embryonic mandibular arch is initially pat-

terned into three domains along the D-V axis, we first create a 1D model to capture D-V

Modeling craniofacial development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006569 November 27, 2018 3 / 31

https://doi.org/10.1371/journal.pcbi.1006569


patterning in a computationally efficient manner. To construct a minimal GRN (Fig 1A) we

include published gene expression studies and genetic perturbations of arch development (S1–

S3 Tables) [24,29,30,42,50]. Ventral (V) genes include hand2, intermediate (I) genes include

dlx3b/4a/4b/5a/6a and dorsal (D) genes include jag1 and hey1.

The two morphogens Bmp and Edn1 are secreted at the ventral end of the arch and form a

declining gradient from ventral to dorsal. We model the two gradients as time-independent,

exponentially declining functions from ventral to dorsal, solving the steady state with a source

term at the ventral domain boundary and constant morphogen degradation. Measurements of

diffusion coefficients for Edn1 range from 104.2–140.5 μm2/s [51,52], and for Bmps range

from 2.0–4.4 μm2/s [53,54], suggesting that Edn1 diffuses farther dorsally than Bmps. Grem2,

a Bmp antagonist expressed dorsally, also acts to restrict Bmp signalling to the ventral arch

[30]. We thus extend the Edn1 gradient farther dorsally than the Bmp gradient (Fig 1A). Math-

ematically we represent the GRN by the following system of ODEs with space-dependent coef-

ficients:

d
dt

V x; tð Þ ¼ � dveV x; tð Þ þ bve þ vve
A2

1
ðxÞ

p2
1
þ A2

1
ðxÞ

Eq 1

d
dt

I x; tð Þ ¼ � dinI x; tð Þ þ bin þ vin
A2

2
ðxÞ

p2
2
þ A2

2
ðxÞ

p2
3

p2
3
þ V2ðx; tÞ

p2
4

p2
4
þ D2ðx; tÞ

A2
1
ðxÞ

p2
5
þ A2

1
ðx; tÞ

Eq 2

d
dt

D x; tð Þ ¼ � ddoD x; tð Þ þ bdo þ vdo
p2

6

p2
6
þ I2ðx; tÞ

p2
7

p2
7
þ A2

2
ðx; tÞ

; Eq 3

where A1 and A2 model the morphogen concentrations of Bmp and Edn1, respectively. All

proteins are produced at a basal production rate b and a maximum production rate v, and are

degraded at rate d (S2 Table). Gene regulation involves either up- or down regulating v, mod-

eled by a Hill-function term with Hill-coefficient 2.

There are two ways to model the temporal order of patterning:

1. Vary the absolute values of v and d while keeping their ratio constant such that they reach

the same steady state. A higher absolute value means a more rapid onset of gene expression

that reaches the steady state more rapidly. This model assumes that temporal regulation is

inherent to the minimal GRN, meaning that some genes respond quickly to signals while

others are slower.

2. Include “if” statements in the GRN, such that certain genes are only expressed after a given

time. This assumes that the temporal order is regulated by other mechanisms not included

in the GRN.

In all experiments (except S12–S15 Figs) we use model 1 above, where we simulate the dif-

ferences in the timing of V, I and D gene expression by varying production and degradation

parameters, while keeping the ratio between production and degradation constant for all gene

groups. Hence we use:

vin > vve > vdo and
vve

dve
¼

vin

din
¼

vdo

ddo
¼ 1 Eq 4

for the observed IVD pattern. See S2 Table for the parameter values of all temporal orders. The

d and v values for the IVD pattern are chosen such that the onset of gene expression agrees

with that in vivo.
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Fig 1. Modeling arch dorsal-ventral (D-V) patterning. (A) The gene regulatory network (GRN) used to compute the gene expression inside each

cell. The lines represent the declining morphogen gradients from ventral to dorsal (Bmp left, Edn1 right). The morphogen gradients act as space-

dependent inputs into the ODE system, specifying cells based on their locations along the D-V axis. The mathematical model is a system of coupled

ordinary differential equations (ODEs) (Eqs 1–3), where gene interactions are modeled by Hill functions with the microscopic dissociation

constants p1-p7 (S1 Table) and production and degradation parameters specified for each GRN component (S2 Table). (B) A cell-based two-

Modeling craniofacial development
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For a 1D model of the arch without domain growth along the line of morphogen decay (i.e.

the D-V axis), we discretize the domain from 0–70 nm equidistantly into N = 201 nodes. Each

node is exposed to individual morphogen concentrations depending on its position along the

D-V axis and we then solve the GRN (Eqs 1–3) for each node, resulting in a system with 603

ODEs, which we solve numerically, using the Euler forward method with Δt = 93.6 sec. Simula-

tion time t = 0 corresponds to 22 hours postfertilization (hpf) of zebrafish development [46].

Since we are interested in temporal dynamics rather than a steady-state solution we do not run

the simulations until steady state is achieved, but stop them at 35 hpf and plot the results.

We define a cell as “patterned” by a certain gene if its expression level is higher than 20% of

the maximum and higher than all other genes S1 Movie.

The two-dimensional (2D) model. To extend the basic 1D model to include distinct cells,

we represent the mandibular arch along both its D-V and anterior-posterior (A-P) axes. In this

2D model we represent cell centers by vertices xi 2 R
2
; i ¼ 1; . . . N (black dots in inset in Fig

1B). The Voronoi tessellation between the nodes represents the locations of cell membranes

[55]. A generalized Morse potential between cell centers (white arrow in inset) accounts for

cell-cell adhesion (attractive potential) and volume exclusion (repulsive potential)

Vðkx � xjkÞ ¼ U0e
� kx� xjk=x1 � V0e

� kx� xjk=x2 : Eq 5

This potential results in an equilibrium distance between cell centers

r0 ¼ logðx2=x1 � U=VÞ ðx1x2Þ=ðx1� x2Þ: Eq 6

The attractive term in the potential guarantees the collective motion of cells, which is fur-

ther directed by the deformation of the surrounding tissue, pushing cells in the direction of

arch growth, and a global chemoattractant pulling the cells in the ventral direction. In our

model, collective cell migration does not mean that cells are free to invade a previously empty

space, but rather that the positions of the boundaries that keep the cells in proximity evolve,

such that the whole structure migrates further away from the dorsal side of the embryo. To

achieve an equal distribution of cells throughout the arch we include a global chemoattractant

directing cell motion towards the ventral end in the model. While there have been many stud-

ies of the complex and heterogeneous mechanisms directing collective cell migration [56,57]

e.g. the leader-follower model [58] responsible for the migration of cranial NC cells, the global

chemoattractant together with deforming domain boundaries are sufficient to reproduce the

observed tissue deformation and cell migration. For the time points 22, 24, 28, 32, and 35 hpf

we measured actual arch boundaries from 6 different images and averaged these to compute a

typical arch outline. Between these time points we evolve the arch outline by linear interpola-

tion of the averaged boundaries. We define two rings of 2118 boundary nodes bi, which exert a

repulsive force on the cell centers to keep the cells inside the arch (S1A Fig). At each time step

dimensional (2D) model. Cells are represented as vertices (black dots in inset) and a generalized Morse potential between these vertices (white

arrow in inset) accounts for cell-cell adhesion and cell volume. Cell membranes are computed using Voronoi tessellation between nodes. The

collective motion of cells is directed by the boundary conditions and a global chemoattractant pulling them ventrally. At each time step, migrating

cells are added at random locations dorsally (white arrows), cells randomly divide, the morphogen production zone is updated (green area) and the

quasi steady state of the morphogen gradients is computed on the discrete grid (white dots). Cells experience morphogen concentrations equal to

that of the grid point closest to its cell center (green ring in inset). These values are A1(x) and A2(x) in Eqs 1–3 which are solved numerically for

each individual cell. Cells are specified as ventral (pink), intermediate (cyan) or dorsal (yellow) if the respective gene expression exceeds 20% and is

higher than all the other genes. Colors become darker gradually as the level of expression increases. Mechanical parameters are specified in S3

Table.

https://doi.org/10.1371/journal.pcbi.1006569.g001
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we advance the nodes by the following ODE:

d
dt

xi ¼ rx

X

j6¼i

Vðkxi � xjkÞ þ rx

W1

W2

" #
e� x3kxi;1 � s1k

e� x4kxi;2 � s2k

" #

þrx

X

bi

Se� kx� bik=x5 ; Eq 7

where the first term represents cell-cell interactions, the second term the chemoattractant,

and the third term the force exerted by the surrounding tissue (see S3 Table for parameter

values). At each time step the production zone of the morphogens is updated according to

the current position of the surrounding tissue (green area in Fig 1B) and since the mor-

phogens diffuse much faster than the cells move, we compute the quasi steady state of the

morphogen gradients on a discrete 50x50 grid (white dots in Fig 1B), where, similar to the

1D model, we assume a constant production of morphogen and constant degradation

across the whole domain (for an explicit visualization of the morphogen gradients, see S2

Movie). Each cell then experiences the morphogen gradient of the grid point closest to its

center (Fig 1B green ring in inset) and this value acts as the input for A1(x) and A2(x) in

the ODE system modeling the GRN, which we solve individually for each cell. Initially we

place N = 75 cells randomly inside the boundaries at 22 hpf and then move them once

according to Eq 7 to equilibrate forces. This means that a simulation time of t = 0 corre-

sponds to a real time of 22 hpf. Then we solve the ODEs simulating the GRN (Eqs 1–3) for

each cell and the motion equation (Eq 7) with the Euler forward method with Δt = 180

sec. Based on our imaging data cell number roughly doubles from 75 to 150 cells between

22 hpf to 35 hpf, most of which is due to cell divisions in the arch (~90%), with the

remainder from NC cells continuing to migrate into the arch. To model cell division we

randomly choose a cell that divides into two daughter cells at constant time intervals.

Each daughter inherits the gene expression of the mother and we randomly place the new

cell at a distance r0/20 from the mother cell. To account for continued NC migration into

the arch in our simulation window (22–35 hpf) we add migrating cells to the dorsal end of

the simulation domain at random locations along the dorsal domain boundary (white

arrows in Fig 1B). Since these cells enter the arch dorsally we allow them to express dorsal

genes at 40% of maximal. The time intervals of division and migration are computed such

that the cell number doubles until 35 hpf in accordance with our measurements S3 Movie.

Boundary error and sensitivity. To quantify the error in the boundary position as a result

of noise we average the domain boundaries obtained from three images each of hand2 and

dlx5a expression and compute the distance to cells at the boundaries in the model simulations.

For each cell located at the boundary this gives one non-directional distance di (S1B and S1C

Fig), and we sum over all cells located at the boundary to obtain a measure of the error of

boundary positioning

E≔
X

i

di: Eq 8

This error definition accounts for both large distances between the simulation boundary

and the measured boundary, and for a long, ragged domain boundary opposed to the sharp

boundary observed in live imaging (S2 Fig).

The sensitivity si(t) with respect to the parameters pi, i = 1. . .7, is defined as the derivative

of each gene y(t) (representing V(t), I(t), and D(t)) with respect to pi

si tð Þ ¼
@

@pi
y tð Þ Eq 9
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and fulfills the following ODE

@

@t
si tð Þ ¼

@

@y
fsi tð Þ þ

@

@pi
f : Eq 10

We used the SUNDIALS suite of nonlinear differential equation solvers, with adaptive time

stepping and integrated error control, to solve the ODEs of the GRN and additional ODEs for

sensitivity [59].

Noise. We model noise in Bmp and Edn1 using Gaussian noise scaled with the morpho-

gen concentration, such that

AiðxÞ ¼ maxð0;AiðxÞ þ ZixAiðxÞÞ Eq 11

where x � N ð0; 1Þ and i = 1,2 and ηi is the strength of noise, with η1 = η2 = 1. Gaussian noise

is also added to the ODEs, where ν = 0.05 models the strength of noise in gene regulation

d
dt

V x; tð Þ ¼ � dveV x; tð Þ þ bve þ vve
A2

1
ðxÞ

p2
1
þ A2

1
ðxÞ
þ n

d
dt

W Eq 12

d
dt

I x; tð Þ ¼ � dinI x; tð Þ þ bin þ vin
A2

2
ðxÞ

p2
2
þ A2

2
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6
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6
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7

p2
7
þ A2

2
ðxÞ
þ n

d
dt

W: Eq 14

We solve these with the Euler-Maruyama method and the same Δt as in the deterministic

case.

Results

Intermediate (I) domain gene expression precedes ventral (V) and dorsal

(D)

Neural crest (NC)-derived ectomesenchymal cells in pharyngeal arches 1 (mandibular)

and 2 (hyoid) in zebrafish are patterned into three D-V domains between 14–36 hpf,

which give rise to distinct skeletal elements in the adult (Fig 2A–2C). Arch D-V length

roughly doubles over this period (from 30 to 60 μm). Previous in situ hybridization (ISH)

studies have shown that dlx3/4/5/6 are expressed together in an early ventral-intermedi-

ate (V-I) domain that later separates into V and I [24,29,30,42]. hand2, the homolog of

which is induced by Dlx5/6 in mice [34,60,61], marks the new V domain and represses

Dlx genes ventrally, restricting their expression to the I domain [42,62]. However, the

precise timing of gene expression between 14–20 hpf, when these domains first appear,

remains unclear.

To address this, we have measured transcript levels of seven D-V patterning genes in FAC-

sorted arch cells using NanoString analysis (dorsal: jag1b, hey1; intermediate: dlx3b, dlx4b,

dlx5a, dlx6a; ventral: hand2) (Fig 2D). Surprisingly, expression of dlx3b peaks early at 20 hpf,

followed six hours later by three other intermediate genes (dlx4b, dlx5a, dlx6a), the ventral

gene (hand2), and the dorsal gene jag1b at 26 hpf. Similarly with hybridization chain reaction

(HCR) in situs, to facilitate co-localization and quantitation of expression (Fig 2E–2T) we find

that within the domain of dlx2a expression, which marks NC cells in the entire arch, strong
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dlx3b expression is detected at ~17 hpf, at least an hour before dlx5a expression appears faintly

at ~18 hpf. Meanwhile, hand2 expression is not detected until ~20 hpf. Interestingly expression

of hand2 arises abruptly, while other genes such as dlx5a appear more slowly, yet both peak at

a similar time point in the NanoString analysis. Thus, intermediate genes are the first to be

expressed in the D-V sequence of arch patterning followed by ventral and finally dorsal genes.

The computational model for the mandibular arch reproduces patterning

observed in vivo

The 1D model (Fig 3A–3E) recapitulates the relative timing and sizes of D-V domains in the

mandibular arch. Initially intermediate gene expression extends from the ventral end to

approximately halfway up the D-V axis. Subsequently, dorsal genes are expressed at the dorsal

end of the arch, leaving a section of “unpatterned” cells (white regions, in which gene expres-

sion is below the arbitrary 20% threshold) between I and D domains, which gradually dimin-

ishes. Initiation of ventral gene expression at 28 hpf creates a narrow V domain, which moves

the I domain dorsally. The 2D model (Fig 3F–3J) captures these spatiotemporal dynamics of

D-V domain formation. Here, individual cells are also defined as patterned if their gene

expression exceeds 20%, and they are gradually colored correspondingly, such that grey indi-

cates cells not yet expressing genes above the cut-off and more deeply colored cells indicate

higher and higher levels of gene expression. Initially none of the cells express any of the genes

above the 20% cut-off (grey cells). Between 22–35 hpf the arch elongates anteriorly and ven-

trally. During this tissue deformation the cells acquire D, I and V fates, (yellow, blue and pink,

respectively) and form domains of the correct size and shape. The simulation results agree

with live imaging of hand2:GFP:sox10:lyn-tdTomato double transgenics (Fig 3K–3O) or dlx5a:

GFP;sox10:lyn-tdTomato double transgenics (Fig 3P–3T). We note that the boundaries of gene

expression as shown by transgene reporter intensity are sharp (S2 Fig).

To generate a 2D cell-center based model that reflects arch morphogenesis as accurately as

possible we have measured mandibular arch deformation in images of 6 sox10:lyn-tdTomato
transgenic zebrafish embryos, the average of which is used to generate an arch outline (Fig

3K–3T). By further analyzing time-lapsed images of sox10:nEOS transgenics we find that: 1)

cell number roughly doubles between 22–36 hpf, 2) ~90% of this increase in cell number is

due to cell division and 3) only ~10% is due to cells migrating into the arch dorsally. These

parameters are incorporated into the model to compute the time intervals of cell division and

cell migration.

The 2D model also reproduces previously reported phenotypes of genetic or pharmacologi-

cal perturbations that disrupt D-V patterning (Fig 4). V/I domains do not form and the D

domain expands in embryos lacking Bmp or Edn1 signaling (reduced in the modeling simula-

tions to 1% of wild-type expression [24,27] (Fig 4A and 4D). The I domain does not form and

D expands ventrally in embryos overexpressing the dorsal factor Jag1 (500% of wild-type pro-

duction) (Fig 4C). Conversely, the I domain expands to replace D in a jag1-/- mutant (1% of

wild-type expression) or when Edn1 is overexpressed (500% of wild-type gradient maximum)

Fig 2. Expression of D-V arch patterning genes. (A-C) Morphogenesis of arches 1 (mandibular) and 2 (hyoid) in the zebrafish embryo. Lateral brightfield views of

live embryos. By 36 hours postfertilization (hpf) the arch is patterned into distinct ventral (pink), intermediate (cyan), and dorsal (yellow) domains. These later give

rise to lower jaw, joint and upper jaw elements, respectively. aa: anguloarticular, d: dentary, hm: hyomandibular, iop: interopercle, mx: maxilla, op: opercle, pm:

premaxilla, pop: preopercle, sop: subopercle, sy: symplectic. (D) NanoString measurements of D-V patterning gene expression in zebrafish arches, normalized to per-

cell levels and displayed as heat maps. n� 3 biological replicates/time point. Expression of the intermediate factor dlx3b is highest at 20 hpf before other factors. (E-T)

HCR in situ gene expression analysis. DAPI (blue) marks nuclei and dlx2a (white) marks neural crest. dlx3b (left column) and dlx5a (right column) expression are in

red, and the ventral domain gene hand2 is in green. dlx3b expression is first detected strongly at 17 hpf, while dlx5a expression appears at 18 hpf. hand2 expression in

the first arch is first detected at 20 hpf.

https://doi.org/10.1371/journal.pcbi.1006569.g002
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Fig 3. Both one- (1D) and two-dimensional (2D) models reproduce the spatio-temporal patterning observed in vivo. (A-E) Simulations from the 1D model of the

mandibular arch along the D-V axis. A region is defined as patterned by a certain gene group if gene expression is above 20% of the maximum achieved in time

(indicated by the black dashed line). White regions are not yet expressing any genes. The ventral domain (pink) remains narrow in the 1D simulation. (F-J) Simulations

from the 2D model combining D-V and anterior-posterior (A-P) axes. Here a single cell is defined as patterned (indicated by a color) if the gene expression level exceeds

20% of the maximum, and grey indicates cells that are not yet expressing any genes above the 20% cut-off. Colors become deeper gradually as the level of expression
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(Fig 4B and 4F). Importantly, the model also recapitulates the normal D-V patterning observed

experimentally with moderate, uniform Edn1 expression (50% of wild-type gradient maxi-

mum), achieved with Edn1 protein injections [24,27] (Fig 4E). Thus, despite the minimal

GRN on which it was based, the model captures many aspects of patterning observed experi-

mentally in vivo.

Arch D-V patterning is sensitive both to the temporal order of domain

formation and variation in Bmp signaling

For any three sets of D-V patterning factors, there are six possible different temporal orders of

gene expression (VID, VDI, IVD, IDV, DIV, DVI). Our gene expression studies indicate that

dlx3b and its associated I domain appear first, so we asked how this order fares in our model as

compared with other possible orders. By varying the production and degradation parameters

for each gene group we simulate all six temporal orders (S1 and S2 Tables) and examine if any

one is more robust than another. Changing the temporal order does not affect the final pattern

at 35 hpf (S3 Fig). To compare sensitivity between the three temporal orders of gene expression

we compute si(t) (Eq 9), evaluated at 10 equidistant time points between 22–35 hpf. We sum-

marize the 10 resulting data points in box plots (Fig 5, S4–S6 Figs), where the line in the middle

denotes the median, the bottom and top edges of the box the 25th and 75th percentile, respec-

tively, and the whiskers extend to the most extreme data points. We normalize the data with

increases. For animations of the model simulations, see S1, S2 and S3 Movies. (K-T) Images of transgenic embryos expressing the ventral marker gene hand2:GFP (K-O,

S4 Movie) and the intermediate marker gene dlx5a:GFP (P-T, S5 Movie).

https://doi.org/10.1371/journal.pcbi.1006569.g003

Fig 4. The 2D model reproduces experimental genetic perturbations. The modeling perturbation is shown at the upper-right and

the matching genetic perturbation from the literature on the lower-right (normal patterning in Fig 3J). (A) Loss of Bmp signaling

leads to a failure to express ventral (V, pink) and intermediate (I, cyan) and expansion of dorsal (D, yellow) genes. (B) Loss of Jag/

Notch signaling leads to absence of the D domain. (C) Excess Jag/Notch signaling causes the D domain to expand at the expense of I.

(D) Loss of Edn1 eliminates V and I, such that D expands. (E) Injecting recombinant human EDN1 into an edn1-/- mutant leads to

normal patterning. (F) Over-expression of Edn1 (5x) leads to loss of the D domain.

https://doi.org/10.1371/journal.pcbi.1006569.g004
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respect to the highest value of si(t) for both parameters p1 and p5 at all time points (for unpro-

cessed, time-dependent data see S7 Fig). The distance between the median line and zero

(dashed black lines) indicates how sensitive gene expression is to perturbations in the control

parameters p1-p7, and the size of the box and length of the whiskers indicate how much the

sensitivity changes with time. In general, all model simulations are relatively robust to parame-

ter variations, indicating that the results are not due to the specific choice of parameters.

When cells are exposed to morphogen concentrations typical for the V and I domains (high

Bmp and Edn1 concentrations) the GRN is most sensitive to perturbations in the BMP signal-

ing parameters p1 (activation of V genes) and p5 (activation of I genes) (Fig 5; S4 and S5 Figs),

and less so to variations in Edn1 signaling parameters p2 and p7. This is particularly true in

cases where I genes are expressed last (VDI and DVI), since median sensitivity levels of dorsal

genes deviate further from zero (dashed black lines; Fig 5 and S4 and S5 Figs). However, when

cells are exposed to low Bmp and Edn1 concentrations (S6 Fig), typical for the D domain, per-

turbations in the Bmp gradient only affect the ventral genes, while intermediate and dorsal

genes are sensitive to perturbations in the Edn1 parameters p2 and p7. This agrees with pub-

lished evidence that Edn1 plays a primarily permissive role in ventral and intermediate gene

expression [27,40]. A permissive role for Edn1 is further evident when we compute the sensi-

tivity to parameter variations in the GRN if only one of the two morphogen gradients is

Fig 5. Sensitivity of gene expression with respect to perturbations in GRN parameters. Box plots summarize the sensitivities (si(t), Eq

9, y-axis) at 10 equidistant time points between 22 and 35 hpf and are normalized to the maximum overall sensitivities, for the ventral (V,

pink), intermediate (I, cyan), and dorsal (D, yellow) genes for different temporal orders of expression (x-axis). The sensitivity value

indicates how much the patterning output changes, and in which direction (i.e. positively or negatively), with a change in the given

modeling parameter. Perturbations in the parameters for gene expression are most sensitive to Bmp activation of ventral genes (p1, panel

A) and to Bmp activation of intermediate genes (p5, panel B) (see Fig 1A). For the full time dependent sensitivity data see S7 Fig and for

complete box plots of all parameters see S4–S6 Figs. The median’s deviation from zero (black dashed line) indicates how sensitive a given

temporal order is to perturbations in the respective parameter. The dorsal genes’ sensitivity to p1 and p5 depends more on the temporal

order than ventral or intermediate genes. Expressing intermediate genes last (VDI and DVI) leads to the strongest sensitivity of the dorsal

genes, since the medians deviate further from zero.

https://doi.org/10.1371/journal.pcbi.1006569.g005
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present (S8 Fig). The results are similar to those for two morphogens in all three V, I and D

domains. In all cases, the most crucial parameter is the one controlling the effect of the mor-

phogen on the I domain, p2.

Noise in Bmp, Edn1 or the downstream GRN has distinct affects on

patterning

To simulate the stochasticity that may occur in vivo, we have added Gaussian noise to the mor-

phogen gradients and to the GRN (Eqs 11–14, Figs 6 and 7, S9–S11 Figs and S6 and S7 Mov-

ies). To compute a large number of stochastic simulations for statistics, and for better

visualization, we investigate the effects of noise first in the 1D model. We plot the mean (thick

lines) and ±σ (shaded regions) over 100 simulations (Fig 6B–6E, 6A for comparison without

noise). For the 2D model, we show end-states for single simulations (Fig 6B’–6E’, 6A’ for com-

parison without noise). The simulations reveal that noise in Bmp signaling is transmitted dif-

ferently than noise in Edn1 into the GRN. While intermediate gene expression is affected by

both signals, ventral gene expression is not affected by noise in the Edn1 gradient, since the

only input into the V domain is the Bmp gradient. Dorsal genes are most robust to morphogen

fluctuations (Fig 6C–6D’), since they are mostly controlled indirectly through the ventral

genes, but they are the most sensitive to gene regulation noise (Fig 6B and 6B’). Since Edn1 is

required for intermediate gene expression, but increasing Edn1 signaling does not expand the

I domain (Fig 4E and 4F), fluctuations in Edn1 only act in one direction, meaning that lower

Edn1 levels due to noise reduce the I domain but higher levels have no effect. As a result the I

domain is reduced with fluctuations in Edn1 (Fig 6D and 6D’), when compared to the deter-

ministic case (Fig 6A and 6A’, S9 Fig) in both 1D and 2D models. This means that Edn1 acts

“unidirectionally” as a permissive factor. Gene expression noise appears to be the strongest

driver of fluctuations in patterning, since even relatively small fluctuations (ν = 0.05) in the

GRN alter gene expression profiles substantially (Fig 6B and 6B’). The effects of individual

fluctuations are additive when all sources of noise are combined (Fig 6E and 6E’, S11 Fig), i.e.

both increased fluctuations in dorsal gene expression due to GRN noise, and expansion of the

V domain due to noise in the Edn1 gradient.

The precision of boundary positioning depends on the temporal order of

D-V domain formation

Precision refers to the level of variation in boundary positions in stochastic simulations. Simi-

lar to our analysis of sensitivity to different parameters in the GRN, we examine if the sequence

of D-V domain formation influences precision, as a measure of robustness in response to

noise. When fluctuations are limited to the Bmp gradient the genes expressed first absorb most

of the noise (Fig 7). The exception is when dorsal genes are expressed earliest, which are in

general the most robust to Bmp noise, such that the DIV and DVI sequences are the least sus-

ceptible to Bmp fluctuations (Fig 7E and 7F).

This is in contrast to noise in the GRN (v = 0.05), where genes expressed earliest are the

most robust and genes expressed later are more susceptible to noise (S9 Fig). This is particu-

larly true when genes expressed in the I domain are first in the D-V sequence. This indicates

that patterning I first is beneficial since fluctuations in intermediate gene expression affect

both the precision of the V-I and I-D boundaries. With fluctuations in the Edn1 gradient, the I

domain is severely reduced when intermediate genes are expressed last, while there is still a

distinct I domain in the case of either V or I being expressed first (S10 Fig), further indicating

that an early expression of intermediate genes is beneficial for boundary accuracy. Noise in the

Edn1 gradient has the most similar effect across the 6 possible temporal orders. Early
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expression of intermediate genes, however, leads to slightly stronger fluctuations in their

expression as a result of Edn1 noise, while still preserving a distinct I domain. Due to the dif-

ferent effects of the three sources of noise in the context of different temporal orders, combin-

ing all sources of noise indicates that a later onset of intermediate gene expression leads to the

strongest fluctuations and higher sensitivity (S11 Fig).

When differences in the temporal order are enforced explicitly in the simulations (S12 Fig),

the responses to the different sources of noise are similar to the case of intrinsic regulation,

only with a more severe loss of the I domain due to noise in Edn1 (S13 Fig). However we do

not see any distinction between the temporal orders in the extrinsic model with noise in the

Bmp gradient (S14 Fig) in contrast to the intrinsic model with Bmp noise (Fig 7).

The accuracy of boundary positioning depends on the temporal order of

D-V domain formation

Accuracy refers to boundary positions relative to the measured wild-type positions (Fig 8). We

simulate 10 runs of the 2D model, compute statistics of the boundary error (E) in Eq 8, nor-

malize according to the highest value and plot the mean (line) and ±σ (error bars). Accuracy

depends strongly on which gene group is expressed last, especially for the I-D boundary.

When either Bmp or Edn1 are noisy, the I-D boundary is positioned most accurately when I is

last, slightly less accurate when D is last and inaccurate when V is last (Fig 8B and 8D). In con-

trast, when Bmp is noisy the V-I boundary shows no clustering of temporal orders of pattern-

ing (Fig 8A), but when Edn1 is noisy accuracy increases when I is last (Fig 8C). The boundary

accuracy depends less distinctly on the temporal order of patterning when the gene regulation

is noisy (Fig 8E and 8F). When we combine all sources of noise a late appearance of the I

domain clearly improves positioning of the V-I boundary and slightly improves the I-D

boundary (Fig 8G and 8H).

In general the domain boundaries are more sensitive to fluctuations in Bmp than in Edn1,

especially at the V-I boundary. Presumably the mutual inhibition between intermediate and

dorsal genes makes the I-D boundary more robust to stochastic fluctuations. When the

sequence of patterning is controlled by extrinsic factors not inherent in our minimal GRN

(S12 Fig), the accuracy of boundary positioning is more sensitive to individual sources of noise

in all cases except for positioning the V-I boundary with fluctuations in only Edn1 (S15 Fig).

However, with the external control of gene expression timing the noise effects appear to be less

additive and the extrinsic model positions the boundaries more accurately.

Patterning involves a trade-off between precision and accuracy

From the above results, different temporal orders lead to different degrees of noise in gene

expression profiles (Figs 6, 7 and S9–S11), while there are observed differences in accuracy of

domain boundary positioning (Fig 8). We now quantify these effects to investigate how

Fig 6. Different sources of noise have distinct effects on the gene expression profiles and domain patterning. Left

column: 1D. Combined statistics from 100 simulations. The thick line is the mean value and the shaded area is ±σ.

Right column: 2D. All panels show final states resulting from one simulation. (A-A’) No-noise reference (adapted from

Fig 3E and 3J). (B-B’) Noise in the GRN disrupts boundaries of gene expression in all three domains, ventral (V, pink),

intermediate (I, cyan), dorsal (D, yellow), while the mean value of the expression profile is preserved. (C-C’) Noise in

Bmp signaling does not disrupt D and V slightly expands dorsally. (D-D’) Since Edn1 plays a permissive role noise in

its gradient acts in one direction such that the I domain is partially replaced by V. (E-E’) When all three sources of

noise are present simultaneously the effects are additive and the I domain is nearly lost while all three gene groups

show strong fluctuations in their expression profiles as with noise only in the GRN. For animations see S6 and S7

Movies.

https://doi.org/10.1371/journal.pcbi.1006569.g006
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accuracy and precision relate to each other at both domain boundaries, and with the different

sources of noise (Fig 9). Precision is measured as the maximal standard deviation (Figs 7 and

S9–S11), corresponding to the maximal width of the shaded regions. Accuracy is the mean

value of the boundary error (Fig 8). Hence for both, a low value indicates higher accuracy or

higher precision. When all sources of noise are included in the simulation, an anti-diagonal

trend is observed, indicating a trade-off between precision and accuracy, where temporal pat-

terns with more precise boundary positioning have less accuracy, and vice versa. The observed

IVD pattern favors precision over accuracy at both boundaries, suggesting that the patterning

system has evolved to maximize precision in gene expression domain boundaries.

Discussion

We have analyzed spatiotemporal patterns of expression of D-V patterning genes during pha-

ryngeal arch morphogenesis in zebrafish embryos and combined our experimental observa-

tions with published data to generate the first computational model of the developing

mandibular arch. Previous efforts have compiled information from imaging and gene expres-

sion databases, such as the FaceBase consortium [63], and analyzed cellular behavior during

craniofacial morphogenesis [20], but ours is the first to integrate spatiotemporal gene expres-

sion patterns with morphogen gradients, tissue measurements, and known mutant pheno-

types. Our model captures many of the spatial and temporal features of arch development and

recapitulates genetic perturbations. It also provides novel insights into developmental con-

straints on the system, including: 1) Bmp is responsible for providing positional information

to the cells, while Edn1 is permissive, 2) the temporal order of patterning is important for the

system’s capacity to account for noise, and 3) the temporal order favors precision over accu-

racy in boundary positioning.

Many developmental processes that involve periodic patterning reflect underlying reaction-

diffusion systems that deal efficiently with noise through their intrinsic feedback loops

[12,16,19]. We find that the temporal order of gene expression provides a previously unappre-

ciated factor in improving responses to noise. Surprisingly in our experiments it is the inter-

mediate gene dlx3b that is the first detected at 16–17 hpf by HCR and slightly later (20 hpf) in

our NanoString analyses, which may reflect the fact that sorted cells used for NanoString are

derived from multiple arches (mandibular, hyoid, branchial) while with HCR we image the

first arch directly. dlx3b might serve as an early response factor, possibly integrating input

from multiple signals and priming other patterning genes in the GRN. The early appearance of

the I domain means that the arch is not patterned consecutively from one end to the other (i.e.

the VID or DIV orders), but rather in the peculiar sequence of establishing the middle first.

Intuitively one can assume that patterning the central domain first already establishes both

boundaries. However, that is not the case here either, since expression of the intermediate

genes initially extends to the ventral end of the arch and is only later replaced by the ventral

genes, such that both boundaries are established independently and non-simultaneously. We

have investigated if this temporal order is beneficial for the response of the system to stochastic

fluctuations. Our model simulations suggest that avoiding having intermediate genes

expressed last improves the robustness to perturbations in Bmp signaling parameters and pre-

cision in the positioning of D-V domain boundaries. While dlx3b knockdown does not cause

Fig 7. The temporal order of D-V domain formation modulates responses to noise in Bmp signaling. Each panel shows results of 100 simulations in

the 1D model. The thick line is the mean value and the shaded area is ±σ. For the fully deterministic modeling result of IVD with no noise, see Fig 3E.

(A,B) When the V domain is patterned first it is the most sensitive to noise in Bmp signaling. (C,D) Similarly, when the I domain is patterned first noise

in Bmp affects the early I genes most strongly. (E,F) When the D domain is patterned first Bmp noise is more efficiently absorbed by the GRN leading to

the most robust gene expression profiles.

https://doi.org/10.1371/journal.pcbi.1006569.g007
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significant patterning defects, this could reflect compensation by dlx4b or dlx5a [42]. The

unique function of dlx3b in the GRN is supported by its distinct spatial expression pattern

from the dlx5/6 pair and also from its neighboring dlx4 cluster counterpart [42,64–66].

Our results suggest that altering the temporal order of D-V gene expression, (e.g. using

optogenetic approaches to induce expression of hand2 in its normal spatial domain but prior

to onset of intermediate gene expression and thus creating a VID sequence) will disrupt the

accuracy and robustness of D-V domain boundaries. Future studies are also needed to deter-

mine if the temporal order of gene expression in this system is controlled by gene-intrinsic dif-

ferences in sensitivity to signals (as is the case in our minimal model), or if trans-acting factors

play a greater role.

We also note that the precision and accuracy of D-V domain boundary formation are dis-

tinctly susceptible to noise, with the boundary between V and I domains especially sensitive to

noise in Bmp signaling or in the downstream GRN. Precision and accuracy in the boundaries

of gene expression domains are both goals for patterning systems, but our model reveals diver-

gent paths to reach each of those goals in the mandibular arch. We find that the most precise

gene expression profiles in response to Bmp signaling are achieved when dorsal genes are

expressed first (Fig 7), while the most accurate boundaries were obtained when I genes were

expressed last (Fig 8). Instead, our data in zebrafish indicate that I genes are expressed first,

reflecting a trade-off that seems to favor precision over accuracy (Fig 9). It is important to note

here that the model does not achieve high boundary positioning accuracy for the I-D boundary

with any of the temporal patterns even in the absence of noise (S1A Fig). This might be a result

of measurement inaccuracy and due to the projection of a 3D geometry into 2D, or that other

factors not included in our minimal GRN are responsible for pushing the I-D boundary more

towards the ventral end. Such trade-offs between precision and accuracy in other systems typi-

cally involve negative feedback [12,18,67], while it is temporal gene expression control that

navigates this tradeoff in our model. Future analysis will reveal if feedback loops also operate

at arch domain boundaries.

Our modeling results for precision and accuracy derive from combinations of 10–100 simu-

lations, somewhat analogous to variability in patterning that can occur between individual

embryos. We speculate that developmentally this suggests that patterning will favor precision

(i.e. show a narrow range of variability between individuals), even if that range differs from the

species ideal. Evolutionarily, this might permit rapid variation in craniofacial morphology dur-

ing radiation events while still maintaining intra-population characteristics. Changes in cra-

niofacial structures are one of the most striking adaptations in rapidly evolving vertebrate

populations such as African rift lake cichlids, and it would be interesting to examine the

parameters of patterning in these species [68,69].

Bmp and Edn1 signaling have overlapping but distinct functions in D-V patterning of the

mandibular arch, with Edn1 primarily maintaining intermediate gene expression and playing

a permissive rather than instructive role [24,27,30,40]. Our modeling results are consistent

with Bmp signaling acting as the principal instructive ventralizing signal, at least for inducing

V and I domains. They also suggest that moderate perturbations or noise in Bmp signaling, at

Fig 8. The temporal order of D-V domain formation modulates responses to noise and the accuracy of domain boundaries. Graphs

show the boundary error E between simulation results and measurements in wild type. Statistics are collected for 10 simulations with the

2D model and results are normalized with respect to the highest error. The line shows the mean value and the error bars ±σ. (A,B) For

noise in Bmp signaling the IVD order allows more robust positioning of the V-I boundary (A). Forming I last is however slightly

advantageous for positioning the I-D boundary (B). (C,D) For noise in Edn1 signaling forming I last allows more robust positioning of

both boundaries. (E,F) With noise in the GRN the boundary error still depends on the temporal sequence but there is no clear clustering

with early or late gene groups. (G,H) With all three sources of noise combined it is clearly advantageous to express I genes last for the

positioning of the V-I boundary (G) and slightly advantageous for the I-D boundary.

https://doi.org/10.1371/journal.pcbi.1006569.g008
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levels that do not completely eliminate expression of various factors or formation of later carti-

lage structures, will still have effects on D-V arch patterning. In several reports, changes in lev-

els of patterning signals result in a moderate-to-severe spectrum of phenotypes. Reduction in

Bmp signaling by heat-shock induction of a dominant-negative Bmp receptor can lead to vary-

ing degrees of loss of ventral structures, depending on the timing of heat-shock and the dose of

the dominant-negative transgene [24,30,70]. Increasing Bmp levels moderately by overexpres-

sion of Bmp ligand or injection/bead insertion of Bmp proteins causes homeotic transforma-

tions, such as the more dorsal palatoquadrate cartilage acquiring characteristics of the ventral

Meckel’s cartilage, while more severe changes in signaling levels leads to significant losses

throughout the jaw cartilage [24,30,71]. Modulation of Edn1 signaling in either direction simi-

larly results in varying degrees of patterning changes, although consistent with its permissive

role even very high levels of Edn1 do not expand the I domain, while reducing the D domain

[24,26,27,30,39].

These divergent phenotypes, along with our analyses of parameter sensitivity and the effects

of noise, suggest a region of stability where the patterning network can compensate for

changes in signals, with moderate phenotypes appearing at the edges of this region, and severe

phenotypes occurring when signaling falls outside the stable region altogether. Our computa-

tional model suggests that further experiments up- and down-regulating signaling will reveal

transition points where stability breaks down, and those data will in turn improve the quality

of our model. We can also extend our framework in the future to incorporate other signals

that have been implicated in D-V patterning and growth, including Wnts [72] and Fgfs [73] as

well as other GRN components [40,42].

Boundaries between different D-V domains in the mandibular arch are sharp, which is

especially prominent in our live imaging (S2 Fig). How is this sharpness achieved? Our model

simulates sharp domain boundaries in the absence of noise. However, when stochastic fluctua-

tions are present the domain boundaries are no longer sharp since all cells are responding

independently to the noisy signals. Computationally, we can extend our model to investigate if

cell-cell communication and cohesion between cells of the same identity will improve bound-

ary sharpening. Experimentally, we can examine if changes in signaling too small to disrupt

overall patterning can nevertheless degrade boundary sharpness, which would suggest that this

sharpness comes from the patterning pathways themselves. Although our current analysis of

live cell dynamics does not suggest a significant degree of NC cell rearrangements once they

have reached the pharyngeal arches, cell sorting contributes to domain boundary sharpening

in some contexts, such as the neural tube [74], and automated tracking of large numbers of

arch NC cells in the future might reveal subtle but important cell movements in arches as they

are patterned.

D-V arch patterning of the mandibular arch and its associated GRN are largely conserved

among vertebrates [21,23,75]. However, differences in the resulting anatomy of the jaw and

skull in the adult, as well as the size, shape, and growth of the mandibular arch primordium

make it difficult in some cases to draw clear homologies across species e.g. zebrafish and

mouse or human [21,23]. In addition, differences in the timing of gene expression and our

Fig 9. Temporal orders have different trade-offs for domain patterning in the context of noise. Each graph shows

the precision in gene expression on the x-axis and the accuracy of simulated boundaries relative to measured wild-type

boundaries on the y-axis. The contribution of noise is shown both individually for Bmp (A,B) and Edn1 (C,D)

signaling and the GRN (E,F), and also for all sources of noise combined (G,H). For both precision and accuracy, a

lower numerical value reflects better resistance to noise. For all noise sources combined (G,H) the data align on the

anti-diagonal indicating trade-off between accuracy and precision. The observed IVD order (red dots) favors precision

at the expense of accuracy.

https://doi.org/10.1371/journal.pcbi.1006569.g009
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ability to identify clear functional homologues across species have made comparisons of the

genetic pathways involved challenging. Having made a computational model for the zebrafish

jaw that incorporates these spatiotemporal features we can now extrapolate to other species to

determine if similar constraints apply. In addition, we can begin to ask questions at a more

integrated, systems biology level, about how such changes in size, shape and timing may have

arisen and how the GRN has adjusted to compensate for changes in such features as signal

propagation and noise.

Supporting information

S1 Table. Microscopic dissociation parameters. The microscopic dissociation constants pi

used to generate the mandibular gene regulatory network (GRN) for dorsal-ventral (D-V) pat-

terning and the literature references on which the interactions are based (see Fig 1A and Eqs

1–3).

(DOCX)

S2 Table. Production and degradation parameters. Production/degradation rates for the

ventral (ve) intermediate (in) and dorsal (do) genes. One value is given since the production

rate equals the degradation rate for each gene group.

(DOCX)

S3 Table. Mechanical parameters. Parameters used to model mechanical forces between cells,

between cells and surrounding tissues, and chemoattraction.

(DOCX)

S1 Fig. Enforcing the boundary conditions and modeling the domain boundary error. (A)

Simulation results of the two-dimensional (2D) model with the measured boundary (green

line), averaged over 6 sets of zebrafish images. To enforce the simulated cells to stay inside the

measured arch outlines (green line) we put two rings of a total of 2118 boundary nodes around

the outline (white lines). These nodes exert a repulsive force (Eq 7) on the cell centers xi, such

that the cells do not leave the green perimeter. (B) Simulation results of the 2D model over-

layed with the domain boundaries averaged over three sets of images from zebrafish embryos

for the V-I (pink-white dashed line) and I-D (yellow-white dashed line) boundaries. (C)

Boundary error E is the sum of the distances di (green arrows) between the simulated domain

boundary for each cell at the boundary (white dots) and the actual measured boundary (white

line).

(TIF)

S2 Fig. Domain transgene expression boundaries are sharp. Single confocal z-slices of dlx5:

GFP;sox10:lyn-tdTomato (A) and hand2:GFP;sox10:lyn-tdTomato (B) double-transgenic

embryos at 30 hpf. For both the intermediate-dorsal boundary (A) and ventral-intermediate

boundary (B), quantification of per-cell fluorescence intensity in arches 1 and 2 reveals two

distinct populations of cells, those with high signal intensity and those with low signal inten-

sity, indicating an abrupt drop-off in fluorescence signal and thus a sharp boundary of trans-

gene expression. In the graphs, the y-axis shows mean GFP intensity per cell, normalized to

the maximum possible intensity. The x-axis shows the D-V position of each cell, measured

in μm with the ventral edge of the arch at 0.

(TIF)

S3 Fig. 2D modeling results for six different temporal orders of D-V domain formation. By

simply switching the absolute values of the production/degradation rates while keeping their

ratio constant (see S1 Table), the three gene groups (dorsal, intermediate and ventral) can be
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expressed in any of the 6 possible orders and still lead to a correct final pattern at 35 hpf.

(TIF)

S4 Fig. Model parameter sensitivities over time at high morphogen concentrations. Sensi-

tivity plots for all gene groups with respect to the parameters p1−p7 (see Fig 1A), when cells

experience morphogen concentrations typical of the V domain. The values are normalized

with respect to the strongest sensitivity over time in all of the parameters for each gene V,I and

D individually. The Bmp parameters p1 and p5 are most sensitive to fluctuations (see Fig 5).

The temporal order mostly effects the sensitivity of the dorsal domain, where expressing I last

(center) leads to the strongest sensitivity of D.

(TIF)

S5 Fig. Model parameter sensitivities over time at intermediate morphogen concentra-

tions. Sensitivity plots for all gene groups with respect to the parameters p1 − p7 when cells

experience morphogen concentrations typical of those in the I domain. The values are normal-

ized with respect to the strongest sensitivity over time in all of the parameters for each gene V,

I and D individually. The GRN is again most sensitive to perturbations in the parameters

modeling the BMP effect (p1 and p5), though the sensitivity of I and D with respect to p1 has

been reduced compared to the ventral domain, due to the lower concentration of Bmp. The

temporal order is again mostly significant in the dorsal domain, where expressing I last (cen-

ter) leads to the strongest sensitivity of D.

(TIF)

S6 Fig. Model parameter sensitivities over time at low morphogen concentrations. Sensitiv-

ity plots for all gene groups with respect to the parameters p1 − p7, when cells experience mor-

phogen concentrations typical to those in the D domain. The values are normalized with

respect to the strongest sensitivity over time in all of the parameters for each gene V, I and D

individually. Since both the Bmp and ventral gene concentrations are very low in the dorsal

domain, the intermediate gene expression is here most sensitive to the direct control by the

two morphogens (Edn1 (p2) and Bmp (p5), see Fig 1A). Similarly the dorsal gene expression

depends on those two parameters by indirect interaction through the intermediate genes. The

temporal order here favors a late expression of intermediate genes (center).

(TIF)

S7 Fig. Certain model parameters are more sensitive to the temporal order of D-V domain

formation over time. The normalized sensitivities si(t) plotted over time (x-axis) for genes

expressed in the D, I and V domains with respect to the parameters p1 (left plots) and p5 (right

plots). These parameters both model the influences of BMP (see Fig 1A) and are the most sen-

sitive to the domain order. The sensitivity to both parameters p1 and p5 deviates the most from

zero at early times, when genes in the I domain are expressed last (VDI and DVI).

(TIF)

S8 Fig. Modeling a single morphogen system shows that it is robust. (A) The GRN used to

compute gene expression inside each cell if only one D-V morphogen gradient emanating

from ventral is controlling the patterning. The parameters p2 and p5 in Fig 1A merge into

only p2 here. (B,C) The control parameters pi when the single morphogen gradients is either

Bmp (short range) or Edn1 (long range). (D) The sensitivities in a two morphogen GRN for

comparison with the IVD order and morphogen concentrations typical for the ventral domain

(see also S4 Fig, IVD). (E, F) The sensitivity of the three gene groups when only one gradient

with extent similar to Bmp or Edn1, respectively controls the GRN. The parameter p1 is still

the only one with effect on ventral gene expression and p2 now accumulates the sensitivity of
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the intermediate and dorsal genes compared to p2 and p5 in the two morphogen model.

(TIF)

S9 Fig. Early-expressed genes are more robust. 1D gene expression profiles for ventral

(pink), intermediate (blue) and dorsal (yellow) genes showing that with noise in the GRN, ν =

0.05. The thick lines show the mean value over 100 simulations and the shaded area is ±σ.

Genes expressed earliest are more robust and less susceptible to noise than genes expressed

later. Especially in the case when I is expressed last (center) the GRN is most susceptible to

noise, in agreement with the findings in S4 Fig and S5 Fig.

(TIF)

S10 Fig. Effects of noise in the Edn1 gradient are similar with different temporal orders of

domain formation. 1D gene expression profiles for ventral (pink), intermediate (blue) and

dorsal (yellow) genes with noise in Edn1, η2 = 1. The thick lines show the mean value over 100

simulations and the shaded area is ±σ. The simulations show that Edn1 fluctuations affect the

intermediate gene group most strongly, especially when I is expressed first (right). Although

Edn1 noise has a smaller effect on the deviation in expression patterns in general it represses

the mean of the intermediate genes, since more Edn1 does not induce the intermediate genes

more strongly but lack of Edn1 leads to a loss of the intermediate domain, (see Fig 4). As a

result the ventral domain expands and this effect is strongest when the I genes are expressed

last (center).

(TIF)

S11 Fig. Effects of combined noise in both morphogens and the GRN. 1D gene expression

profiles for ventral (pink), intermediate (blue) and dorsal (yellow) genes showing that if noise

in both Bmp and Edn1 gradients are present together with noise in the GRN. The thick lines

show the mean value over 100 simulations and the shaded area is ±σ. The effects of the individ-

ual sources of noise are additive and noise in GRN dominates such that patterning the I

domain last leads to the least precision in gene expression (center).

(TIF)

S12 Fig. 2D modeling of patterning by extrinsic control of timing. (A) Control parameters

if the temporal control is orchestrated by extrinsic factors, modeled by if-statements instead of

intrinsic (modeled by varying production/degradation rates). (B) Final patterning with extrin-

sic temporal control, where the intermediate genes are expressed from the start of the simula-

tion time (22 hpf), the ventral genes are only expressed after 24 hpf and the dorsal genes are

turned on last, after 26 hpf.

(TIF)

S13 Fig. Comparison between intrinsic (varying production/degradation rates) and extrin-

sic (if-statements) temporal control. 1D gene expression profiles for ventral (pink), interme-

diate (blue) and dorsal (yellow) genes, where the thick lines show the mean value over 100

simulations and the shaded area is ±σ. The simulations show that the gene expression profiles

for extrinsic regulation of temporal patterning are less distinct than that of intrinsic regulation.

Dorsal genes are expressed homogeneously across the domain. The effect of noise is similar to

that of the minimal intrinsic model, where Bmp fluctuations have a stronger effect than those

of Edn1 and the combined noise is dominated by noise in the GRN.

(TIF)

S14 Fig. Bmp noise with extrinsic control. 1D gene expression profiles for ventral (pink),

intermediate (blue) and dorsal (yellow) genes, where the thick lines show the mean value over

100 simulations and the shaded area is ±σ. With noise in the Bmp gradient, η1 = 1, and
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extrinsic control of gene expression timing the different sequences of D-V domain formation

do not lead to different sensitivities to noise (in contrast to intrinsic timing, see Fig 7).

(TIF)

S15 Fig. Comparison of the boundary accuracy with intrinsic and extrinsic temporal con-

trol. Statistics are collected from 10 simulations of the two-dimensional model, the line indi-

cates the mean value and the error bars ±σ. If the timing is controlled intrinsically (varying

production/degradation rates, red) the boundaries are more accurately positioned for individ-

ual sources of noise than when external factors control the temporal order (if-statements,

black). However, the noise appears to be less additive with external control, such that for all

sources of noise being present simultaneously the extrinsic model succeeds in more accurate

positioning of the boundaries.

(TIF)

S1 Movie. 1D model of arch patterning. Deterministic simulation of the 1D model of the

mandibular arch along the D-V axis. A region is defined as patterned by a certain gene group

if the expression level is above 20% of the maximum achieved over time (indicated by the

black dashed line) and if expression is higher than that of the other gene groups. White regions

are not yet expressing any genes. The narrow ventral domain corresponds to the thin layer of

cells expressing ventral genes. Pink: ventral, cyan: intermediate, yellow: dorsal.

(MOV)

S2 Movie. Morphogen gradients during patterning. A 2D simulation of arch patterning indi-

cating the zone of production of both morphogens (green dots) and the resulting morphogen

gradients are in grayscale. Patterning is further explained in S3 Movie.

(MOV)

S3 Movie. 2D model of arch patterning. Deterministic simulation of the 2D model combin-

ing D-V and A-P axes. Here a single cell is defined as patterned (indicated by the correspond-

ing color) if the gene expression level exceeds 20% of the maximum and is higher than the

expression of the other genes. Grey indicates cells that are not yet expressing any genes above

the 20% cut-off. Colors become deeper gradually as the level of expression increases. Pink: ven-

tral, cyan: intermediate, yellow: dorsal, grey: unpatterned.

(MOV)

S4 Movie. Live imaging of hand2 transgene expression. Maximum projections of confocal

imaging of live hand2:eGFP;sox10:lyn-tdTomato double-transgenic embryos. hand2:eGFP
(green) is only expressed in ~2 ventral-most rows of cells, marking the ventral domain of the

arches. sox10:lyn-tdTomato (red) marks all neural crest-derived (including arch) cells. hand2:

eGFP is also expressed in a population of non-arch cells that overlap the arch in a maximum

projection. The anterior of the embryo is to the left. Pharyngeal arches 1 and 2 are in the center

of the image, and yolk autofluorescence is visible in the lower right.

(AVI)

S5 Movie. Live imaging of dlx5a transgene expression. Maximum projections of confocal

imaging of live dlx5a:eGFP;sox10:lyn-tdTomato double-transgenic embryos. dlx5a:eGFP
(green) is expressed in ~4–5 rows of cells from the ventral border of the arch, marking the

intermediate-ventral domain of the arches. Unlike mRNA expression (Fig 2), transgenic eGFP

perdures in the ventral domain at later time points. sox10:lyn-tdTomato (red) marks all neural

crest-derived (including arch) cells. The anterior of the embryo is to the left. Pharyngeal arches

1 and 2 are in the center of the image, and yolk autofluorescence is visible in the lower right. In

Modeling craniofacial development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006569 November 27, 2018 26 / 31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006569.s018
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006569.s019
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006569.s020
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006569.s021
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006569.s022
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006569.s023
https://doi.org/10.1371/journal.pcbi.1006569


this embryo, the arches undergo a pronounced compaction and rotation at later time points.

(AVI)

S6 Movie. Stochastic 1D model of arch patterning. A single stochastic simulation from the

1D model of arch D-V patterning with GRN, Bmp, and Edn1 noise. Fig 6B–6E are derived

from combined statistics of 100 of these individual simulations. Pink: ventral, cyan: intermedi-

ate, yellow: dorsal.

(MOV)

S7 Movie. Stochastic 2D model of arch patterning. A single stochastic simulation from the

2D model of arch D-V patterning with GRN, Bmp, and Edn1 noise. When all three sources of

noise are present simultaneously the effects are additive and the I domain is nearly lost while

all three gene groups show strong fluctuations in their expression profiles as with noise only in

the GRN.

(MOV)
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51. Zemanová L, Schenk A, Hunt N, Nienhaus GU, Heilker R. Endothelin Receptor in Virus-Like Particles:

Ligand Binding Observed by Fluorescence Fluctuation Spectroscopy. Biochemistry. 2004 Jul 1; 43

(28):9021–8. https://doi.org/10.1021/bi035901+ PMID: 15248759

52. Caballero-George C, Sorkalla T, Jakobs D, Bolaños J, Raja H, Shearer C, et al. Fluorescence Correla-

tion Spectroscopy in Drug Discovery: Study of Alexa532-Endothelin 1 Binding to the Endothelin ETA

Receptor to Describe the Pharmacological Profile of Natural Products. Sci World J. 2012 May 1; 2012:

e524169.

53. Pomreinke AP, Soh GH, Rogers KW, Bergmann JK, Bläßle AJ, Müller P. Dynamics of BMP signaling
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