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 MANIFEST CHARACTERIZATION AND TESTING FOR
 CERTAIN LATENT PROPERTIES'

 BY A. YUAN AND B. CLARKE

 Howard University and University of British Columbia

 Work due to Junker and more recently due to Junker and Ellis char-

 acterized desired latent properties of an educational testing procedure in
 terms of a collection of other manifest properties. This is important because

 one can only propose tests for manifest quantities, not latent ones. Here,
 we complete the conversion of a pair of latent properties to equivalent con-

 ditions in terms of four manifest quantities and identify a general method

 for producing tests for manifest properties.

 1. Introduction. Item response theory, IRT, is the statistical theory of

 standardized tests which are commonly used in educational testing applica-
 tions. The goal is to combine the data generated by many examinees answering
 a collection of test items so as to estimate the value of a parameter, or trait,

 say 0, for each of the examinees. The parameter is intended to quantify a
 latent trait such as "mathematics ability." The traits are latent in the sense

 that they cannot be measured directly.
 More specifically, desired properties of such testing procedures are called

 "latent" when their statement depends explicitly on the the latent trait being

 estimated. Most efforts at modeling involve the introduction of latent param-
 eters: one specifies parameters to reflect aspects of the physical problem, such
 as the individual achievement of each examinee, the difficulty of each test
 item, specialized knowledge that certain examinees might possess, etc. This
 is in contrast to the manifest properties of a testing procedure which can be

 phrased in a way that does not explicitly depend on the latent trait 0.
 The limitation of a latent model is that it contains parameters for the latent

 trait: the experimenter wants to estimate each examinee's parameter value
 and so cannot perform hypothesis tests on a conjectured model in the usual
 way. The solution to this problem is to convert latent models, or latent state-

 ments about them, to physically meaningful manifest properties which are
 provably mathematically equivalent to the latent properties actually wanted.

 Manifest statements are amenable to conventional hypothesis testing and the
 problem then becomes the identification of optimal hypothesis tests for the

 manifest quantities. In this way one can test hypotheses that are independent
 of the latent structure, at least in principle.

 The goal of characterizing latent properties in terms of manifest properties

 to be tested begins with Stout (1987). Stout considers the requirement that
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 the smallest dimension of ( for which the manifest model is a mixture of
 models conditional on 0 is one; this is denoted dL = 1. Clearly, this is a latent

 property. Stout defines a manifest analog called "essential unidimensionality,"
 denoted dE = 1 and gives a hypothesis test for it.

 Junker (1993) (hereafter J93) established a variety of results giving cases in
 which collections of latent properties were implied, or were implied by, collec-
 tions of manifest properties. Our first result here is a version of Theorem 5.2b
 in J93 which gives dL = 1 and another latent property-local asymptotic

 discrimination or LAD-as a consequence of four manifest properties, one of
 which is dE = 1. We weaken one of the other three manifest properties to

 an asymptotic form, re-prove Junker's result and then establish the converse.
 We then propose hypothesis tests for the three manifest properties which cur-
 rently do not have associated tests. Taken together this is the major contribu-

 tion of our paper: the results here complete the manifest characterization of
 unidimensionality of e and LAD and provide a way to test for whether both
 of them are satisfied.

 A more recent contribution due to Junker and Ellis (1997) characterizes

 monotone unidimensional models in IRT contexts in more generality; see also

 Ellis and Junker (1997). The main result in this work characterizes monotone

 unidimensional models in terms of two properties: conditional association and

 vanishing conditional dependence. The first of these appears in our theorem
 mentioned above. So, it remains to deal with the second. We identify a hypoth-

 esis test for it in Section 5. However, as with the other tests here, extensive
 development will be necessary before it can actually be used.

 The structure of the paper is as follows. In Section 2, we provide the key def-

 initions, notation and background to make the main characterization theorem
 intelligible. We state and prove this theorem in Section 3. In Section 4, we give

 tests for the manifest conditions identified in the theorem. In Section 5, we
 give one further test to indicate how the characterization result in Junker and

 Ellis (1997) can be used. In Section 6, we discuss briefly how testing might be

 done in practice.

 2. Notation and preliminaries. The setting in which our results apply

 is the following. Let Xj = (X1, x2, ..., Xj) be an outcome of XJ = (X1,..., XJ),
 a binary response variable in which each of the Xi's takes values zero (wrong)
 or one (right). One can impose restrictions on the marginal distribution for the

 test items of an examinee P(XJ = Xj) by making assumptions on the condi-
 tional distribution P(XJ = Xj 0 = 0) for the vector of examinee responses Xj
 given the latent trait 0. This follows from writing

 (2.1) P(XJ = XJ) = JP(XJ = XJ1O = 6)dF(0)

 in which the sampling distribution of the latent variable 0 = (01, ..., 0d)
 is F(O). Often one requires conditional independence given 0, that is, that

 P(XJ = XJ I e = 6) = BJ P(Xj = XjIO = 0). The marginal distribution



 878 A. YUAN AND B. CLARKE

 P(XJ = Xj), in which 0 does not appear explictly, defines the manifest struc-
 ture. By contrast, the latent variable appears explicitly in the marginal dis-

 tribution F(6) and conditional distributions P(XJ = Xji0 = 6) which define
 the latent structure of the sequence of response variables; see Cressie and
 Holland (1983).

 In this context, there are three latent assumptions which are typically made
 in IRT; see Birnbaum (1968), Holland and Rosenbaum (1986), Rosenbaum
 (1987), Holland (1990) and Junker (1993). The first is called local indepen-

 dence (LI): The conditional probability for Xj given 0 in the integral of (2.1)
 factors as noted into a product of univariate probabilities. LI is just the usual
 factoring of the densities definition of statistical independence; 'local' here just
 means the property holds for a range of O's. The second is called monotonicity

 (M): For each j the probability P(Xj = 110 = 6) is increasing in 0. This has
 the interpretation that, roughly, the higher a value of the latent trait an exam-
 inee has, the more likely the examinee is to get question j right. The third
 latent assumption typically made is that the dimensionality d of 0 is much
 smaller than the test length J. In particular we want d - 1. See also Stout
 (1990) and Junker (1991) for related work on unidimensionality and essential
 independence.

 To continue, many definitions are necessary. We group them into four classes.
 The first class has four members and pertains to dimensionality. Often we

 write dL = 1 to mean more than d = 1. Following Stout (1990) we use the
 following.

 DEFINITION 2.1. The statement dL = 1 means that one is the least dimen-
 sion for which (2.1) holds and P6 satisfies LI and M.

 This concept of dimensionality will be translated into essential unidimen-
 sionality below. Essential unidimensionality requires the properties local asy-
 mptotic discrimination, LAD, and essential independence, El. To define LAD,

 let Aj = Aj(Xj) for j =1, ..., J be a sequence of random variables satisfy-
 ing supj lAj(/)l < M < oo for some positive M. The functions Aj are called
 uniformly bounded item scores. They are ordered if Aj(0) < Aj(1). Moreover,
 ordered uniformly bounded item scores are said to be asymptotically discrim-

 inating if (1/J) Zjf1(Aj(l) - A (0)) is positive and bounded away from 0, as
 J -> oo. Denote the mean of the item scores by AJ = (1/J) EJ 1 Aj(Xj), and,
 with a slight abuse of notation, write Aj(0) = E(AjI0). When dL = 1, AJ(6)
 may be inverted to produce estimates of 0 directly. In particular, we use AJ1(
 to denote the inverse function for Aj(6).

 Now, from J93, LAD is formally defined as follows.

 DEFINITION 2.2. We say that Xj is locally asymptotically discriminating,
 LAD, if for every set of asymptotically discriminating item scores, to every 0

 there corresponds an interval No containing 0 and an eg > 0 such that for
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 any t E No with t 7& 0 we have

 liminf AJ(t) - Aj(6)

 Next, consider the following analog to LI, taken from J93, modified from
 Stout (1990):

 DEFINITION 2.3. We say that Xj is essentially independent (EI) with
 respect to 0 if

 lim Var(Aj = 06) = 0

 for every set of uniformly bounded item scores {Aj(.): j = 1, 2, ...
 Using Definitions 2.2 and 2.3, J93 has the following.

 DEFINITION 2.4. We say that Xj is essentially unidimensional and write
 dE = 1 if there exists 0 such that XJ is El and LAD with respect to 0.

 This is not identical to the usage in Stout (1987) or Stout (1990), but is close
 and more appropriate here. Observe that dE = 1 is not, strictly, a manifest
 condition: LAD is latent and dE = 1 depends on LAD. However, Stout (1987)
 has given a hypothesis test for dE = 1 and since our goal is to test dL = 1 and
 LAD, the latent nature of dL = 1 remaining in dE = 1 after replacing LI by
 El is not important in practice. Henceforth, we implicitly assume unidimen-
 sionality although our statements hold, possibly with minor modifications, for
 the multidimensional case too.

 The second class of definitions has five members and pertains to the condi-
 tional covariance between items. The first was introduced by J93.

 DEFINITION 2.5. We say that the covariances given the sum are nonposi-
 tive, CSN, if and only if for any i < j < J the covariance between items i and
 j given the mean is negative, that is,

 Cov(Xi, XjIXj) < 0.

 We weaken Junker's definition to an asymptotic criterion on Cov(Xi,
 XjlXj), so it remains manifest.

 DEFINITION 2.6. The sequence XJ satisfies asymptotic CSN, ACSN, if and
 only if, for all 1 < i < j < J, and all 0, we have that

 P6(COV(Xi, X|IXJ) > 8) O,
 for any 8 > 0, as J -* oc.

 It would be equivalent to require Cov(Xi, Xj Xj) to be asymptotically non-
 positive in the marginal probability P from (2.1).

 The latent version of Definition 2.5 or 2.6 used in J93 is the following.
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 DEFINITION 2.7. The sequence XJ satisfies the property that, locally, the
 covariances given the sum are nonpositive, LCSN, if and only if,

 CoV(Xi, XjIXi, 0) < 0 Vi o j.

 The third class of definitions is also based on covariances, but they are

 between functions of subvectors of Xj. There are three members in this class.
 The first is from J93.

 DEFINITION 2.8. We say that XJ is locally associated, LA, if and only if for
 all 0, and all coordinatewise nondecreasing functions f and g, and all finite
 response vectors Y taken from Xj we have that

 Cov(f(Y), g(Y)Io = 0) > 0.

 Definitions 2.7 and 2.8 are only used in the proof of Theorem 3.1.
 The second is from Holland and Rosenbaum (1986). It is the following.

 DEFINITION 2.9. We say that XJ is conditionally associated, CA, if and only
 if for every pair of disjoint, finite response vectors Y and Z in X, and for every
 pair of coordinatewise nondecreasing functions f(Y) and g(Y), and for every
 function h(Z), and for every c E range(h) we have that

 Cov(f(Y), g(Y)Ih(Z) = c) > 0,

 for any c in the range of h.

 The third is from Junker and Ellis (1997). It is a hybrid of CA and ACSN.

 DEFINITION 2.10. We say that XJ has vanishing conditional dependence,
 VCD, if and only if, for any partition (Y, Z) of the response vector XJ, and
 any measurable functions f and g we have that

 lim Cov(f (Y), g(Z)l XJ+J, ..., Xj+,,) = O

 almost sure.

 Note that in this definition, the asymptotics are in test length rather than
 number of examinees.

 The fourth class of definitions pertains to monotonicity, M. It has one mem-
 ber: the manifest analog of monotonicity, from J93.

 DEFINITION 2.11. Let X() = XJ- Xj/J. We say manifest monotonicity,
 MM, holds if

 E(Xi I X(j)) is nondecreasing as a function of X(j)

 for all j < J and all J.
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 With these definitions in hand, we can informally state our main theorem.
 Taken together, the two latent conditions dL = 1 and LAD are equivalent to
 the four conditions dE = 1, ACSN, MM and CA taken together. Three of these
 four conditions are manifest and we can identify hypothesis tests for them.
 The first condition, essential unidimensionality, already has a hypothesis test;
 see Stout (1987). We remark also that Junker and Ellis (1997) used CA and
 VCD to characterize monotone unidimensional representations of models, that
 is, LI, M and dL = 1.

 The fourth class of definitions includes the regularity conditions we require

 for our formal results. The first of these comes from J93. We assume that XJ
 has been embedded in a sequence of binary response variables X and that for
 any finite response vector Y in XJ,

 (2.1) E=f(Y) IO 0) is continuous in 0

 for any function f(Y). We require the differentiability of conditional expecta-
 tions, namely, that for each J and each j < J,

 (2.2) sup | E(XjIXJ = u) < M < oo.
 j, j, 1u

 To make use of LCSN, we require an analogue to (2.2). For each J and j < J
 we have that

 (2.3) sup d E(Xj I XJ = U, e = f) < M,, < oo.

 We also require the regularity conditions that permit application of the
 corollary to Theorem 4.1 in Clarke and Ghosh (1995). First, we assume the
 characteristic functions f j(t, 0) of the response variables Xj, conditional on 0,
 are jointly continuous in (t, 0) uniformly in j and we denote the conditional

 density of Xi by p(xjl[) = p(xj), with respect to counting measure, for
 instance, when we need it. Next, we define ,FjJ(6) = EOX where X is the
 sample mean of the first J Xj's and for j = 1,. ..,Jwe set j() = Var0(Xj)
 with mean Yj(6). Given this, we make a general definition.

 DEFINITION 2.12. A sequence of functions (f n (H)) IJ=1 is locally invertible at

 00 if and only if there is a neighborhood N60 of 6o so that, for all j, f j I No NH0
 >* fj(NOO) is invertible, for 0 E N' we have that f j(O) E f j(N0O)c and we
 have that the set OJ_1 f j(NOO) contains an open set around limj, f j(00),
 assumed to exist.

 Now, we require that ft1(6), Y7j1(6) and V,ij(0)tEJ1(0)VfAj(0) have first
 order Taylor expansions in 0, at any 00 with error terms uniformly small over
 j on some fixed open set containing 00.
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 3. The main result. To see the necessity of weakening CSN to ACSN we
 restate a result of J93.

 THEOREM. Suppose X is a sequence of binary responses and 0 is unidimen-
 sional. If (2.1), (2.2) and (2.3) hold, then:

 (a) CA, dE = 1, LCSN, MM X dL = 1, LAD.
 (b) CA,dE = 1, CSN, MM = dL = 1,LAD.

 PROOF. See Theorem 5.2 in J93.

 It is seen that LCSN is latent and permits the biconditional in (a), whereas
 CSN which is manifest is so strong that a converse is unobtainable for (b).
 Relaxing CSN to ACSN will permit us to retain (b) and obtain the converse.

 THEOREM 3.1 (Forward direction). Assume (2.1) and (2.2). Then

 (3.1) CA, dE = 1, ACSN and MM,

 taken together, imply the two latent conditions

 (3.2) dL = 1 and LAD.

 (Backward direction). Assume the logarithm of any density p6(x) is concave
 in x and that the regularity conditions at the end of Section 2 are satisfied.

 Then, the conditions in (3.2) taken together imply the conditions in (3.1), taken
 together.

 REMARK. The forward proof is, mostly, a modification of techniques used
 in J93. The assumption of logconcavity is used for the backward direction so
 that the corollary to Theorem 4.1 in Clarke and Ghosh (1995) can be applied.
 The proof of that result uses Theorem 2.8 in Joag-Dev and Proschan (1983).

 PROOF. We start with the forward direction because, although harder, it
 is more important in practice.

 By definition, dE = 1 implies that both LAD and EI are satisfied. So, it is
 enough to get dL = 1. By definition, dL = 1 is equivalent to LI and M taken
 together. We get M from Proposition 4.1 in J93. It states that EI, LAD and
 MM taken together imply M.

 To obtain LI, we use Proposition 3.2 from J93 which shows that LI is
 equivalent to LA and LCSN taken together. The first of these, LA, follows
 by use of Proposition 3.1 in J93 which gives that CA, dE = 1 and (2.1) taken
 together imply LA. We show how the second of these, LCSN, follows from the
 assumptions.

 We begin by observing that

 (3.3) Cov(Xi, Xjl0) = lim Cov(Xi, Xjlaj(0) < Xi < j(0)),
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 where aj(6) and j3J(6) are two functions satisfying j3j(0) - aj(O) \ 0 as
 J -+ oc. This follows from Lemma 3.1 in J93. Now, we can use ACSN to get
 LCSN. It is enough, by (3.3), to show that

 (3.4) lim Cov(Xi, Xjlaj < XJ j,,l3,J) < O,
 J-+OO

 for all ,BJ - aj \, 0. To obtain (3.4), we follow J93. Note the standard identity

 Cov(Xi, XjlajJ < Xj <f,(3j)

 (3.5) = E(Cov(Xi, XjlXj)lcaj < X< ,Bj)

 +Cov(E(XiIXj), E(XjIXj)Iaj < XJ < ,l3)4

 It is enough to show that both terms on the right-hand side of (3.5) go to zero.

 First, recall X is a sequence of binary responses so that Cov(Xi, X3 IXi) < 1
 and write x(A) to denote the indicator function for a set A. Now, given 8 > 0
 the first term to control is

 (3.6) E(Cov(Xi, XjlXj)Iaj < Xj <13j)

 < ? + E(X(CoV(Xi, Xj IXj) > ?)aj < XJ < 8Xj).

 Since 0 < X(Cov(Xi, XjIXj) > 8) < 1, we have

 (3.7) 0 < lim sup E(X(Cov(Xi, XjlXj) > ?)Iaj < XJ < j) < 1
 J-+OO

 So, the expectation of the middle quantity in (3.7) equals

 lim supE(E(Xy(Cov(Xi, Xj IXj) > -) Iaj < XJ < 8J))
 J-+ cx

 (3.8) = lim sup E(X(Cov(Xi, XjlXj) > 8)

 = Jlim P0(Cov(Xi, XjIXj) > 8)dF(O).

 Now, by ACSN, the limit in (3.8) is zero, so the first term on the right in (3.5)
 is zero.

 The second term on the right in (3.5) goes to zero by use of (2.2) and the
 same argument as is used to prove Lemma 5.1 in J93. Thus, LCSN follows.

 Backward direction: By Theorem 5.2(a) of J93 we see that dL = 1 and LAD
 imply CA, dE = 1, and MM, three of the four conditions we must establish.
 Thus, we have to prove only ACSN. Since dL = 1 implies LI, we can use the
 log concavity and the regularity conditions at the end of Section 2 to restate
 the corollary to Theorem 4.1 in Clarke and Ghosh (1995) as LI implies ACSN.
 This completes the proof. O

 In principle, the foregoing can be extended beyond settings in which the Xi's
 assume finitely many values. See Clarke and Yuan (2000) for a brief
 discussion.
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 4. Testing for CSN, MM and CA. In the three subsections here we give
 hypothesis tests for the three manifest conditions in Theorem 3.1. We recall

 that it is not necessary to give a test for dE = 1 because Stout (1987) has
 already done so.

 The tests we identify follow a common pattern. Identify a statistic which is
 a function of UMVU estimators, show that this function is consistent for the
 quantity of interest, establish an appropriate form of asymptotic normality for
 the statistics, use existing results for the normal case to obtain the hypothesis
 testing optimality of the limiting procedure.

 Suppose that each of m examinees writes a J-item dichotomous test. Usu-

 ally, there are more examinees than test items, that is, m >> J, so our asymp-
 totics will be as m -* oc for fixed J. Let the scores of the ith examinee be

 denoted by Xi = (Xi 1, . . ., Xi, j), for i = 1, . . ., m. This means that xi jj is the
 ith examinee's score on the jth item.

 Without knowing the value of 6 for a given examinee, all we can do is assign

 the mixture density P from (2.1) to a given vector Xi. This means that if we
 do not have access to a quantity such as 0 on which to condition, then we

 are assuming that the Xi's are iid with respect to P. Within a given Xi, the
 Xi j's are not independent (unless we condition on 0), but between different
 Xi's they would be independent. We comment that in this and later sections,
 omitted details of proofs can be found in Yuan and Clarke (2000).

 4.1. Testing for CSN. Let xi. = j EJ=1 Xi, j denote the average over item
 scores for the ith examinee and let - = 1 ET 1 xi j be the average over
 the examinee's scores on the jth item. To construct a test of CSN, we denote

 the generic score of an examinee on items p and q by Xp and Xq and write
 X = (1/J) EJ=1 XJ for the generic test score of this examinee. (X and Xq
 are summands in X.) If CSN holds then we expect that

 (4.1) rp q(X) = Cov(Xp, X_IX = x) <0,

 for p, q = 1, . . ., J, with p :A q, and x = 0, 1/J, . . ., (J - 1)/J, 1 since the
 item scores are binary.

 Expression (4.1) means that there are J + 1 values of x that we have to
 consider. So, for a given collection of m examinees, partition the space of all
 data vectors from the J items into disjoint sets based on the value of x. We
 define

 (4.2) Ak = Xi: Xi | O<k < J.

 Writing 'k = I for the cardinality of Ak, a natural estimator for rp q( k)
 from (4.1) is given by

 (4.3) rp,q(k) = A Xi,P - -p J Xi,q-x.q J
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 where x.(-) = P >i3Ak Xi p. Note that functions of the sets A*, such as Ik and
 x. p( ) are dependent random variables. Indeed, there is a negative correlation
 between lk and lk*, (In a multinomial, the correlation between cell counts goes
 to a negative constant as the sum over all the cells increases.) Also, note there
 are J + 1 values of k, and there are J(J - 1)/2 pairs of items p, q which give

 potentially distinct values of rip q( k). Our first result in this section gives the
 asymptotic behavior of r p q( k ) for each fixed value of p, q, k. Let

 i~~~~~~~~~~~=

 COV(V1) = Sp,q,k Of the Vm i' k is

 m~~~

 piq,k = Ei i ( iVm)( Vm,i iVm)

 m i=1~~~~~~~~~=

 Let g(a, b, c, d) = c/d - ab/d2, (Vg)(a, b, c, d) = (-b/d2, -a/d2, 1/d, (2ab -

 dc)/d3) and ,p qt k = E(Vid. Then we can write

 k = Vg(, q, k)ppk q, k(Vg(hLe q, k))

 and

 p, q, k = Vg(Vm)p q k(V(VmVm)) T.

 Let g(D and b asc denote convergence in distribution, anllconvergence almost
 sure, respectively. Holding the testlength J fixed, we have the following
 asymptotics in m.

 PROPOSITION 4.1. Assume m -oo. Then we have:

 (i) Consistency:

 dcld3)an lp,q,k EV he (k) can wrpitek)

 (ii) Asymptotic normality:

 `~(iqp,q( k) - rp,q(, ))/p,q, k 9pN(O, 1).

 PROOF. (i) Write out r vpeq(k/J) as a collection of sums of m indicator func-
 tions weighted by the possible outcomes. Then apply the strong law of large
 numbers to each summation.
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 (ii) Theorem A in Serfling [(1980), page 122] gives

 D 2
 Vm(g(Vm) - g(lp,q,k)) > N(0, p, q,k)7

 and &2 q k iS consistent for 2 qk? 0_~, q, k ' p, q, k -

 Proposition 4.1 gives the asymptotics for fixed p, q and k. Thus, we can esti-

 mate Ip q k and use the asymptotic normality to test the hypothesis rp q(k) <
 0 for any triple, (p, q, k). However, the hypothesis H: CSN is that rp q(k) iS
 nonpositive for all J(J - 1)(J + 1)/2 triples (p, q, k). Thus, by Proposition 4.1
 we could test H using J(J - 1)(J + 1)/2 normal tests. However, we want to
 avoid performing so many tests.

 Consider the condition CSN(p, q) which is that the covariance between Xp
 and Xq given the mean X is nonpositive for all values of x. The first part
 of the following theorem gives an asymptotically UMP level a test for any

 null hypothesis of the form Hp q = H: CSN(p, q) for given p and q with
 p =A q. This test is based on the statistic Tp,q = maxk(rp,q(J)), permit-
 ing us to examine the covariance between test items. Clearly, it is equiva-
 lent to write H: CSN as H: CSN(p, q) for all distinct pairs p, q. The second
 part of our theorem below extends the test of H: CSN(p, q) to H: CSN by
 taking the maximum over all pairs (p, q). Thus, H: CSN is equivalent to
 H: maxp,q k rp q(k) < 0 and we can base an asymptotically UMP level a test

 on the asymptotics of T = maxp q, (r^p, q(k)). Our definition of asymptotic
 UMP level a is the following.

 DEFINITION 4.1. A testing procedure 4m based on a sequence of test statis-
 tics {Tm} is asymptotic uniformly most powerful (AUMP) level a for H: QH
 versus K: QK if and only if (i),

 sup lim Eo4m < a
 f9EQH m

 and (ii) for all 0 E QK7

 limEfm = arg [max lim Eo

 where the maximum is taken over all sequences {?m} of asymptotically level a
 tests based on the same sequence {Tm} for H versus K.

 Note that clause (ii) permits there to be another sequence of statistics,
 say Sm for which there might be another, different, AUMP level a test for H

 versus K. In the present context Tm = Tp q is asymptotically normal. Even
 if Sm also has a limiting normal distribution we have not ruled out the possi-
 bility that a test based on Sm is AUMP level a and better than the test based

 on Tp, q Development of a testing procedure that would be asymptotically
 UMP level a over large classes of sequences of statistics is difficult, especially

 if the limiting distribution of Sm differs from the limiting distribution of Tp q,
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 To state our theorem, we require definitions suitable for fixed values p, q,
 and then analogous definitions when we take suprema over p and q. In the

 following, we let r'p q( k) = rp, q(-k0)/p, q, k be the rescaled version of rp, q( k),

 rp q() = rp,q(*)/p,q,k, Tp,q = maXkr'pq(k) and Tp,q = maXk r , q().
 Since the o-r q, ks are positive, Hp,q can be reformulated as Hp,q: Tp,q < 0.

 Likewise for H, let T = maxp, q, k rp q(k) and T = maxp,q,k rpq( ) SO that H
 is H: T < 0. ForHp, q withfixedpandq,lettherangeofr'pq(k)be{r1 < r2 <

 < rd} with1 < d < J, and denote the inverse ofr'p q() at rk, for1 < k < d

 by Ak(p, q) = r'-t(rk). Obviously, Ak(p, q) n Aj(p, q) = 0 for k 7& j. It is
 seen that for I E Ad(p, q), rp q(J) = maXk r'p q(k). Denote the multiplicity of
 Ad(p, q) by JAd(p, q)J. Now, rp,q is one-to-one if and only if IAk(p, q)l = 1
 for all k = 1,...,d and d = J. Let Z(Ar(p,q)) = ( k):q(J) k E Ad(p,q)).
 Note Z(Ad(p, q)) is a vector of length JAd(p, q)I, and we may denote it by
 (Z1 ...- ZIAd( ,) ). Also note that Zk and Zk' are independent when k # k'.

 Consider the one-dimensional distributions FAd(p, q)(X) = (D(x)IAd(P, q)j, the
 distribution of the maximum of the IAd(p, q)I entries in the vector Z(Ad(p, q)).

 That is, FAd(p, q)(X) is the distribution function of max{Y1, ..., YIA(P,q)JI,
 where (Y1, ..., YlAd(p,q)I) are iid N(O, 1) because, for any x, P(max(Y1,....
 YJAd(p,q)j) < X) = IiAd(P.q)P(Yi < x). Denote the (1 - a)th percentile of
 FAd(p, q)(X) by F1(p-q)( a).

 For testing H: CSN, we use definitions similar to those used for Hp q,
 Analogously, we record the following definitions: for fixed J, the maximum
 value of rp q( k ) over p, q and k is r', and Ad = r'-1(r'd), is the collection
 of triples (p, q, k) at which r' .( ) achieves the same maximal value r'd. Let

 z(Ad) = (FPq(kJ). (p, q, k) c Ad) be the vector of conditional covariances with
 entries in Ad. Write FAd(X) = p(X)IAdl , denote its 1 - a percentile by Fj1 (1 -
 a). We have the following.

 THEOREM 4. 1. (i) An asymptotic level a test of Hp, q is given by the rejection
 rule

 Tp, q > FAd(p q)(1- a).

 (ii) When IAd = 1, an AUMP level a test of Hp, q is given by the rejection
 rule

 m/Tp, q > q-1(1 - a).

 (iii) An asymptotic level a test for CSN is given by the rejection rule

 mT> F-j(1 - a).

 (iv) When IAdI = 1, an AUMP level a test for CSN is given by the rejection
 rule

 ,mT > (D-1(1 - a).
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 PROOF. We only consider (i) and (ii); the proofs for (iii) and (iv) are similar.

 (i) For 8 > 0, let Bk(8) = {lp q( - qr ( k()I < 8} and let B(8) = FkBk(8).
 We suppose 8 is so small that the intervals [rk - 8, rk + 8] for k = 1, ... , d are
 disjoint. Now, consider the expression

 T m~~/axi~ - maxr
 ( p, q-Tp, q) = YB(-)N/M k x p, q ( k)- a rp q(

 (4.4) +XBC(8) p,q (I?) k

 The first term on the right-hand side of (4.4) is

 (4.5) XB(&) keAxOq) K P(J, -d

 Using Proposition 4.1(ii) and (i) we can use (4.5) to show that the first term
 on the right-hand side of (4.4) converges to FAd(p, q). The second term on the
 right-hand side of (4.4) goes to zero because XBC goes to 0.

 (ii) One can see that HO: CSN(p, q) is asymptotically equivalent to HO:
 Tp, q < 0. Moreover, in the limit qi = Tp, q can be treated as a parameter, so
 it is as if we are testing HO: qi < 0 versus HA: if > 0. Since pqi(Tp q), the

 density for Tp q has a monotone likelihood ratio in its normal limit, Theorem 2
 in Lehmann [(1986), page 78] implies that the critical function given in (i) is
 UMP level a. A technical argument verifies that Definition 4.1 is satisfied. D

 Note that we have not actually identified the values at which the maxima

 occur and that IAd(p q)l or IAdl are unknown. Thus, to use Theorem 4.1 in
 practice, we might construct the 95% confidence intervals for the r' q( k),S

 from the i,> q( k)'S If the interval from the largest r'p r $) does not overlap
 with the other intervals, it suggests that I Ad(p q) I = 1 so that (ii) or (iv) may be
 used for the testing. On the other hand, if several such intervals corresponding
 to the largest 'p, q( k)'S overlap, it suggests IAd(p, q)I > 1 and the number of
 overlapping intervals might be IAd(p, q) I, similarly for Ad.

 One can develop a parallel to Junker and Ellis (1997) for certain continuous
 cases also. Suppose the Xi p's have compact supports covered by a common
 compact set S. Let A = {t: r p, q(t) = sups r p, q(S)}. When A has finitely many
 elements, we get results similar to those in the discrete case. When A has
 countably infinitely many elements, a more technical approach gives results
 similar in spirit to the discrete case. However, the details and the reasoning
 are quite different. See Yuan and Clarke (2000).

 4.2. Testing for MM. It will be seen that the central ideas for testing MM
 are similar to those for testing CSN, and the results are parallel.

 Consider the average score of the ith examinee over the J items, but sub-
 tract the term for the jth item. Denote this by x- I - EJ=l Xir - .j
 As a generic random variable this is X = EJ - Xj/J, in which
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 j indexes the item. Now, the quantity we test to see if MM is satisfied will

 be obtained from Ak, (j) E kJ1) - E(XJ0X(J) = ), where kJ
 0, . . ., J- land j = 1, . . ., J. Indeed, MM can now be expressed as Ak, (j) > 0,
 for all j and k. So, Ho: MM is equivalent to Ho: minO<k<J-l1 <j<J Ak, (j) > 0.

 To develop a natural estimator of lk, (j) > 0 and so a test statistic for
 H: MM, we partition the collection of examinees' binary response vectors
 based on the values of ci (j): Let B k =, where k = O, 1, ...
 J - 1 and j = 1, . . . J. Write the cardinality of Bk (j) as Ik,j = Bk (jl and
 drop the subscript j. Now, a natural estimate Of Ak (j) is

 (4.6) 1 1
 (4.6) ~~~Ak, (i ij- Xi, j.

 k+1 iEBk+l lk iEBk

 Let

 I m t kX k- k+
 Vm =?EXi, jX(Xi,(j) = J), Xi, jx(Xi, (i) = 1)

 (g k ) (g k + 1)) T : T
 with mean

 ILk, j = E(V1) = XjXi = J) E(Xj(Xi, = J ))

 P Xj = P) y(j = ))

 and write its covariance as k, j = Cov(V1). This time let g(a, b, c, d) = (a/c)-
 (bld) with (Vg)(a, b, c, d) = (1/c, -1/d, -a/c2, bld2). It is easy to see that
 g(vm) = Ak, (j), and g(Lk j) = Ak,(j). Let ok, j - Vg(k, j)k, j(Vg(p,q, k))T
 and let Q7k2 j = Vg(Vm)Zk 1(Vg(Vm ))T, where

 Ik,j - m (Vmi-Vm)(Vm, i -Vm)

 Parallel to Proposition 4.1 we have the following.

 PROPOSITION 4.2. Assume m -* oo, then we have in the mixture distribu-
 tion P from (2.1):

 (i) Consistency:

 a.s>.A () Ak, (j) Ak, (j)-

 (ii) Asymptotic normality:

 D

 (Ak, (j) - Ak, (j))/k, J N(0, 1).
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 PROOF. This parallels the proof of Proposition 4.1. For (i) write Ak (j) as a
 collection of sums of m indicator functions weighted by the possible outcomes
 and apply the strong law of large numbers to each summation. For (ii) use
 Theorem A in Serfling [(1980), page 122]. n

 To use Proposition 4.2 to test MM, let A = maxk, j Ak, (j) and A = maxk, j
 Ak, (j). Then testing MM is equivalent to testing HM: A < 0 versus KM: A> 0.
 In the same spirit as Theorem 4.1, let the range of Ak (j) be { 1 < 52 < <
 8d} with the maximum of Ak, (j) over pairs (i, j) being 8d. (We assume -oc <
 infk, i Ak, (j) < SUPk, jA, j < c.) Set Ad = A '(6d) to be the indices {(k, j)}
 where Ak, j is maximal. Now we write z(Ad) = (Ak j: (k, j) E Ad), with
 asymptotic variance matrix Y(Ad), consistently estimated by >(Ad). Finally,
 let P(Px1, ..., Xk) be the distribution function of the k-dimensional normal
 distribution with mean zero (vector) and covariance matrix E. let FAd (x) =

 ()Ad(x,.*, X), FAd(x) = ( X), with 1 - a percentile F 1(1 - a).
 Parallel to Theorem 4.1 we get AUMP level a tests for MM.

 THEOREM 4.2. (i) An asymptotic level a test of HM is given by the rejection
 rule

 aA > F '(I -a). Ad a)

 (ii) When IAdI = 1, an AUMP level a test of HM is given by the rejection rule

 a -1 (1 - a).
 I(Ad)

 PROOF. Let Bk, j() = {lAk, j- Ak, j < ?}, and B(-) = nk, jBk j(r) where
 E > 0 is so small that the intervals (5i ? E) are disjoint for i = 1, . .. , d. As in
 Theorem 4.1 it is enough to consider

 \- A) = XB(?) m (n maxAk, (j) - max Ak, (k))

 (4.7) ?+ XBc(I)m(max mak, ( - mfaX Ak, (j))-

 4.3. Testing for CA. Here we develop an AUMP level a test for CA. The
 ideas are similar to those for CSN and MM. To see this, however, we must
 consider different orderings on response vectors so as to give a condition
 equivalent to CA but more amenable to testing. We begin by developing the
 mechanics to represent the functions that appear in the definition
 of CA.

 First note that in the definition of CA, we can assume without loss of gen-
 erality that the coordinatewise nondecreasing functions are nonnegative. This
 follows because all indices are finite and the covariance will be unchanged if
 we subtract the infimum from each function.
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 Let SJ be the set of all vectors of length J with all entries 0 or 1. That is, Sj
 is the set of vectors s1 = (0, . . ., 0), s2 = (1, 0, . . ., 0), S3 = (0, 1, .. ., O), ...

 SJ+1 = (O,* ..O, 1), SJ+2 = (1 1, lO.. ., O), ..., SK = (1, 1, ..., 1), where K =
 2J. These si's represent the outcomes of the data vector (X1,..., XJ). Next,
 define the partial ordering -<0 on the set SJ: for Si and Sk in SJ we write si -<0
 Sk if and only if each coordinate of si is less than or equal to the corresponding
 coordinate of Sk. In the above sequence of vectors defining Sj we have s, -< S2,
 and s -<0 S3, ..., but there is no order specified between S2 and S3, S2 and
 S4 .... In particular, no order is specified within a collection of si's having the
 same number of nonzero entries in different locations.

 Nevertheless, we can extend the partial order -<0 by specifying some of the
 remaining size relationships. There are many ways to do this. We say that

 -< is a refinement of -<0 if -< retains all the orderings of -<0 while adding, in
 a consistent fashion, at least one new order between a pair of members that
 were not ordered under -<O. Let A be the collection of all maximal refinements
 -< of -<O; the refinements are maximal in the sense that there is no nontrivial

 refinement of them. Heuristically, -< extends -<O if and only if there is a coor-
 dinatewise nondecreasing function f on SJ so that the ordering -< on Sj is
 the same as that induced by ordering on the values f assumes. Thus, -<=-<f

 for some f. Now, A is the collection of orders that reduce to -<O and can be
 derived from f's that are strictly monotonic.

 Next, we represent selections from the coordinates of the vector of length

 J by Sj. That is, let Si be the set of all ordered subvectors of length j from
 (1, 2, 3, .. ., J). For instance, since the ordering is retained, we have that for

 J=10 and j = 5, (2, 3, 6, 8, 9) E Si but (2, 6, 3, 8, 9) , Si. Let fl = QJ be the
 disjoint union of all Si's for j < J. Now, any element o of fl can be written
 as w = WoI for some w - E S .

 Now let -<E A be an ordering on SJ and let co E fl be an ordered subvector
 of (1, 2,..., J) of length j, so w = wj E Sj. Next, define S(w) = S(wj) to be
 the set of all vectors of length j with entries zero or one, where the entries
 in the vectors are indexed by the j (ordered) entries of w(j). For instance, if

 J = 10, j = 3 and (O3 = (2, 5, 8), then S(cw(3)) = {(X2, X5, X8): Xj = 0, 1; j =
 2, 5, 8.}. Clearly, the cardinality of S(Cj) is IS(wj)l = 2i. Observe next that
 &) defines a restriction of any ordering -<E A on SJ to -<,,, on S(w); we write
 this as -<

 For each fixed selection of coordinates co of length j, let A(ow) be the set of
 all complete orderings on the set of possible outcomes for those coordiantes

 S(co). For each fixed -<' (c() E A(wo), (each of them is a refinement of some <W)
 all the elements of S(w) can be listed by the ordering <' (cv) as Sl2, . . ., S2i,
 with si -<' (CO)Sk when i < k. For this fixed -<' (cv), let Ai be the ordered
 complement of the first i j-vectors sl,* . . ,sj in S(cv). That is, Ai = {Sk: k > i}
 for i = 1, .. ., 2J. Let R(<'(w)) = {A1, ..., A2i} be the sequence of sets of
 ordered vectors. Clearly, Al D Al+,. For different -<' (c)'s, there are differ-
 ent classes R(-<'(cv))'s of Ai's. However, these classes will often have some
 common Ai's, since there are some common natural ordering relationships for



 892 A. YUAN AND B. CLARKE

 different -<' (w)'s. Let -<,) be the collection of all the different Ai's, that is,

 (4.8) = U R(-<'(w)).
 -< (C)EA(C)

 Next, we use these sets to define the set ordering relation and the set

 we actually want. For fixed j and co(j), let X(wo(j)) be the subvector of X
 from the index vector w(j). Now, define Y(cw(j)) to be the collection of all
 the nonnegative, coordinatewise nondecreasing functions of Y. = X(W(j)).

 With the above definitions we have the following characterization of Y((w(j))
 because all members of Y(w) are restrictions of functions on all of X.

 PROPOSITION 4.3. A nonnegative coordinatewise nondecreasing function f
 satisfies f E Y(w(j)) if and only if there exists an ordering -< in A(c( j)), a

 collection of real numbers ai > 0 and a sequence of sets Ai in Yi(-<,<(j)), i =
 1, . .., 2, so that

 2j

 (4.9) f() aiXAi

 PROOF. First, we show that f can be written as a telescoping sum for
 an increasing sequence of sets. That is, we show f can be represented using

 constants ai on sets Ai where i < i' implies that Ai c Ap. Thus, reorder the
 vectors in S(wt(j)) as S(1), S(2), ..., S(2j) such that

 f(s(1)) < f(s(2)) < *-- ' f(S(2i))-

 Letting a1 = f(s(j)), and ai = f (s(i)) -f (s(i-1)) for i = 2, ... , 2i gives the "only
 if" part.

 For the "if" part, we must show that for Sl, Sk E S(co(j)), with Sk coordi-
 natewise greater than sl, we have f(sl) < f(sk). In fact, we have s, -< Sk;
 thus 1 < k. Thus, f(Sk) is f(sl) plus at least one more nonnegative term to
 represent outcomes S1+1 v * *, Sk C

 We use Proposition 4.3 to get a condition equivalent to CA. For this we

 need another subvector Zj, of XJ with length j'. We assume that Z , has
 no intersection with Y j and denote its domain by S ,. Write Y j and Z j as
 X(w(j)) and X(w'(j')), respectively, where w(j) and wo'(j') are nonoverlap-
 ping subvectors of (1, 2, . .., J) with length j and j', respectively. Now we
 have the following.

 PROPOSITION 4.4. The criterion CA is equivalent to

 min COV(XA(X(wJ(j))),
 (4.10) (ij , j,wc-< -<' A, B, D)
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 where the operation min(j,, j, ,, , <A, B, D) denotes

 min min min min
 j+ j'<J; (ofj), &9t (j)EQ, w( j)nco,(j,)=O; <EA(&j(j))-<'EA('(o j')); A, BE,/- <,,,), DC_/- <@,

 PROOF. First write CA as a minimum over partitions of Xj. Then using
 Proposition 4.3, write each of the three functions in the definition of CA as a
 sum of the form (4.9). Taking the minimum over such functions identifies the
 other three minimizations. O

 Now that CA has been converted into a condition which is an explicit
 minimum it is amenable to the same sort of procedure as we used for CSN
 and MM. Indeed, Proposition 4.4 identified (4.10) as the central quantity for
 testing CA.

 To fix notation, write 4' = (j, j', co', <, <', A, B, D). The parameter 4,
 varies over T = {4': 1 < j, j'; j + j' < J; w(j), c'(j') E fl;w(j) n w'(j') =

 4; -<E A(w(j)), -<'E A(w'(j')); A, B E Y(-<,), 9 C -.<,)}. The set T is finite,
 though usually of enormous cardinality. Now, for 41 E T we let

 (4.11) r,, = -COV(XA(X(&C(j))), XB(X(X(j)))IX(w'(j') E D).

 So, CA is equivalent to max f, rr,, < 0.
 We develop an estimator for rf, as follows. Suppose we have m examinees

 with scores denoted xi = (xi 1, .. ., xi j,), for i = 1, ..., m. We will be condi-
 tioning on D E J(-<Z',(j,)) so such D's will define the subset of examinees over
 which we will average. For fixed D, let G = GD = {i: xi(w)'(j')) E D}, and set
 1 = IGI. Now, for A, B E (<,(j)) the averages of examinees' scores over G
 are XA(D) = (1/1) Ei G xA(Xi (w( j))) and x B(D) = (1/1) xiEG XB(xi((O(j)))
 So,

 (4.12) r,, =-I ,Z(XA(xi(&(j))) - XA(D))(XB(Xi(W(j))) - XB(D))
 iEG

 is an estimator for rp, in (4.11).
 Let yi = xi(w(j)) and zi = xi(w'(j ));

 1 mT
 Vm = m L(XAA(Yi)XD(Zi), vXB(Yi)XD(Zi), XAnB(Yi)XD(Zi), XD(Zi))

 i=1

 1 T

 := mVm, i
 i=1

 and

 1tLq = E(V1 ), Cov(Vl ) = 1 .
 It is seen that

 I-Lq = (P(yi E= A, zi E D), P(yi E B, zi E D), P(Yi E A n B, Zi E D), P(Zi ) E D)) T.
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 Denote its covariance by Ik, = Cov(V1). This time, let g(a, b, c, d) =
 ab/d2 - c/d with (Vg)(a, b, c, d) - (bld2, a/d2, -1/d, (dc-2ab)/d3). It is
 easy to see that g(Vm) = r*,, and g(pu,,) = r,L,. Let 2-, = Vg(1L0)10(Vg(110))T
 and denote its moment estimate by 2g = Vg(Vm)l 4(Vg(Vm))T, where

 *m

 ?t = '(VM, Vm)(Vmi Vm)T
 i=1

 Now, analogously to Propositions 4.1 and 4.2, we have the following.

 PROPOSITION 4.5. Fix j and j' with j ? j' < J and w(j) and w'(j') E Q
 nonoverlapping, that is, w(j) n w'(j') = 4. Next, choose ordering relations
 -<c A(w(j)) and -<'E A(c'(j')). Let A, B E 2(-<o( )) and let D E
 Then, as m -+ oo, we have the following limits:

 (i) Consistency: expression (4.12) converges a.s. to expression (4.11). That
 is,

 a.s.
 r -* r,.

 (ii) Asymptotic normality: for &,, as above,

 m(i~ - r,-)/&, --* N(O, 1).

 Finally, as a parallel to Theorems 4.1 and 4.2, we state a result giving an

 AUMP level a test for CA. Let R = maxq,,,, rq,, R = maxpE'V ri,. Now, testing
 CA is equivalent to testing HCA: R < 0 versus KCA: R > 0.

 As before, let the domain of r11 be {r, < r2 < ... < rd, Ad = (r) -(rd)
 be the collection of indices if at which rp, achieves the same maximum value
 rd. Let z(Ad) = (Q,: if E Ad) with asymptotic variance I(Ad), and consistent

 estimator Z(Ad). Set FAd(x) = (DI(Ad)(x, ..., x), with 1 - a percentile denoted
 F-1(1 - a). These are approximated by FAd(x) = (Ax)(x,...,x), and FA1
 (1-a).

 THEOREM 4.3. (i) An asymptotic level a test of HCA is given by the rejection
 rule

 -; > Ad'(1-at).

 (ii) When IAdI = 1, an AUMP level a test of HCA is given by the rejection
 rule

 Im R > 4?(A )(1 - a). - p(Ad)

 The proof of this result is similar to the proof of Theorems 4.1 and 4.2.
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 5. Testing VCD. Recall that Junker and Ellis (1997) characterized mono-
 tone unidimensional models in terms of VCD and CA. Since Section 4 gave a
 test for CA, it remains to give a test for VCD. Note that the asymptotics in
 VCD are in test length m rather than number of examinees. Here, we iden-
 tify an AUMP test of VCD for fixed m. This test is similar to that for CA but

 the construction is simpler because the functions f(.) and g(.) in the covari-
 ance are arbitrary. However, this suggests that a larger sample size will be
 necessary for the asymptotics to be effective.

 Let XJ m = (Xj+1, ..., Xj+m), and let YJ m be the domain of XJ m. Let
 'S, w and Ql be as in Section 4.3. Also write 7(wo(j)) for the collection of all

 measureable functions of X(w(j)). Parallel to Proposition 4.3 we have that
 for any j = 1,..., J, and any f( ) E Y-(w(j)) there is a sequence ai E DR for
 i=1,..., 2Jso that

 2i

 f (X(w(j))) = E aiXi(X(C)(j))),
 i=l

 where the si's are elements of 1J(w(j)). Letting wc(j) be the complement of
 ( j), we have the following parallel to Proposition 4.4.

 PROPOSITION 5.1. VCD is equivalent to the condition that for each m there
 is an ? = 8(m), with E(m) going to zero, so that

 (5.1) max ICOV(XA(X(wJ(j)), XB(X(wc(j))XJ, m E D)l < 8,
 j, ow(j), a, b, D

 in which the operation maxj, w(j), A, B, D denotes the maximum over

 1 < j < J; w(j) E fl; A E IJ(w(j)); B E y9(wC(j) and D E 7Jm

 PROOF. If VCD holds, take Y = X(w(j)), Z = X(Wc(j)), f(Y) = XA(Y)
 and g(Z) = XB(Z). Then, (5.1) follows from

 lim CoV(XA(X(w(j)), XB(X(WC(j))IXJ, m E D) O 0.

 If (5.1) holds then, for 1 < j < J, W(j), Wc(j) E fl, f( ) e Y(w(j)) and g(.) E
 (Ico j), we have

 Cov(f(X(w(j)), g(X(wC( j))IXj m E D)I
 2i 2i

 < E larbtCov(XAr(X(W(j)), XBtX((OC(j)))IXJ,m D)
 r=1 t=1

 < 2Jab?8 O,

 as m -o, where j'= J - j, ax = max1lall,.. -., a2jI} and b = max{Iblj,...,
 Ib2i'1}. C
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 Now, let (P = (j,w(j),A,B,D) and P = {l: 1 < j < J;w(j) E fQ;A E
 ( j); B E C( j); D e lJ,1 m}. For ( E P, consider

 (5.2) q COV(XA(X(w)(j)), XB(X(C j(i))1XJ,m E D).

 For fixed m and X, denote xi = (xi,,, ..., J Xi, J+1 I** Xi, J+m) where i =
 1, ..., n. Let G = GD ={i: XJ,m = D}, and set I = IGI. The averages of
 examinees' scores over G are XA(D) = (1/1) EiEG XA(Xi(w(j))) and XB(D) =
 (1/1) E5iG XB(Xi( (cj))). SO,

 (5.3) q 4= I E(XA(xi((j))) - XA(D))(XB(Xi(c (M))) - XB(D))
 ieG

 is an estimator of q?,. Let 6-v, be the asymptotic variance of q( constructed as
 in Section 4.3. Parallel to Proposition 4.5 we have the following.

 PROPOSITION 5.2. For fixed ( E 'c, we have, as n -- oc:

 (i) Consistency: expression (5.3) converges to expression (5.2). That is,

 a.s.

 q- qo.
 (ii) Asymptotic normality: for (4 as above,

 V,ii(q( - qo )/(4 - N(O, 1),
 where o- is the asymptotic variance matrix of q( specified as that for r*,, in
 Section 4.3.

 Let HVCD(m) be the hypothesis that VCD is true for fixed m. Let Q -

 maxo,E( qo, Q = min?,, qp, Q = max,E, q(4 and Q minOEp q(4. Now, HVCD(m)
 is equivalent to -?(m) < Q and Q < ?(m). Let Ad be as in Theorem 4.3, but

 with rp replaced by qo in the definition and let z(Ad), Y(Ad), FP(Ad) and FAd
 be as in Theorem 4.3. Let Bd be the counterpart of Ad with max replaced by
 min. Similar to Theorem 4.3, we have the following.

 THEOREM 5. 1. (i) An asymptotic level a test of HVCD(m) is given by the rejec-
 tion rule

 ,Nn(Q + (m)) < -F'(1 - a/2)
 or

 i( Q-?8(m ) ) > FAi(1 - a/2).

 (ii) When Ad B = I Rd l = 1, an AUMP level a test of H is given by the rejection
 rule

 n(Q + 8(m)) < -(P1 ((1 - a/2) Y,(Bd)

 or

 >?(Q- 8(m)) > (t. (1 - a/2). - .(Ad)
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 The test identified in Theorem 5.1 is different from the approach in
 Bartolucci and Forcina (2000). They defined a desirable property MTP2 of

 XJ [see Definition 1 in Bartolucci and Fortina (2000)] and observed that
 Rosenbaum (1987) showed CA implies MTP2. Thus, if their test of MTP2
 rejects, a fortiori one can reject CA. Their test is based on an ML approach

 (likelihood ratio) and converges asymptotically to a mixture of chi-squared dis-

 tributions. By contrast, ours is based on the asymptotic normality of unbiased
 estimators.

 6. Discussion. The main contribution of this paper is the conversion of
 two latent properties into a set of equivalent manifest properties and the pro-
 vision of a way to get routine hypothesis tests for manifest properties. We
 gave hypothesis tests for three of the four conditions in our characterization
 Theorem 3.1: ACSN, MM and CA. We also gave a test for VCD, a manifest con-
 dition that arises in a different characterization result due to Junker and Ellis
 (1997). These tests demonstrate the general feasibility of testing manifest con-

 ditions by use of best unbiased estimators. Moreover, we have demonstrated
 a weak optimality for this procedure.

 The major limitation of the approach here is that we only have theoretical

 feasibility for one sequence of tests. In particular, there remains the question

 of how large a sample size is necessary for the normal approximation to be
 effective. Rough calculations suggest the sample sizes necessary for the weak
 optimality shown here to hold approximately are essentially never available
 in practice. As is suggested in Yuan and Clarke (2000), the enormous sample
 sizes seem to arise because one is asking for many disjoint occurrences of

 asymptotic normality. Obviously, asking only for asymptotic normality on the
 midrange of the test statistic on which one is conditioning will reduce the
 sample sizes somewhat.

 To see the necessity for getting smaller sample size, consider the simple
 minded approach of using Bonferroni and normality for each member in the set
 over which minimization is done in, for instance, CSN. Studies [see, e.g., Port
 (1994), page 685] indicate that, in the one-dimensional case, for "reasonable"
 distributions (such as the binomial for instance) the normal approximation of

 the standardized sum ( mZi X) is quite accurate for m > mo = 25. The
 minimal sample size mo and the accuracy 8 of the normal approximation are
 related by mo o? 1/82. For the same level of accuracy in the d-dimensional
 case, Bonferroni's inequality gives accuracy 8/d for each marginal dimension.
 This means the minimal sample size mo is mo oc d2/82 in the d-dimensional
 case, which gets large, fast.

 One alternative for seeing if reasonable sample sizes exist is to use a Berry-
 Esseen bound in place of the asymptotic normality. It is unclear whether this
 will be better because the Berry-Esseen theorem uses a stronger mode of
 convergence. A second issue is that there might be better statistics on which
 to base hypothesis tests than the ones we used. One of these is a modification
 of Fisher's exact test. Both of these are discussed in Yuan and Clarke (2000).
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