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Abstract. Remote sensing has been used to detect plant biodiversity in a range of ecosys-
tems based on the varying spectral properties of different species or functional groups. How-
ever, the most appropriate spatial resolution necessary to detect diversity remains unclear. At
coarse resolution, differences among spectral patterns may be too weak to detect. In contrast,
at fine resolution, redundant information may be introduced. To explore the effect of spatial
resolution, we studied the scale dependence of spectral diversity in a prairie ecosystem experi-
ment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Our study involved a scal-
ing exercise comparing synthetic pixels resampled from high-resolution images within
manipulated diversity treatments. Hyperspectral data were collected using several instruments
on both ground and airborne platforms. We used the coefficient of variation (CV) of spectral
reflectance in space as the indicator of spectral diversity and then compared CV at different
scales ranging from 1 mm2 to 1 m2 to conventional biodiversity metrics, including species rich-
ness, Shannon’s index, Simpson’s index, phylogenetic species variation, and phylogenetic spe-
cies evenness. In this study, higher species richness plots generally had higher CV. CV showed
higher correlations with Shannon’s index and Simpson’s index than did species richness alone,
indicating evenness contributed to the spectral diversity. Correlations with species richness and
Simpson’s index were generally higher than with phylogenetic species variation and evenness
measured at comparable spatial scales, indicating weaker relationships between spectral diver-
sity and phylogenetic diversity metrics than with species diversity metrics. High resolution
imaging spectrometer data (1 mm2 pixels) showed the highest sensitivity to diversity level.
With decreasing spatial resolution, the difference in CV between diversity levels decreased and
greatly reduced the optical detectability of biodiversity. The optimal pixel size for distinguish-
ing a diversity in these prairie plots appeared to be around 1 mm to 10 cm, a spatial scale simi-
lar to the size of an individual herbaceous plant. These results indicate a strong scale-
dependence of the spectral diversity-biodiversity relationships, with spectral diversity best able
to detect a combination of species richness and evenness, and more weakly detecting phyloge-
netic diversity. These findings can be used to guide airborne studies of biodiversity and develop
more effective large-scale biodiversity sampling methods.

Key words: biodiversity; Cedar Creek; imaging spectroscopy; remote sensing; scaling; spectral diversity.

INTRODUCTION

Biodiversity loss, one of the most crucial challenges of
our time, endangers ecosystem services that maintain
human wellbeing (Magurran and Dornelas 2010).
“Essential biodiversity variables” have been proposed by
ecologists to monitor the variation of biodiversity glob-
ally (Pereira et al. 2013). Traditional methods of mea-
suring biodiversity require extensive and costly field
sampling by biologists with considerable experience in
species identification, and the results may vary with

sampling effort (Gotelli and Colwell 2001, Bonar et al.
2010). It is impossible to acquire sufficient information
about changing species distributions through time from
field campaigns alone (Heywood 1995). Remote sensing
has the potential to detect plant biodiversity and can
provide efficient and cost-effective means to determine
plant and ecosystem diversity over large areas (Nagen-
dra 2001). Consistent and repeatable remote sensing
measurement is critical to long term global biodiversity
assessment (Turner 2014).
Diversity can be defined by a large range of indices

according to the scale of observation (Whittaker 1960,
1972). Alpha (a) diversity is diversity within a defined
place or a habitat at a local scale, typically within a single
circumscribed community or field plot; beta (b) diversity
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describes the variation among habitats or communities;
gamma (c) diversity is the total diversity of a large region
(landscape, ecoregion, or biome). Local-scale (a) diversity
can be measured several ways (Gotelli and Colwell 2001,
Magurran 2004). Species richness (the number of species
at a site) is the oldest and among the most widely used
measure of a diversity. Unlike species richness, hetero-
geneity indices measure “evenness,” or the apparent num-
ber of species taking abundance into account rather than
simply the absolute number of species in a given area
(Peet 1974). Some metrics (e.g., Simpson or Shannon
Indices) combine elements of species richness and even-
ness into a single metric of a diversity (Peet 1974).

Remote sensing of biodiversity

Recent technological advances in remote sensing,
including imaging spectroscopy and LiDAR, can provide
detailed spectral and structural information to character-
ize diversity (Asner 2013). An increasing number of
studies applying airborne or satellite remote sensing in
biodiversity assessment in different ecosystems, e.g., tropi-
cal rainforest (Asner et al. 2008, Asner and Martin
2009, Sanchez-Azofeifa et al. 2009, F�eret and Asner
2014), prairie grassland (John et al. 2008, Wang et al.
2016a), island vascular plants (Lucas and Carter 2008),
and Arctic regions (Gould 2000). But there is still no sin-
gle, universally accepted scale or method for remotely
sensing biodiversity, and a wide variety of approaches to
biodiversity assessment are used, along with multiple defi-
nitions of biodiversity (Rocchini 2007, F�eret and Asner
2014, Dahlin 2016).

Spectral diversity hypothesis

“Spectral diversity,” sometimes called “optical diver-
sity” (Ustin and Gamon 2010), refers to variation in
remote sensing measurements, typically spectral reflec-
tance, across sets of pixels and has been proposed to
relate to conventional metrics of biodiversity. Instead of
mapping species per se, spectral diversity presumably
detects functional and structural properties, which vary
among species or functional groups (“optical types”;
Gamon 2008, Ustin and Gamon 2010). According to the
spectral diversity hypothesis, varying plant leaf traits,
canopy structure and phenology can cause wavelength-
dependent variations in optical signals (Ustin and
Gamon 2010). Since leaf traits (Wright et al. 2004) and
canopy structure (Field 1991, D�ıaz et al. 2015) reflect
different evolutionary solutions to resource limitations,
spectral diversity can detect different environmental
adaptations or resource use strategies. If optical type is
regarded as a fundamental vegetation property, resulting
from “ecological rules” driven by resource allocation
(Field 1991), there should be predictable relationships
among plant traits and plant spectral properties.
Recent attempts to assess leaf and canopy functional

properties through remote sensing illustrate the promise

of optical approaches to biodiversity assessment. Air-
borne spectra have been successfully related to plant leaf
chemical properties in tropical forests (Asner and Mar-
tin 2009, F�eret and Asner 2014). Moreover, particular
leaf traits can affect canopy level architecture, which can
accentuate the leaf spectral properties through multiple
scattering and contrasting illumination (Ollinger 2011).
As a consequence, variation in leaf- and canopy-scale
optical properties and their associated traits in time and
space might enable us to detect functional diversity and
also biodiversity at different scales.

Scale in ecology and remote sensing

Changing scale alters the perceived patterns of reality,
thus changing our understanding of the dynamics of an
environmental system (Marceau and Hay 1999). Here,
we confine our discussion of scale to the spatial domain,
and briefly recognize that other domains are also rele-
vant. In ecology, the concept of scale defines the grain
size and spatial extent at which a variety of ecological
processes may occur in a landscape (Turner et al. 1989).
Scaling up (sampling at coarser scales) changes the level
of observed organization and leads to information loss
(O’Neill and King 1998). In remote sensing, spatial scale
refers to the terms “resolution” (pixel size, determined
by sensor technology and flight characteristics) and
“spatial extent” (the total area measured). Scale can also
relate to spectral scale, the wavelengths (spacing, band-
width, and spectral range) of spectral bands as measured
by a sensor (Marceau and Hay 1999, Rocchini 2007).
In addition, temporal scale (frequency and timespan of
observation) is important in both ecology and remote
sensing, affecting our ability to detect the important
processes at the appropriate times.
Meaningful scaling studies in remote sensing are chal-

lenging because most campaigns collect data at a single
resolution and extent determined by the instrument and
sampling platform. Similarly, most ecological sampling
methods and the associated definitions are restricted to
a particular spatial scale, usually determined by what is
possible to sample in a field campaign. Although studies
have evaluated sampling effects at large scales (several
meters to hundreds meters; Rocchini 2007, Oldeland
et al. 2010), few, if any, experimental studies have been
done to systematically explore the scale dependence of
the spectral-diversity–biodiversity relationship. Conse-
quently, we do not know the “correct” or “ideal” spatial
scale for detecting a specific type of diversity (e.g., a or b
diversity, species richness, or heterogeneity indices). In
remote sensing, practical limitations (trade-offs between
sampling resolution and signal-to-noise) result in opera-
tional decisions that are largely based on engineering
choices in the design of sensors, and these rarely con-
sider the “optimal” design for a biological objective such
as assessing biodiversity. The application of current
(Turner et al. 2015) or future (Jetz et al. 2016) satel-
lite data to global biodiversity conservation has been
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proposed, yet these studies lack a clear discussion of the
appropriate or optimal spatial scales for this task. A
meaningful evaluation and definition of scale is essential
to implementing a biodiversity assessment campaign
using remote sensing.
To address these issues, we studied the scale-dependence

of spectral diversity in a prairie ecosystem experiment
at Cedar Creek Ecosystem Science Reserve (CCESR),
Minnesota, USA. We conducted a scaling experiment
comparing airborne imagery with ground-based data col-
lected along transects within manipulated plant diversity
treatments. Hyperspectral data were collected using
several instruments on both ground and airborne plat-
forms, and ground-based images were resampled at sev-
eral spatial scales to simulate progressively coarse pixel
sizes. We used the coefficient of variation (CV) of spectral
reflectance in space, which in this case means CV calcu-
lated across all pixels in a plot, as the indicator of spectral
diversity. We then compared the spectral diversity mea-
sured at different scales (pixels) ranging from 1 mm2 to
1 m2 to various standard metrics of a diversity to investi-
gate how those conventional diversity metrics relate to
remote sensing and to explore the scale dependence of
spectral diversity.

METHODS

Field site and study design

This study was conducted within the BioDIV experi-
ment at the Cedar Creek Ecosystem Science Reserve,
Minnesota, USA (45.4086° N, 93.2008° W). The Bio-
DIV experiment has maintained 168 planted prairie
plots (9 9 9 m) since 1994 with species richness of vas-
cular plants ranging from 1 to 16 (Tilman 1997). The
species planted in each plot were originally randomly
selected from a pool of 18 species typical of Midwestern
prairie, including C3 and C4 grasses, legumes, forbs, and
trees. Of the original 168 plots, 33 plots with species rich-
ness ranging from 1 to 16 were selected for this study.
These 33 plots included nine monocultures and six repli-
cates of every other richness level (2, 4, 8, and 16) but
with differing species combinations (see Appendix S1:
Tables S1 and S2).

Imaging spectrometry at fine scale

In the 33 selected plots, an imaging spectrometer
(Headwall E Series, Headwall Photonics, Fitchburg, Mas-
sachusetts, USA) was mounted on a tram system (Gamon
et al. 2006) to collect fine-scale images of the northern-
most row of each sampling plot at peak season, both in
2014 (14 plots were sampled from 23 July to 31 July) and
2015 (19 plots were sampled from 17 July to 26 July;
Fig. 1a). A speed control circuit was added to the tram
cart to maintain a slow and constant moving speed, creat-
ing high-fidelity images. The cart speed (0.0256 m/s)
allowed us to build clear, high signal-to-noise ratio (SNR)

hyperspectral images under low wind-speed conditions.
Typically, wind can affect the field reflectance measure-
ments, especially in canopies with a high vertical structure
(Lord et al. 1985). Excessive plant sway caused by strong
wind can blur the image, which will degrade the spatial
resolution in subsequent analysis. To reduce wind artifacts
on windy days, a wind screen consisting of black cloth
was placed on two or three sides of the sampling plot, at
least 1 m from the sampling area. Data were manually
evaluated to further remove any windy (blurred) images.
The imaging spectrometer provided hyperspectral images

with a 3-nm spectral resolution (full width at half maxi-
mum, FWHM) and a 0.65-nm spectral sampling interval
over the 400–1,000 nm range. The focal length of the lens
was 17 mm with a field of view (FOV) of ~34°. The
spectrometer was mounted 3 m above ground surface,
obtaining a ground pixel size of approximately 1 mm2

(Fig. 1a). The dimension of the raw image was 1,600 9

1,000 pixels (Fig. 1b). Subsequent image processing
avoided 1 m from either end of the plot, and removed 600
pixels from the north side to minimize edge effects, yielding
a final image size of 1 9 1 m (Fig. 1b). Reflectance spectra
(Fig. 1c) were then extracted from each 1 9 1 m image
and used for spectral diversity calculations.
A dark file (DNdark,k) was obtained before each

measurement by covering the lens of the spectrometer
with a black lens cap. Scans of a white reference calibra-
tion panel (Spectralon, Labsphere, North Sutton, New
Hampshire, USA) were taken before and after ground
target measurements to calculate surface reflectance.
The relative reflectance (q) at each wavelength (k) was
calculated as

qk ¼ DNtarget;k �DNdark;k

DNpanel;k �DNdark; k
: (1)

In this equation, DNtarget,k and DNpanel,k indicate the
digital number measured at each wavelength (k, in nm)
over the ground target and white reference panel, respec-
tively. All the images were collected under sunny condi-
tions, and reference panel data were collected under
similar sky conditions as the target data.

Image resampling

To simulate different spatial scales, a resampling
strategy was used to increase the 1 9 1 mm pixels to suc-
cessively larger spatial scales: 1 9 1 cm, 10 9 10 cm,
25 9 25 cm, 50 9 50 cm, and 1 9 1 m by averaging all
the small pixel reflectance values in each “large” pixel.
This method assumes an idealized square-wave response
on the part of the sensor, ignoring effects from neighbor-
ing pixels (Woodcock and Strahler 1987). This scaling up
process can also smooth the data, which increases the sig-
nal to noise ratio (SNR) of the image, but this effect was
ultimately found to be small compared to the treatment
effects driven by different diversity levels (see Appen-
dix S1: Fig. S1). To validate this approach, we also
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compared these simulated data to independent samples
collected both from the ground and from aircraft at larger
(1 9 1 m) spatial scales.

Whole plot canopy reflectance sampling

To sample entire plots, we measured canopy reflec-
tance of the 33 plots using a non-imaging spectrometer
(Unispec DC, PP Systems, Amesbury, Massachusetts,
USA) on a tram system (Gamon et al. 2006) at peak sea-
son (23 July–3 August 2014). This system allowed a sys-
tematic measurement of each 1-m2 portion of each plot
(Wang et al. 2016b). This resulted in a total of 81 mea-
surements (9 9 9 m) for each plot with approximately
1 m2 spatial resolution, creating a synthetic image that
provided a full sample of each of the 31 plots, and pro-
viding one set of independent samples for comparison
with the data from the imaging spectrometer on the
tram. Edge pixels were discarded to avoid possible edge
effects, resulting in a final analysis based on a 7 9 7 m
pixel array. All measurements were made �2 h of solar
noon to reduce the effects of sun position.

In this whole-plot sampling, both upwelling radiance
and down-welling irradiance were measured over the
vegetation target and a white reference calibration panel
(Spectralon, Labsphere, North Sutton, New Hampshire,
USA) that was used to correct for the atmospheric varia-
tion and calculate surface reflectance. The relative reflec-
tance (q) at wavelength (k) was calculated as

qk ¼ ðLtarget;k=Etarget;kÞ
ðLpanel;k=Epanel;k

Þ (2)

In this equation, Ltarget,k indicates the radiance mea-
sured at each wavelength (k, in nm) by a downward-
pointed detector sampling the surface (“target”), while
Etarget, k indicates the irradiance measured simultane-
ously by an upward-looking detector sampling the
downwelling radiation. Lpanel, k indicates the radiance
measured by a downward-pointed detector sampling the
calibration panel (Spectralon, Labsphere, North Sutton,
New Hampshire, USA), and Epanel, k indicates the irradi-
ance measured simultaneously by an upward-pointed
detector sampling the downwelling radiation.

FIG. 1. (a) Headwall imaging spectrometer on the tram. Cart motion along the y-axis produced an image cube. FOV, field of
view. (b) Sample image cube from Plot 11, richness = 1 (Achillea millefolium). (c) Sample spectra. For each image, 600 pixels of each
scan line to the left of the dashed line in panel b were removed from the original image, leaving a 1,000 9 1,000 mm square image
cube for further analysis. Three yellow squares (A, B, and C) in panel b indicated the positions of the different sunlit targets (leaves,
white flowers, and soil) in panel c. Approximately 100 pixels were used to generate each spectrum in panel c.
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Airborne reflectance sampling

Airborne data for the Cedar Creek region were col-
lected on 2 August 2014 using an imaging spectrometer
(AISA Eagle, Specim, Oulu, Finland) mounted on a
fixed-wing aircraft (Piper Saratoga, Piper Aircraft,
Vero Beach, Florida, USA) operated by the University
of Nebraska Center for Advanced Land Management
Information Technologies (CALMIT) Hyperspectral
Airborne Monitoring Program (CHAMP). Images were
collected from a height of 1,540 m and a speed of
196 km/h. The ground pixel size was approximately
1 m2. The imaging spectrometer provided 400–970 nm
hyperspectral images with 3.3 nm spectral resolution
(FWHM). Spectral binning (approximately 10 nm) was
used to increase signal-to-noise ratio (SNR) of the data.
Imagery acquired with this band configuration has 63
bands across the 400–970 nm continuum. Airborne
data covered 125 prairie plots in the BioDIV experiment
and data for the 33 ground sampling plots were
extracted. This method yielded an image from each plot
comparable in scale to the whole-plot canopy reflec-
tance sampling.
To extract reflectance from airborne data, lab-

measured calibration coefficients were used to radio-
metrically convert DN to radiance (W�m�2�Sr�1�
nm�1). Geometric correction utilized the position and
rotational attributes (pitch, roll, and yaw) of the air-
plane collected by an inflight GPS and inertial mea-
surement unit (IMU; C-Migits III, Systron Donner
Inertial, Concord, California, USA) during the flight.
Fast Line-of-sight Atmospheric Analysis of Hyper-
cubes (FLAASH) embedded in ENVI version 4.8 (Exe-
lis Visual Information Solutions, Boulder, Colorado)
was used for atmospheric correction to convert radi-
ance to reflectance. To obtain a corrected surface
reflectance, we used field spectrometer (ASD Field
Spec, Analytical Spectral Devices, Inc., Boulder, Col-
orado, USA) measurements from three 9 9 9 m cali-
bration targets (white, charcoal, and black) made from
polyester fabric (Odyssey, J. Ennis, Edmonton,
Alberta, Canada) located in the scene to compute coef-
ficients and apply an empirical line correction (Conel
et al. 1987) to remove remaining errors in the atmo-
spheric correction.

Comparisons of spectral range

To evaluate the effect of spectral range on the assess-
ment of spectral diversity, we also made measurements
with a full-range spectrometer (PSR 3500; Spectral Evo-
lution, Lawrence, Massachusetts, USA). Since these tests
found no added benefit of a full-range spectrometer to
the method described here, and since they covered a dif-
ferent spectral range from all other instruments, the
results of these full-range tests are briefly summarized in
Appendix S1: Table S3.

Spectral diversity

As an indicator of spectral diversity of each plot, we
used the average coefficient of variation (CV; Wang
et al. 2016a), calculated as the average CV for each
wavelength from 430 to 925 nm (758 bands in total)

CVimage ¼
P925

k¼ 430
rðqkÞ
lðqkÞ

� �

number of bands
(3)

where qk denotes the reflectance at wavelength k and
rðqkÞ and l(qk) indicate the standard deviation and
mean value of reflectance at wavelength k across all the
pixels in one plot, respectively. We calculated CV for all
reflectance data, including the tram images, synthetic
images using ground canopy reflectance and airborne
images. In this case, CV expresses the spectral hetero-
geneity among pixels with one single value per plot.
Sample CV spectra and the spectral averaging method
are illustrated in Fig. 2 for two plots of contrasting
diversity. (Note that for spectral range tests, CV was cal-
culated over different spectral ranges, as described in re-
sults and Appendix S1: Table S3.)

Conventional diversity metrics

To calculate diversity metrics based on richness and
evenness, biomass data were collected from all plots.
Aboveground living plant biomass of the selected 33
plots was measured in late July to early August (4
August 2014 and 27 July–3 August 2015). Plots were
sampled by clipping, drying, and weighing four parallel
and evenly spaced 0.1 9 6 m strips per plot. The bio-
mass of each strip was sorted to species. Planted species
richness was the number of species originally planted

FIG. 2. Sample coefficient of variation (CV) spectra of plots
with different species richness levels (1 and 16). As a summary
metric, an average CV was calculated over 430–925 nm as indi-
cated in Eq. 3 and Fig. 1. Data were derived from the Headwall
E Series imaging spectrometer sampling at 1 mm pixels for
plots 11 and 34 (See Appendix S1: Tables S1 and S2 for detailed
descriptions of sampling plots).
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and maintained in each plot, providing a nominal metric
of biodiversity. In most cases the observed species num-
ber and richness derived from harvested vegetation var-
ied from the planted species number and richness due to
missing species or other species present in the plot
besides the ones maintained. As a result of the periodic
weeding, the abundance of these non-maintained
species was typically much less than the maintained spe-
cies, allowing us to assume that the planted plant species
richness provided a reasonable approximation of the
observed species richness.
Previous results (Wang et al. 2016a) have suggested

that spectral diversity may be affected by evenness as
well as species richness. Consequently, we also calculated
three indices that weighted species abundance by propor-
tional biomass, thus accounting for the effects of rare
or common occurrences (Shannon’s index [Shannon
1948]), the reciprocal of Simpson’s index [Simpson 1949,
Williams 1964], and species evenness [Pielou 1966];
Table 1) and related these metrics to spectral diversity
(CV) at different scales. Shannon’s index expresses the
equitability of all the species while Simpson’s index
focuses on a few dominant species (Whittaker 1972).
Phylogenetic diversity is recognized as representing an

integrated measure of functional differences among spe-
cies and often helps explain ecological variation among
species beyond what can be explained by richness alone
(Cadotte et al. 2008, 2009, Cavender-Bares et al. 2009,
Srivastava et al. 2012). However, metrics of phylogenetic
diversity that rely on total evolutionary distances among
species in an assemblage are strongly associated with
species richness. We intentionally chose metrics of phylo-
genetic diversity independent of species richness to sepa-
rate variation associated with species richness from that
associated with evolutionary distinctiveness of species in
assemblages. Phylogenetic data was based on the phy-
logeny from Zanne et al. (2014) and pruned to include
only the species observed in BioDIV. To study the influ-
ence of phylogenic diversity on spectral diversity, two
indices independent of species richness, phylogenetic
species variability (PSV) and phylogenetic species even-
ness (PSE) (Helmus et al. 2007), were calculated with
the picante R package (Kembel et al. 2010). PSV quanti-
fies how phylogenetic relatedness decreases the variance
of a hypothetical neutral trait shared by all species in a

community. PSV is directly related to mean phylogenetic
distance and ranges from 0 (low) to 1 (high) and com-
pares observed phylogenetic distinctness to null commu-
nities. PSE is PSV modified to incorporate relative
species abundance. The maximum attainable value of
PSE (i.e., 1) occurs when each species has the same abun-
dance and evolves independently from a common start-
ing point (Helmus et al. 2007). In this case, PSE was
weighted by biomass at the plot level.

RESULTS

Effect of spatial scale

The mean reflectance of each image was the same
across spatial scales, but the variation around this mean
(expressed as SD and max/min in Fig. 3, and as the CV
in subsequent figures) decreased with increasing pixel
size, revealing the sensitivity of the spectral-diversity–
species-richness (SR) relationship to pixel size.
Spectral diversity (measured by CV) increased with

planted species richness. Increasing pixel size reduced
the sensitivity of spectral diversity to planted species
richness (Fig. 4a). By 10 9 10 cm and above, the linear
relationship between CV and planted species richness
started to disappear, and the relationships were no
longer significant at P = 0.05 for pixel sizes above
10 9 10 cm. When applying an analysis of covariance
(ANCOVA) test to see whether the regression slopes var-
ied with scales, there was no significant difference
between slopes of regression at 1 mm and 1 cm scales,
but the difference of slopes between 1 cm and 10 cm
was significant (P = 0.009).
There was no significant relationship found between

observed species richness and spectral diversity (Fig. 4b).
The relationship between CV and Shannon’s index
(Fig. 4c) was similar to the CV-planted species richness
relationship (Fig. 4a). Simpson’s index (Fig. 4d) showed
stronger relationships with spectral diversity than species
richness and Shannon’s index. The relationships between
CVand Shannon’s index and Simpson’s index also weak-
ened with increasing pixel size. The CV–Simpson’s-index
relationship was still maintained even at coarse spatial
scales (at least better than the other comparisons with
observed species richness, planted species richness, and

TABLE 1. Summary of diversity metrics used in this study where pi is biomass proportion of the ith species.

Diversity metric Description/Equation

Planted species richness, S0 Number of species originally planted and subsequently maintained in each plot.
Observed species richness, S Number of harvested species in each plot (includes rare species).
Shannon’s index, H’ H 0 ¼ �P

pi � lnðpiÞ
Simpson’s index, D D ¼ 1=

P
p2i

Evenness, J’ J 0 ¼ H 0= lnðSÞ
Phylogenetic species variability, PSV PSV varies between 0 and 1. Values close to 1 have higher phylogenetic diversity.
Phylogenetic species evenness, PSE PSE varies between 0 and 1. Values closer to 1 have higher phylogenetic diversity and

evenness.
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FIG. 3. Sample images and reflectance spectra at different sampling pixel sizes (1 mm to 50 cm diameter, as indicated in the
spectral plots). The image shown here was the second meter from the west of Plot 11 (planted species richness = 1; See
Appendix S1: Tables S1 and S2 for detailed descriptions of sampling plots). The dimension of the original image in the top panel
was 1,000 9 1,000 mm pixels (approximately 1 9 1 m), which was successively degraded by resampling to progressively larger sizes
(up to 50 9 50 cm in the bottom panel). Colored lines indicate mean (black), standard deviation (blue), and min/max (red) reflec-
tance. The images on the left were stretched to maintain contrast and the spectral plots on the right showed the true contrast.
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Shannon’s index). For both Shannon’s index and Simp-
son’s index, the difference between regression slopes at
1 mm and 1 cm scales were not significant. There were
significant differences between slopes at larger scales
(P < 0.001).
Evenness (Fig. 4e) showed similar but slightly weaker

relationship with spectral diversity than Shannon’s index.
A linear relationship was found between phylogenetic

evenness (Fig. 4f) and spectral diversity at fine scales
(1 mm). The relationship was not as strong as the species-
evenness–spectral-diversity relationship but still signifi-
cant at small spatial scales. Similar to the CV–plant-spe-
cies-richness relationships, ANCOVA tests suggested no
significant difference between 1 mm and 1 cm regression
slopes for CV–species-evenness and CV–phylogenetic-
evenness relationships.

FIG. 4. Spectral diversity (coefficient of variation) vs. conventional biodiversity metrics ((a)planted species richness, (b)
observed species richness, (c) Shannon’s index, (d) Simpson’s index, (e) species evenness, (f) phylogenetic species evenness) for vary-
ing pixel sizes (diameters). The definitions of conventional biodiversity metrics are in Table 1. Fit lines are not shown for P > 0.05.
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Key results from Fig. 4 were summarized in Table 2.
For all diversity metrics, the difference in CV between
diversity levels tended to decrease with increasing pixel
size. For most biodiversity metrics, at a resolution of
10 9 10 cm or higher, much of the power to assess
biodiversity was lost. At 1 m resolution, there was very
little power to distinguish diversity levels for most
metrics of biodiversity. Only CV–Simpson’s-index
maintained significant relationships at all spatial scales
(Table 2).

Effect of wavelength regions

To investigate spectral scale, we examined the CV from
different spectral regions. The relative contribution to CV
varied by wavelength. CV spectra at different pixel sizes
showed that, at a fine scale (pixel size < 25 cm), high
richness plots had a higher average CV than low richness
plots. This pattern was apparent for all wavelengths but
was especially strong for the visible region (Fig. 5). By
contrast, the relative importance of the NIR increased as
spatial scale increased. At scales of 10 and 25 cm, it was
hard to distinguish richness levels from the visible spectra
but the NIR region was still distinguishable. At coarser
scales (pixel size > 25 cm), all of the CV spectra over-
lapped, except for the highest richness level (rich-
ness = 16), illustrating the declining power to distinguish
richness at coarser spatial scales.
To provide further insight into the spectral regions

contributing to spectral diversity information (Fig. 5),
we compared the CV calculated over different spectral
ranges (430–900 nm), and compared these results to the
Simpson’s index, which displayed the strongest correla-
tion with CV (Table 2). We also conducted independent
tests over a larger spectral range using a full-range spec-
trometer. The full range spectrometer did not indicate
improved results over the VIS-NIR range (Appendix S1:
Table S3). Consequently, in this study, we confined our
primary analyses to the VIS-NIR range (the range cov-
ered by our imaging spectrometer).
At a fine scale (≤25 cm diam.), the CV values in visible

wavelengths (430–700 nm, CVvisible) were larger than the
CV of visible + NIR (430–900 nm, CVVN) and the CV
of NIR (700–900 nm, CVNIR) (Fig. 6 and Table 3). Sim-
ilarly, the R2 of CVvisible–Simpson’s-index was similar to
the CVVN–Simpson-index and larger than CVNIR–Simp-
son’s-index at fine scales. These relationships changed at
larger pixel sizes. With increasing pixel size, R2 of all
three regressions decreased, but the R2 of the CVNIR–
Simpson’s-index relationship decreased with resolution
less than the other two. Consequently, at the 25- and
50-cm pixel sizes, R2 of the CVNIR–Simpson’s-index
became the largest among the three CV formulations
derived from different spectral ranges, and still re-
tained significant correlations (P < 0.01). The ANCOVA
test indicated significant difference between slopes of
CV–Simpson’s-index relationships at different scales
(P < 0.01 for all of the three spectral regions). T
A
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Comparison of instruments

A comparison of different methods yielded good agree-
ment between instruments and sampling methods. The
CV–planted-species-richness relationship in the synthetic
images (1-m2 pixels) fit the trend found in the resampled
images (spanning 1 mm2 to 1 m2 pixels; Fig. 7). CV val-
ues for the different diversity levels were slightly more
variable when calculated from the imaging spectrometer
on the ground than when calculated from the non-ima-
ging spectrometer or the airborne spectrometer (Fig. 7a).
Airborne CV values were slightly smaller than synthetic
and ground measurements at all planted species richness
levels. Regardless of method, by 1 9 1 m, there was very
little power to distinguish planted richness levels except at
the most extreme levels of 1 vs. 16 species.

DISCUSSION

Scale dependence of spectral diversity

Applying the imaging spectrometer using the tram sys-
tem on the experimental biodiversity plots allowed us to

collect very high resolution (1-mm2 pixel size) images and
test the scale dependence of the spectral-diversity–biodi-
versity relationship. Instead of enumerating plant species,
CV is an abstract expression that represents the informa-
tion content (variability) of the reflectance spectra among
pixels. Using this method, the detectability of biodiversity
with remote sensing declined dramatically when scaling
up from 1 mm2 to 1 m2 in this plot-level experiment. The
slightly smaller CV value calculated from the airborne
image compared to synthetic images (created from the
Unispec spectrometer) may be due to a blurring result
caused by the point spread function of the airborne imag-
ing spectrometer, which reduced the variation between
neighboring pixels. The overall consistency of the patterns
across spatial scales for the different methods indicated a
strong effect of spatial scale on the ability to detect a bio-
diversity with optical remote sensing methods.

Observed-diversity–richness–evenness

The stronger relationship between spectral diversity and
Simpson’s index than between spectral diversity and
observed species richness agrees with recent studies

FIG. 5. Coefficient of variation spectra at different pixel sizes resampled from ground-sampled image cubes (imaging spectrometer
on the tram) for pixel sizes 1 mm to 1 m. Line color indicates different planted species richness levels.
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(Oldeland et al. 2010, Wang et al. 2016a) that measures of
evenness can improve the correlation between spectral
diversity and conventional diversity metrics. Integrating
species evenness adds additional information on commu-
nity structure beyond species richness per se. These findings
suggest that spectral diversity relates to the heterogeneity
within a small region that is determined by a combination
of species composition, richness, and evenness.
Both Shannon’s index and Simpson’s index are com-

monly used metrics in quantifying elements of biodiver-
sity but the two metrics show variable responses to
different combinations of richness and evenness (Nagen-
dra 2002). In our study, spectral diversity showed a stron-
ger relationship with Simpson’s index than Shannon’s
index, which agrees with findings from a study in tropical
forests (Sch€afer et al. 2016). This may be because Simp-
son’s index is more sensitive to dominant or common
species than Shannon’s index, which assumes all species
are present and randomly sampled (Peet 1974). This Bio-
DIV experiment is a highly manipulated experimental
landscape, weeded in summer to maintain species richness
so that the percentage of rare species is small and the
evenness of low richness plots tends to be low. It is also
reasonable that planted species richness, which implicitly
includes a degree of evenness by ignoring “rare,” unin-
tended species (which likely do not contribute much or at
all to the optical signals measured here), leads to a better
correlation to spectral diversity than observed species
richness (which includes more rare species that are not an
intended part of the experiment).

Species evenness-phylogenetic evenness

In principle, if phylogenetic diversity reflects functional
and phenotypic properties that are detectable with remote
sensing, spectral diversity should increase with phyloge-
netic diversity. The two indices we used were PSV and
PSE; the latter metric incorporates abundance, but both
are independent of species richness. Both metrics showed
significant relationships with CV (Table 2). Similar to the
indices at the species level, the significant relationship
between CV and PSE at fine spatial scale (1 mm) disap-
peared rapidly at coarser scales (pixel size > 1 cm). These

FIG. 6. Spectral diversity (coefficient of variation) vs. Simp-
son’s index for different wavelength regions (a, 430–900 nm; b,
430–700 nm; c, 700–900 nm) and different pixel sizes
(1 9 1 mm to 1 9 1 m). Slopes and R2 of the regressions were
listed in Table 2.

TABLE 3. Spectral diversity (coefficient of variation) of different wavelength vs. Simpson’s index.

Pixel size

CVVN CVvisible CVNIR

Slope R2 Slope R2 Slope R2

1 mm 0.067 0.583*** 0.091 0.567*** 0.037 0.437***
1 cm 0.052 0.571*** 0.067 0.567*** 0.034 0.434***
10 cm 0.024 0.356*** 0.027 0.310*** 0.020 0.343***
25 cm 0.013 0.185* 0.013 0.129* 0.013 0.229**
50 cm 0.011 0.173* 0.010 0.107NS 0.012 0.244**
1 m 0.013 0.239** 0.018 0.180* 0.007 0.109NS

Notes: CVVN, CV calculated using 430–900 nm reflectance; CVvisible, CV calculated using 430–700 nm reflectance; CVNIR, CV
calculated using 700–900 nm reflectance.
NS 0.05 < P, * 0.01 < P < 0.05, ** 0.001 < P < 0.01, *** P < 0.001.
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results indicate that species richness measures, particu-
larly when they account for abundance, capture more
detectable variation than phylogenetic distinctiveness
measures that are independent of species richness. These
findings are consistent with recent studies indicating that
species richness and evenness are often the most critical
factors explaining relationships between biodiversity and
ecosystem function (Zhang et al. 2012).

Optimal pixel size

The predictability of a phenomenon is scale-dependent
both in ecology (Costanza and Maxwell 1994) and remote
sensing (Woodcock and Strahler 1987). In ecology, grain
size is the extent of the elementary sampling units and the
minimum size of measure (Costanza and Maxwell 1994,
Legendre and Legendre 1998). Fine-scale sampling pro-
vides more information about detailed patterns that will
be lost at coarse scales. In this study, considerable infor-
mation on fine-scale variability decreased with increasing
pixel size, and this result is in accordance with the finding
that significant information may be lost when the sam-
pling elements are scattered and small compared to the
pixel size (O’Neill et al. 1986). From a remote sensing
perspective, the spatial structure of an image relates to the
size of the objects in the scene and the spatial resolution

(pixel size). Woodcock and Strahler (1987) noted local
variance peaked when the size of the object equaled (or
was close to) the spatial resolution of the image, which
may help explain our results. In our study, the optimal
pixel size for distinguishing diversity levels in these prairie
plots, particularly for the visible spectral region (sensitive
to leaf pigments) appears to be in the range of 1 mm to
10 cm, a range of spatial scales similar to those of a single
leaf or herbaceous plant species in this experimental
prairie landscape.
In another study of prairie grassland in southern

Alberta, Canada, CV calculated with airborne imagery
correlated well with biodiversity metrics, e.g., richness
and Shannon’s index even at 1-m2 scale (Wang et al.
2016a), yet in our study of experimental plots, this corre-
lation was largely lost by 1 m2. In experimental plots of
constant size with long-term maintenance, grain and
extent are determined and perhaps maintained artifi-
cially but these properties may be different or exhibit
inconstant temporal behavior in real landscapes. The lar-
ger extent captured in airborne sampling in a natural
landscape can introduce higher-level diversity effects
(e.g., b diversity), which may explain contrasting results
across studies at different spatial scales or settings. As
well, the discontinuity measured on a real landscape
may appear continuous when broken into finer grained
observations, especially at a small extent (9 9 9 m) as in
this study. When considering other applications of air-
borne and satellite remote sensing in biodiversity detec-
tion in natural landscapes, spectral diversity may reveal
variation between species, between dominant species, or
even the transition from a diversity to b diversity with
increasing grain size and spatial extent. These factors of
scale are generally not considered explicitly in remote
sensing campaigns addressing biodiversity, most of
which do not use experimental approaches, but are re-
stricted to a single grain size and extent.
Considering the surrogacy hypothesis (Magurran

2004), high species richness in one taxon may be related
to high richness in other, particularly at higher trophic
levels, as has been demonstrated in insect herbivore com-
munities (Siemann et al. 1998, Haddad et al. 2009).
High environmental variation, e.g., temperature or topo-
graphical, diversity is frequently related to high species
richness (environmental surrogacy), such as in the case
of habitat heterogeneity and butterfly diversity (Kerr
et al. 2001). It is possible that the relationship between
spectral diversity and species richness at certain scales is
fortuitous and often remains significant at even coarse
spatial scales because we actually see something indi-
rectly related to species richness rather than species rich-
ness per se. Presumably, species richness is also related to
functional diversity to some extent (e.g., Petchey and
Gaston 2002, Flynn et al. 2011) despite well-understood
complexities (Cadotte et al. 2011, Violle et al. 2012). A
more diverse ecosystem is thus likely to include a greater
variety of functional behaviors as indicated by plant
traits relate to different leaf biochemical content and

FIG. 7. (a) Coefficient of variation as a function of pixel size
for the resampled Headwall images and AISA Eagle airborne
data for 125 plots. (b) Comparison of the coefficient-of-
variation–planted-species-richness relationship at different scales
obtained from different instruments (Headwall [H], UnispecDC
[Unispec], and AISA Eagle [AISA]) and platforms (tram and
aircraft).
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canopy structure. The variation in plant traits among
species can affect the optical properties of plants and
lead to spectrally detectable features (spectral diversity).
Our findings suggest that, for pixels much larger than
the individual plant size, a direct detection of a diversity
is not feasible, although other measures of diversity at
larger scales may apply. The results suggest that further
assessment of the scale dependence of the spectral-
diversity–biodiversity relationships for different vegeta-
tion types (e.g., different crown sizes) is warranted,
particularly if the goal is to develop reliable and repeat-
able remote methods of assessing biodiversity. We rec-
ommend that similar scaling studies be conducted in
natural landscapes to better reveal both the underlying
causes and larger significance of the scale-dependent
relationships reported in this study. Such studies should
also address much larger pixel sizes, such as are pro-
posed for spaceborne sensors, and should enable fully
testing the degree to which regional a and b diversity are
detectable for grain sizes that are relatively coarse when
compared to those used in this study.
The ecological concept of patch size is clearly relevant

to the remote sensing of spectral diversity. Broadly, a patch
can be defined as a relatively homogeneous spatial unit
that is different from its neighbors in nature or appearance
(Wu and Loucks 1995, Bazzaz 1996). Variation within a
patch is influenced by the minimum size of all of the
patches that will be mapped as well as which components
of the system are ecologically relevant to the organism or
process of interest. In this study, we used visible to near-
infrared waveband regions to calculate the coefficient of
variation and the optical “patch size” appeared to vary
slightly with spectral region. The different responses of
visible and near-infrared spectral regions to pixel size sug-
gested possible changes in the relative contribution to
spectral diversity from leaf traits to canopy structure with
increasing pixel size. Some leaf traits (e.g., pigment levels)
are detectable in the visible region (Ollinger 2011, Ustin
2013), and the sensitivity of CVvis to planted species rich-
ness or Simpson’s index was quickly lost at pixel sizes
above that of the individual leaves and plants. In this case,
the relevant “patch size” seems close to that of an individ-
ual leaf or plant. On the other hand, the NIR region is
sensitive to canopy structure (Ollinger 2011, Ustin 2013),
and the CVNIR–Simpson’s-index retained a significant
correlation at relatively large spatial scales (25–50 cm),
suggesting the relevant “patch size” of canopy structure is
larger than that of leaf traits.
Spectral resolution and range also affect the spectral-

diversity–biodiversity relationship. When compared to
multispectral data, adding spectral information has been
shown to increase the accuracy of biodiversity estimation
(Rocchini 2007). Using full range spectra including the
shortwave infrared (400–2,500 nm) could add information
on other biochemical properties, e.g., leaf water content,
pigment, nitrogen content, and lignin (Asner and Martin
2009). While not easily possible in this study due to the
limited range of our primary instruments, future studies

should consider the effects of the full spectral range on the
scale dependence of the spectral diversity-biodiversity rela-
tionship. In our initial tests (Appendix S1: Table S3), sam-
pling the full spectral range did not enhance the CV–
Simpson’s-index relationships over the VIS-NIR range,
but given the wide range of vegetation types and possible
analytical approaches not considered here, these negative
findings should not be viewed as conclusive. We note that
many of the promising applications of full-range spec-
troscopy to biodiversity have been developed for tropical
forests, which are functionally (and spectrally) distinct
from the prairie species studied here. Full-range spec-
troscopy can be very useful in assessing leaf and plant
traits (Asner and Martin 2009), and presumably would be
useful in studying other aspects of diversity (e.g., func-
tional diversity) not considered here. Consequently, fur-
ther studies of spectral range for biodiversity assessment
are needed, and these studies should consider more than
one biome type, and additional aspects of diversity in
addition to the ones considered here.
Finally, hierarchy theory suggests that the scale of mea-

surement limits the scope of what can be captured in an
observation (Ahl and Allen 1996). The scaling effect of
observation relies on the observer’s choice of measure-
ment. Here, we would expect that the “best” pixel size may
vary among biomes and communities having different
dominant species, e.g., prairie (with small plant sizes) vs.
forests (where tree crown size is typically several meters in
diameter). As well, for natural landscapes, there may be
higher-level effects at coarser spatial scales that reflect
other aspects of diversity besides a diversity, e.g., b diver-
sity as driven by environmental gradients or disturbance.

Confounding effects

The CV–diversity relationship may depend on the
stand structure, including plant density and spacing,
homogeneity of distribution among the species, and the
presence of non-vegetated cover (e.g., bare soil). In this
system, plant density is known to depend on diversity,
which is maintained by weeding; as a consequence, lower
diversity plots are less densely vegetated, have more bare
ground, and have been shown to be more invasible
(Naeem et al. 2000). As diversity declines and plant den-
sity in the plot decreases, spectral diversity is impacted
(revealed as increased CV values for low diversity plots)
and the degree of cover and bare soil affected the ability
to detect a diversity. In a separate modeling analysis
(data not shown), adding soil spectra to pure plant pixels
increased plot-level CV and weakened the spectral-
diversity–biodiversity relationships but the spectral-
diversity–biodiversity relationships stayed significant.
Clearly, more work on the effects of stand structure
including the influence of bare soil and other non-vege-
tated cover types on the CV–diversity relationship is
needed, and this is the focus of current studies (in prepa-
ration). Forest diversity experiments in which plant stem
density is held constant while species richness and
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phylogenetic diversity vary are a means to uncouple den-
sity and diversity in manipulated experimental systems
and could be considered in future experimental studies
of biodiversity from remote sensing.
CV shows potential in estimating biodiversity using

remote sensing, and is not very sensitive to the sample
size (Appendix S1: Figs. S2 and S3). But CV condensed
the information contained in a full spectrum into a single
value, which may not fully use the entire spectral informa-
tion available with other methods. Particularly for assess-
ing functional diversity tied to plant traits or biochemical
composition, full spectral information can be critical.
Other spectral diversity methods have been proposed to
calculate diversity metrics in the principal components
(PC) space, e.g., mean distance from the centroid of all
PCs (Rocchini 2007, Oldeland et al. 2010), or to sum of
the variance and convex hull volume for the first three
PCs (Dahlin 2016). Future studies should compare the
performance of different spectral diversity metrics across
spatial, temporal, and spectral scales.

CONCLUSION

The scale dependence of processes and patterns are
central topics in both ecology and remote sensing. Few
studies have considered the scale dependence of spectral
diversity due to the difficulty of obtaining comparable
remote sensing data at different scales. To address this
challenge, we developed a method to apply imaging
spectrometry at multiple spatial resolutions using an
imaging spectrometer mounted on a ground-based tram
system in a manipulated experiment. We compared these
results to other ground sampling and airborne methods
to investigate the spectral-diversity–biodiversity relation-
ship at different grain sizes (pixel sizes). Among the con-
ventional biodiversity indices that we tested, spectral
diversity showed the strongest relationship with Simp-
son’s index, likely because Simpson’s index combined
species richness and evenness and was sensitive to domi-
nant species. Our fine-scale study also showed rapid
information loss with increasing pixel size; the best reso-
lution to detect a diversity using spectral diversity was
the size close to a typical herbaceous plant leaf or single
canopy. Although it will become more complicated as
the dimensionality of number of species, and their iden-
tity increases, most likely, the “optimal” pixel size for
detecting plant biodiversity with this method would vary
depending upon the size of the individual organisms in
question, and more work across a variety of ecosystems
is needed to test this hypothesis.
While restricted to ground and airborne sampling, our

study provides insights for the design and application of
future spaceborne and airborne sensors, and suggests
that direct assessment of a diversity, at least for prairie
regions, may require spatial resolution higher than most
existing satellite sensors. These findings can be exploited
in future airborne remote sensing campaigns to
determine the most appropriate pixel size for spatially

extensive assessment of a diversity. It is also critical to
understand the scale dependence of the spectral
diversity-biodiversity relationship as we transit from
manipulated experiments to natural landscapes; natural
landscapes may differ in their spectral patterns due to
contrasting patch sizes, as a result of vegetation clump-
ing (e.g., due to vegetative reproduction, clonality, or
dispersal limitation), which influence the grain size and
spatial extent optimal for detection of biodiversity. Fur-
ther studies in natural landscapes are also needed to
explore higher-level (e.g., b diversity) effects on spectral
diversity, which may be more amenable to remote sens-
ing. Data from multiple ecosystems and vegetation
types, e.g., prairie and forest, should be included in
future studies, with attention to the consequences of
canopy and patch size on the scale dependence of the
biodiversity–spectral-diversity relationship.
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