University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

UCARE Research Products

UCARE: Undergraduate Creative Activities & Research Experiences

Spring 4-15-2016

ChIPathlon: A competitive assessment for gene regulation tools.

Avi Knecht University of Nebraska-Lincoln, avi@kurtknecht.com

Adam Caprez University of Nebraska-Lincoln, acaprez2@unl.edu

Istvan Ladunga University of Nebraska-Lincoln, sladunga@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch Part of the <u>Bioinformatics Commons</u>, <u>Cancer Biology Commons</u>, <u>Other Computer Sciences</u> <u>Commons</u>, and the <u>Software Engineering Commons</u>

Knecht, Avi; Caprez, Adam; and Ladunga, Istvan, "ChIPathlon: A competitive assessment for gene regulation tools." (2016). UCARE Research Products. 76.

http://digitalcommons.unl.edu/ucareresearch/76

This Presentation is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

ChIPathlon: a competitive assessment for gene regulation tools

Avi Knecht, Adam Caprez, Istvan Ladunga

Gene regulation: why do we care?

- When gene regulation of the cell cycle malfunctions, it frequently causes cancer.
- Adult, differentiated cells can be reprogrammed to induced pluripotent stem cells
 - Which can then be reprogrammed to heart muscle, skin, etc, to repair damaged tissue (to limited extent in clinical practice)

Mapping transcription factors & histone modifications to genome

- Genes, are regulated by transcription factors and proteins, that bind to specific sequences on the DNA.
- Transcription factors are mapped to the DNA by chromatin immunoprecipitation followed by next-generation sequencing.

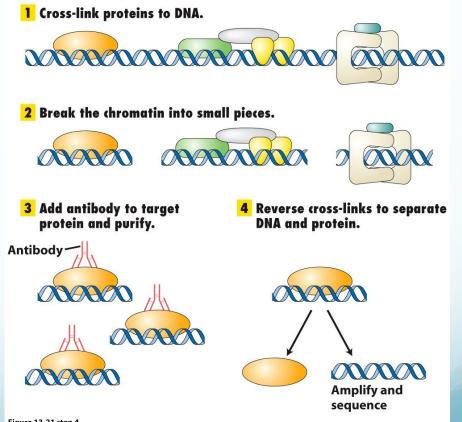
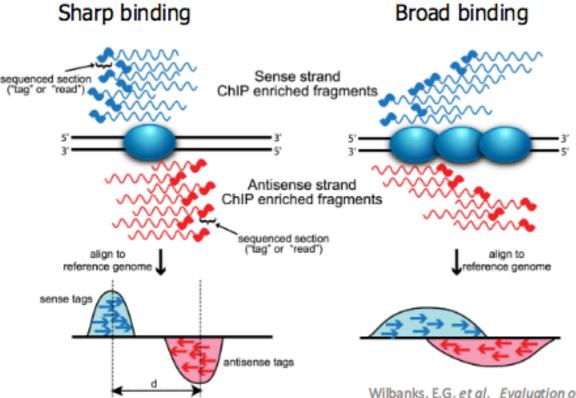



Figure 13-21 step 4 Introduction to Genetic Analysis, Ninth Edition © 2008 W. H. Freeman and Company

Critical steps in data analysis Peak calling

Using strand dependent bimodality in peak calling

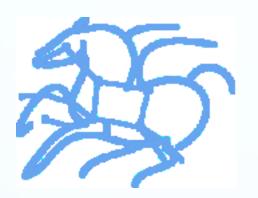
Wilbanks, E.G. et al. Evaluation of Algorithm Performance in ChIP-Seq Peak Detection . PLoS ONE July (2010)

Challenges in mapping transcription factors to the genome

- Background correction is an open problem.
- DNA fragments can be much larger than the binding site.
- Sequencing read location does not follow any statistical distribution.
- Over 50 different methods are used for mapping, which produce different results.

ChIPathlon

Evaluate the performance of all transcription factor mapping (peak calling) methods.


To this end, we will develop a scalable and easy to use super computing pipeline to stage data, compare many different peak calling and differential binding site tools, and store all results into a single database.

MongoDB

- Works well with large data sets.
- Can handle incomplete data.

Pegasus

- Too much data for manual processing, need to create workflows.
- Built on condor, which is used by a variety of super computing centers.

Python

- Many bioinformatics packages already managed in python under bioconda.
- Has interfaces for both MongoDB & Pegasus.

YAML to Workflows I

Each individual job is defined in a plain text YAML file.

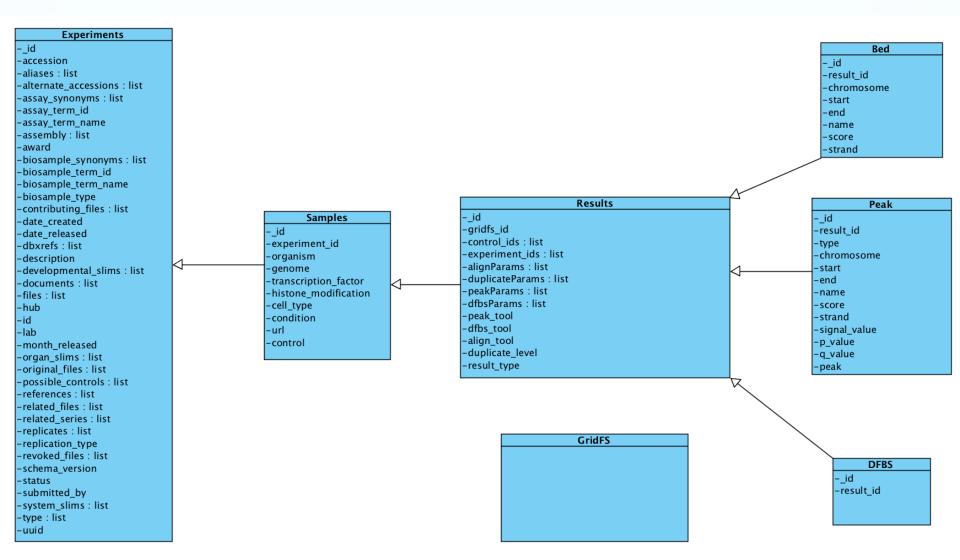
1	<pre>zcat_awk_sort_peaks:</pre>
	inputs:
	- bed:
	type: file
	additional_inputs: null
	outputs:
	- bed:
	type: file
	command: zcat
	arguments:
	<pre>- "\$inputs.0":</pre>
	changeable: false
	required: true
	has_value: false
	<pre>- "\$outputs.0":</pre>
	changeable: false
	required: true
	has_value: false
	walltime: 2000
	memory: 2000
21	cores: 1
22	

YAML to Workflows II

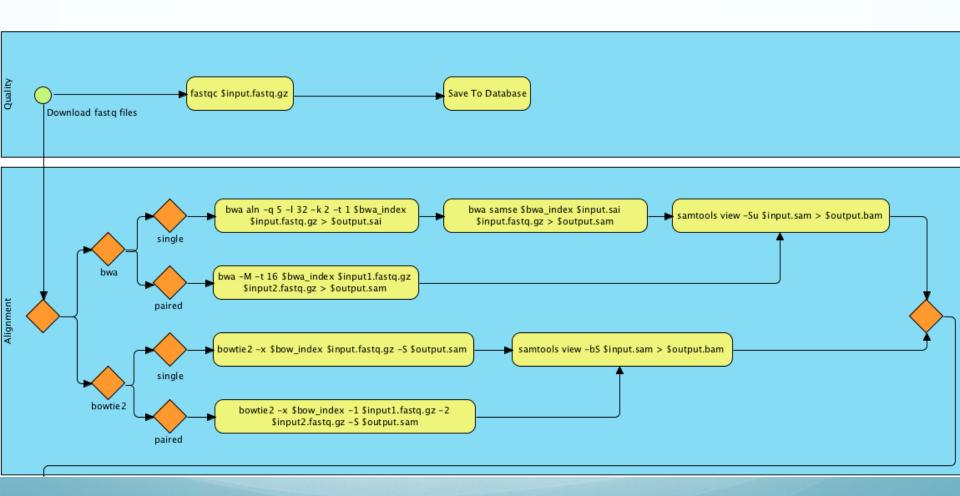
Jobs are chained together by using module YAML files.

1 •	peak_call:
2 🗸	<pre>- spp[tool]:</pre>
3 🗸	<pre>- r_spp_nodups:</pre>
4 🗸	inputs:
5 🗸	<pre>- exp.bed:</pre>
6	type: file
7 🗸	<pre>- control.bed:</pre>
8	type: file
9	additional_inputs: null
10 ~	outputs:
11 🗸	- results.narrowPeak:
12	type: file
13 🗸	<pre>- results.pdf:</pre>
14	type: file
15 🗸	<pre>- results.ccscore:</pre>
16	type: file
17 🗸	– zcat_awk_sort_peaks:
18 🗸	inputs:
19 ~	– results.narrowPeak:
20	type: file
21	additional_inputs: null
22 🗸	outputs:
23 🗸	- results_sorted.narrowPeak:
24	type: file

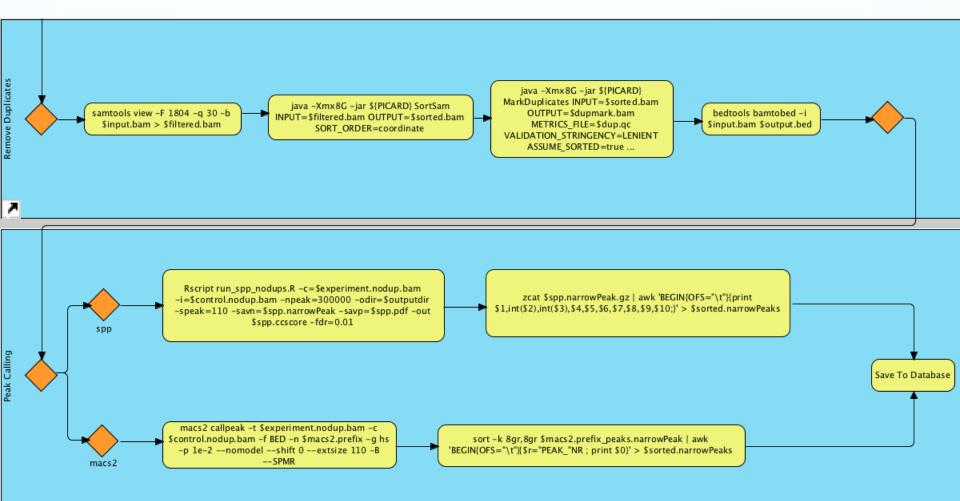
YAML to Workflows III


Users need to input a file selecting ENCODE experiment id's for files to process, tools they want to use, and a path to a genome.

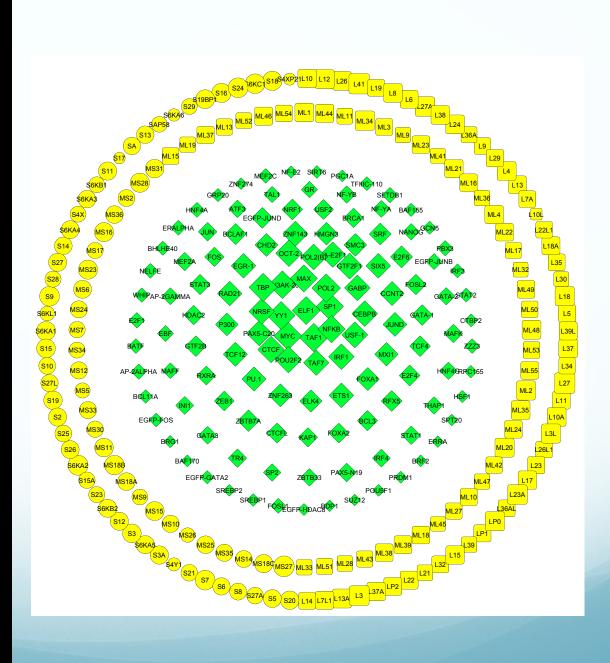
	runs:
	– experiment: "ENCSR605MFS"
	align: bwa
	peak: spp
	– experiment: "ENCSR605MFS"
	align: bowtie2
	peak: spp
	– experiment: "ENCSR000ERE"
	align: bwa
	peak: spp
	– experiment: "ENCSR000EGZ"
	align: bowtie2
	peak: macs2
	genomes:
	bwa:
	<pre>grch38p6: "/path/to/genome/base"</pre>
	bowtie2:
	<pre>grch38p6: "/path/to/genome/base"</pre>


Conclusion

- The current pipeline handles all downloads, alignment of single or paired end reads, and peak calling.
- The modularity of the underlying architecture makes it very easy to add additional tools or processing steps without changing the workflow generation code.
- Workflows can be generated for any ENCODE experiment, making this a very versatile pipeline for comparing bioinformatics tools.


Database Architecture

Workflow I



Workflow II

Regulation of cRPGs (outer circle) and mRPGs (circle next from the outside). Yellow circles: RPGs green diamonds: regulators Icon size is proportional to the number of regulatory relationships.

Note the extreme density of regulatory relationships.

