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INTRODUCTION

Genomic prediction using thousands of SNP has 
been applied in various cattle breeds after genomic 

selection (GS) was first introduced by Meuwissen 
et al. (2001). In practice, GS has been shown to in-
crease the accuracy of EPD and has become wide-
spread in both the dairy and beef cattle industries. 
Since its inception, numerous GS models, validation 
approaches, and SNP panels have been proposed to 
further improve the accuracy of genomic prediction.

The benefit of implementing GS depends, in part, 
on the accuracy of molecular breeding values (MBV). 
The accuracy of MBV can be affected by several fac-
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predictors in United States Red Angus cattle1

J. Lee,* S. D. Kachman,† and M. L. Spangler*2

*Department of Animal Science, University of Nebraska, Lincoln 68583; and  
†Department of Statistics, University of Nebraska, Lincoln 68583

ABSTRACT: Genomic selection (GS) has become 
an integral part of genetic evaluation methodology 
and has been applied to all major livestock species, 
including beef and dairy cattle, pigs, and chickens. 
Significant contributions in increased accuracy of 
selection decisions have been clearly illustrated in 
dairy cattle after practical application of GS. In the 
majority of U.S. beef cattle breeds, similar efforts have 
also been made to increase the accuracy of genetic 
merit estimates through the inclusion of genomic 
information into routine genetic evaluations using 
a variety of methods. However, prediction accura-
cies can vary relative to panel density, the number of 
folds used for ‌folds cross-validation, and the choice 
of dependent variables (e.g., EBV, deregressed EBV, 
adjusted phenotypes). The aim of this study was to 
evaluate the accuracy of genomic predictors for Red 
Angus beef cattle with different strategies used in 
training and evaluation. The reference population con-
sisted of 9,776 Red Angus animals whose genotypes 
were imputed to 2 medium-density panels consisting 
of over 50,000 (50K) and approximately 80,000 (80K) 
SNP. Using the imputed panels, we determined the 
influence of marker density, exclusion (deregressed 
EPD adjusting for parental information [DEPD-PA]) 
or inclusion (deregressed EPD without adjusting for 

parental information [DEPD]) of parental informa-
tion in the deregressed EPD used as the dependent 
variable, and the number of clusters used to partition 
training animals (3, 5, or 10). A BayesC model with 
π set to 0.99 was used to predict molecular breeding 
values (MBV) for 13 traits for which EPD existed. The 
prediction accuracies were measured as genetic corre-
lations between MBV and weighted deregressed EPD. 
The average accuracies across all traits were 0.540 
and 0.552 when using the 50K and 80K SNP panels, 
respectively, and 0.538, 0.541, and 0.561 when using 
3, 5, and 10 folds, respectively, for cross-validation. 
Using DEPD-PA as the response variable resulted 
in higher accuracies of MBV than those obtained by 
DEPD for growth and carcass traits. When DEPD were 
used as the response variable, accuracies were greater 
for threshold traits and those that are sex limited, likely 
due to the fact that these traits suffer from a lack of 
information content and excluding animals in training 
with only parental information substantially decreases 
the training population size. It is recommended that the 
contribution of parental average to deregressed EPD 
should be removed in the construction of genomic pre-
diction equations. The difference in terms of prediction 
accuracies between the 2 SNP panels or the number of 
folds compared herein was negligible.
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tors related to information content and model choice, 
including size of the training population and marker 
density (Daetwyler et al., 2008; Goddard, 2009; Su 
et al., 2012; Haiber, 2013), method of clustering ani-
mals for cross-validation and the relationship between 
the reference and validation populations (Habier et 
al., 2007, 2010; Saatchi et al., 2011), the choice of re-
sponse variables (e.g., EPD or deregressed EPD with-
out adjusting for parental information [DEPD]; Os-
tersen et al., 2011; Gunia et al., 2014), and the use of 
a weighting factor (or residual polygenic component) 
in the model (Calus and Veerkamp, 2007; Garrick et 
al., 2009). The impact of GS is also dependent on the 
genetic architecture of the trait (Hayes et al., 2010; 
Gunia et al., 2014; Gao et al., 2015) and the structure 
of the population (Goddard and Hayes, 2009).

The majority of GS strategies and statistical 
method comparisons relative to cattle have been per-
formed using medium- (e.g., over 50,000 SNP [50K]) 
and high-density (e.g., over 770,000 SNP [777K]) 
SNP panels. Currently, a multitude of SNP panels are 
available. Consequently, the objectives of the current 
study were to evaluate the effect of 1) DEPD with and 
without (deregressed EPD adjusting for parental infor-
mation [DEPD-PA]) mid-parent average information 
as a response variable in training, 2) the impact of 2 
marker densities commonly used in beef cattle popu-
lations in the United States (50K and approximately 
80,000 SNP [80K]), and 3) the number of clusters for 
cross-validation on the accuracy of genomic predic-
tion in U.S. Red Angus beef cattle.

MATERIALS AND METHODS

Animal Care and Use Committee approval for this 
study was not obtained given that the data were ob-
tained from existing databases.

Imputation and Data Editing

A total of 9,776 Red Angus beef cattle were 
genotyped using 5 different SNP panels (Table 1):  
BovineSNP50 version 2 (Illumina, Inc., San Diego, CA) 
and GGPLD version 1, GGPLD version 2, GGPHD, 
and GGPHD version 2 (Neogen Agrigenomics, 
Lincoln, NE). These SNP panels were imputed to 2 
medium-density SNP panels (BovineSNP50 version 2 
and GGPHD) consisting of 50K and 80K SNP markers, 
respectively, with the following 2 steps. First, Beagle 
version 3.3.2 (Browning and Browning, 2007) was 
used for phasing of 2 SNP panels (50K and 80K) to 
be used for the reference panel. Then, FImpute ver-
sion 2.2 (Sargolzaei et al., 2014) was used to impute 
from the various SNP panels to both of the reference 

panels (50K or 80K). After excluding unmapped SNP 
and SNP on sex chromosomes, the available number of 
SNP markers for the 50K and 80K panels were 52,184 
and 76,681, respectively. Duplicate animals (n = 396) 
and animals with a recorded sex in the pedigree file 
that did not match the sex determined by genotypes on 
the X chromosome (n = 230) were removed. Duplicate 
animals occurred due to regenotyping to generate ac-
ceptable marker call rates. Consequently, no animals 
were removed based on marker call rates. Furthermore, 
genotype identification that could not be matched to a 
corresponding animal in the pedigree file was removed, 
leaving 7,652 animals for further analysis.

Response Variables

Expected progeny differences and corresponding 
Beef Improvement Federation accuracies (BIF, 2010) 
for the genotyped animals and their sires and dams were 
obtained from the Red Angus Association of America 
for 13 traits including back fat thickness (BFAT), birth 
weight (BWT), calving ease direct (CE), calving ease 
maternal (CETM), carcass weight (CWT), marbling 
score (MARB), maternal milk ability (MILK), rib 
eye muscle area (REA), stayability (STAY), weaning 
weight (WWT), yearling weight (YWT), heifer preg-
nancy (HPG), and maintenance energy (MEN). Beef 
Improvement Federation accuracies were transformed 
to reliabilities and EPD were deregressed following the 
methods of Garrick et al. (2009). The proportion of ge-
netic variance not accounted for by the markers, c, was 
assumed to be equal to 0.40 (Saatchi et al., 2012). Der-
egressed EPD adjusting for parental information were 
formed by a combination of deregression (dividing by 
the reliability of EPD) after adjusting for ancestral in-
formation (i.e., parental average) such that the informa-
tion content of the EPD contained only their own phe-
notypic information and that of their descendants. Dere-
gressed EPD without adjusting for parental information 
were formed by deregression (dividing by the reliability 
of EPD) without adjusting for parental information. To 

Table 1. Number of animals genotyped by SNP panel 
and number of SNP by panel
SNP panel version SNP No. of animals
GGPLD version 11 32,185 5,759
GGPLD version 21 32,531 707
GGPHD1 77,376 2,671
GGPHD version 21 (UHD2) 140,113 322
BovineSNP50 version 23 54,069 317
All animals  9,776

1Neogen Agrigenomics, Lincoln, NE.
2UHD = Ultra high density.
3Illumina, Inc., San Diego, CA.
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ensure the quality of deregressed EPD (DEPD-PA and 
DEPD), animals with a reliability less than 0.10 were 
removed. After filtering, 7,652 registered Red Angus 
animals with deregressed EPD and genotypes were 
available for further analysis. Descriptive statistics 
of EPD and the 2 response variables (DEPD-PA and 
DEPD) for these animals after removing animals with a 
reliability less than 0.1 are reported in Table 2.

K-Means Clustering

K-means cross-validation (Hartigan and Wong, 
1979) using 3, 5, or 10 folds was used to partition 
animals for the purpose of reducing the relationships 
between training and evaluation populations. Animals 
were assigned to folds based on the numerator rela-
tionship matrix such that relationships within a fold 
were maximized and relationships between folds were 
minimized. The distance matrix between genotyped 
animals was computed from elements of the relation-
ship matrix as dij = 1 − {aij/[(aiiajj)

1/2]} as described 
by Saatchi et al. (2011), in which dij is a measure of 
pedigree distance between individual i and individual 
j, aij is the additive genetic relationship between indi-
vidual i and individual j, and aii and ajj are diagonal 

elements of the A matrix. We computed the relation-
ship matrix for 7,652 genotyped animals using a pedi-
gree of 44,570 animals and then computed a distance 
matrix between the genotyped animals as described 
above. Given that K-means clustering is defined by a 
data matrix, the distance matrix was used and treated 
as a data matrix for the purposes of partitioning ani-
mals using K-means clustering following Saatchi et al. 
(2011). The number of individuals within each fold 
and within and between fold averages of amax and aij 
and their SD are presented in Table 3.

Estimation of SNP Effects

A BayesC model (Kizilkaya et al., 2010) with 
π set to 0.99 was used to estimate SNP effects using 
GenSel4R software (Garrick and Fernando, 2013). 
BayesC was chosen because Habier et al. (2011) report-
ed that BayesC is less sensitive to prior assumptions 
than BayesB (Meuwissen et al., 2001) and the majority 
of U.S. beef associations have used prediction equa-
tions constructed using BayesC with fixed π set to be 
0.99 (Kachman et al., 2013). For each trait, the follow-
ing model was fitted to estimate marker effects:

Table 2. Summary statistics of expected progeny differences and the response variables used for analysis1

Type of  
  record Parameter

Trait2

BFAT BWT CE CETM CWT HPG MARB MEN MILK REA STAY WWT YWT
EPD No. 7,378 7,547 7,597 7,591 7,497 3,579 7,292 2,086 7,530 7,228 2,671 7,314 6,905

Mean 
(SD)

0.01
(0.03)

−1.61
(2.09)

0.02
(0.10)

−0.01
(0.07)

25.76
(12.70)

0.03
(0.08)

0.59
(0.23)

1.60
(5.29)

21.27
(4.49)

0.20
(0.22)

0.24
(0.09)

62.35
(10.81)

97.88
(20.52)

Minimum −0.10 −9.90 −0.36 −0.35 −42.10 −0.29 −0.38 −18.48 −2.70 −0.58 −0.03 11.80 −5.30
Maximum 0.16 8.60 0.43 0.31 72.80 0.35 1.60 24.45 49.60 1.24 0.47 100.20 166.70
Mean BIF3 

accuracy
0.24 0.33 0.21 0.19 0.26 0.13 0.19 0.25 0.22 0.17 0.16 0.30 0.30

D�EPD-
PA4

No. 4,141 5,706 1,142 1,240 5,702 227 4,452 505 3,653 4,420 755 5,639 5,312
Mean
(SD)

0.01
(0.09)

−1.65
(4.86)

0.02
(0.29)

−0.01
(0.18)

29.26
(37.81)

0.03
(0.23)

0.66
(0.93)

1.44
(9.78)

20.38
(12.66)

0.27
(0.99)

0.38
(0.41)

65.09
(27.35)

100.70
(43.49)

Minimum −0.65 −45.59 −2.35 −1.10 −202.71 −1.30 −6.02 −108.16 −69.45 −3.68 −0.60 −210.44 −289.35
Maximum 0.41 32.38 3.01 1.19 210.70 0.66 5.99 29.50 123.94 5.97 1.78 175.27 346.21

Mean 
reliability

0.52 0.58 0.59 0.55 0.47 0.61 0.39 0.73 0.41 0.35 0.44 0.53 0.54

DEPD5 No. 7,378 7,547 7,597 7,591 7,479 3,579 7,292 2,086 7,530 7,228 2,671 7,314 6,905
Mean
(SD)

0.02
(0.07)

−3.01
(3.94)

0.06
(0.32)

−0.03
(0.23)

61.37
(33.16)

0.14
(0.38)

1.92
(0.89)

3.83
(17.05)

59.33
(20.33)

0.71
(0.79)

1.07
(0.64)

132.42
(40.12)

205.55
(66.20)

Minimum −0.33 −17.96 −1.50 −168.42 −1.33 −121.65 −0.67 −121.65 −2.79 −3.26 −0.06 18.50 −11.57
Maximum 0.37 17.58 1.62 203.61 1.22 65.53 6.62 65.53 221.65 4.52 3.32 502.58 674.40

Mean 
reliability

0.41 0.54 0.36 0.34 0.44 0.24 0.33 0.41 0.38 0.30 0.28 0.49 0.50

1Summary statics are after the removal of animals with reliability less than 0.1.
2BFAT = back fat thickness; BWT = birth weight; CE = calving ease direct; CETM = calving ease maternal; CWT = carcass weight; HPG = heifer 

pregnancy; MARB = marbling score; MEN = maintenance energy; MILK = maternal milk ability; REA = rib eye muscle area; STAY = stayability; WWT 
= weaning weight; YWT = yearling weight.

3Beef Improvement Federation (2010) accuracy.
4DEPD-PA = deregressed EPD adjusting for parental information.
5DEPD = deregressed EPD without adjusting for parental information.
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in which yi is DEPD-PA or DEPD for animal i for the 
respective trait; μ is the population mean; k is the num-
ber of markers; Zij is allelic state at SNP j in individual 
i; and uj is the random substitution effect for marker j, 
which is conditional on σu

2, which was assumed to be 
normally distributed N(0, σu

2). A mixture of 2 distribu-
tions for the random substitution effect was assumed 
according to the indicator variable (δj), in which δj is a 
Bernoulli variable indicating the absence or presence of 
marker j in the model, and ei is a random residual effect 
assumed normally distributed N(0, σe

2). The total num-
ber of Markov chain Monte Carlo samples was 41,000, 
of which the first 1,000 were discarded as burn-in. Mo-
lecular breeding values were calculated as the sum of 
marker effects weighted by the SNP content.

The Accuracy of Molecular Breeding Values

A bivariate animal model was used that included 
MBV of genotyped animals estimated using genotypes 
from animals not in that animal’s fold and weighted 
deregressed EPD to estimate genetic correlations using 
ASReml version 4.1 software (Gilmour et al., 2015). 
The 2-generation pedigree included 14,329 animals, 
and the same pedigree was used for each bivariate 
analysis. The model for MBV included fixed effects for 
the intercept and fold, random common and fold-spe-
cific additive genetic effects, and a residual with vari-
ance fixed at 0.0001% of the unweighted phenotypic 
variance of the deregressed EPD. The model for the 
deregressed EPD included a fixed effect for the inter-
cept, a random additive genetic effect, and a weighted 
random residual with var(e) = Wσe

2, in which W is the 
r-inverse weights according to the reliabilities of ani-
mal’s DEPD, which were the same as used in training 
for the estimation of SNP effects. The additive genetic 
and unweighted residual variances were fixed at 0.4 
and 0.6, respectively, of the deregressed unweighted 
phenotypic variance of the EPD. Resulting genetic 
correlations were the genetic correlations between the 

Table 3. Comparison of relationship among animals within and across clusters in 3-, 5-, and 10-fold cross-
validations

Clusters No. of clusters No. of animals amax_within
1 amax_between

2 amax_ratio
3 aij_within

4 aij_between
5 aij_ratio

6

3 fold 1 2,615 0.371 0.279 1.33 0.037 0.027 1.37
2 2,459 0.414 0.306 1.35 0.061 0.032 1.91
3 2,578 0.375 0.290 1.29 0.029 0.027 1.07

Average – 0.387 0.292 1.33 0.043 0.029 1.48
5 fold 1 1,574 0.382 0.334 1.14 0.047 0.032 1.47

2 1,487 0.351 0.315 1.11 0.038 0.026 1.46
3 1,582 0.349 0.219 1.59 0.022 0.013 1.69
4 1,549 0.399 0.307 1.30 0.068 0.035 1.94
5 1,460 0.444 0.290 1.53 0.090 0.035 2.57

Average – 0.385 0.293 1.31 0.053 0.029 1.83
10 fold 1 594 0.423 0.285 1.48 0.096 0.030 3.20

2 655 0.454 0.322 1.41 0.137 0.044 3.11
3 779 0.359 0.289 1.24 0.087 0.033 2.64
4 839 0.423 0.303 1.40 0.124 0.035 3.54
5 591 0.358 0.391 0.92 0.085 0.041 2.07
6 617 0.442 0.293 1.51 0.127 0.037 3.43
7 653 0.397 0.236 1.68 0.085 0.016 5.31
8 929 0.306 0.235 1.30 0.011 0.010 1.10
9 846 0.357 0.352 1.01 0.048 0.031 1.55

10 1,149 0.335 0.326 1.03 0.026 0.020 1.30
Average – 0.385 0.303 1.27 0.084 0.030 2.80

1amax_within = the average of amax (the maximum value of relationships [aij] for each animal) values within cluster 1.
2amax_between = the average of amax values between the clustered (training and testing) groups.
3amax_ratio = the ratio between amax_within and amax_between.
4aij_within = the average of aij (relationships) values within cluster 1.
5aij_between = the average of aij values between the clustered groups.
6aij_ratio = the ratio between aij_within and aij_between.
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common additive genetic effect of the MBV and the 
additive genetic effect of the deregressed EPD.

RESULTS

Single Nucleotide Polymorphism Density

The accuracies of MBV for the 50K and 80K are 
presented in Tables 4 and 5, respectively. Compar-
ing SNP panels, the accuracies of MBV using the 50K 
ranged from 0.246 (HPG) to 0.842 (CWT) and from 
0.261 (MILK) to 0.824 (CWT) for DEPD-PA and 
DEPD, respectively, across all variations in the number 
of folds used for cross-validation. A similar trend was 
observed when using the 80K, with a range of accura-
cies from 0.270 (HPG) to 0.836 (CWT) and from 0.264 
(MILK) and 0.836 (CWT) for DEPD-PA and DEPD, 
respectively. The mean accuracy of MBV across all 
traits, response variables, and number of folds for cross-
validation were 0.540 using a 50K genotype panel and 
0.552 using a 80K genotype panel. The largest differ-
ence in mean accuracy of MBV between the 2 genotype 
panels was found for MARB (0.036) followed by ME 
(0.027) and REA (0.025). These results indicate very 
similar levels of accuracy of MBV between using Bo-
vine SNP50K and GGPHD genotype panels.

Number of Folds for Cross-Validation

To verify the effect of the number of folds used to 
partition animals in training on accuracies of MBV, the 
predictive abilities of MBV were further assessed by 
comparing 3-, 5-, and 10-fold cross-validation. Tables 
4 and 5 show the accuracies of MBV by the number of 
folds using the same response variables and SNP den-
sity for all traits. The mean accuracies of MBV across 
all traits were 0.549, 0.559, and 0.581 using 3, 5, and 
10 folds, respectively, with DEPD-PA. With DEPD, the 
mean accuracies of MBV were 0.526, 0.523, and 0.540 
for 3, 5, and 10 folds, respectively. These results indicate 
that the mean accuracies of MBV were similar or slight-
ly greater as the number of folds increased. However, 
higher accuracies were observed when the number of 
folds was less than 10 (e.g., 3 or 5 folds) for CE, CETM, 
and ME when DEPD-PA was used as the response vari-
able or for HPG, ME, and STAY when DEPD was used 
as the response variable for both SNP densities.

Removal of Parental Information

The average accuracies across the studied traits 
were 0.546 and 0.553 for 50K and 80K, respective-
ly, based on DEPD-PA and 0.520 and 0.532 for 50K 
and 80K, respectively, based on DEPD with 3-fold 
cross-validation (Tables 4 and 5). The use of differ-
ent response variables (DEPD-PA and DEPD) pro-
duced noticeable differences in the accuracy of MBV. 

Table 4. Genetic correlations between molecular breeding values and deregressed EPD (deregressed EPD adjusting 
for parental information [DEPD-PA] and deregressed EPD without adjusting for parental information [DEPD]) and 
their SE in U.S. Red Angus beef cattle across the studied traits for the panel consisting of over 50,000 SNP

Trait1

DEPD-PA DEPD

No.

3 fold 5 fold 10 fold

Average No.

3 fold 5 fold 10 fold

Averagerg
2 SE rg SE rg SE rg SE rg SE rg SE

BFAT 4,141 0.420 0.027 0.455 0.027 0.453 0.027 0.443 7,378 0.438 0.027 0.424 0.027 0.429 0.027 0.430
BWT 5,706 0.683 0.018 0.693 0.018 0.706 0.018 0.694 7,547 0.648 0.019 0.667 0.019 0.697 0.019 0.671
CE 1,142 0.619 0.045 0.663 0.044 0.633 0.047 0.638 7,597 0.701 0.040 0.766 0.037 0.784 0.038 0.750
CETM 1,240 0.601 0.045 0.632 0.045 0.615 0.046 0.616 7,591 0.602 0.023 0.618 0.023 0.649 0.035 0.623
CWT 5,702 0.773 0.019 0.830 0.017 0.842 0.017 0.815 7,479 0.798 0.036 0.818 0.035 0.824 0.023 0.813
HPG 227 0.300 0.107 0.246 0.110 0.353 0.110 0.300 3,579 0.692 0.080 0.643 0.082 0.671 0.083 0.669
MEN 505 0.515 0.056 0.445 0.060 0.508 0.059 0.489 2,086 0.537 0.053 0.514 0.057 0.530 0.057 0.527
MARB 4,452 0.503 0.032 0.472 0.033 0.494 0.033 0.489 7,292 0.425 0.033 0.429 0.033 0.437 0.033 0.430
MILK 3,653 0.402 0.034 0.393 0.034 0.403 0.034 0.399 7,530 0.261 0.032 0.254 0.032 0.271 0.032 0.262
REA 4,420 0.601 0.033 0.589 0.033 0.625 0.033 0.605 7,228 0.518 0.034 0.510 0.034 0.536 0.034 0.521
STAY 755 0.348 0.065 0.396 0.067 0.462 0.066 0.402 2,671 0.378 0.063 0.259 0.070 0.307 0.071 0.315
WWT 5,639 0.664 0.021 0.711 0.020 0.701 0.021 0.692 7,314 0.346 0.025 0.358 0.025 0.368 0.025 0.357
YWT 5,312 0.664 0.021 0.682 0.021 0.691 0.021 0.679 6,905 0.410 0.025 0.412 0.025 0.427 0.025 0.416
Average 0.546 0.554 0.576 0.559 0.520 0.513 0.533 0.522

1BFAT = back fat thickness; BWT = birth weight; CE = calving ease direct; CETM = calving ease maternal; CWT = carcass weight; HPG = heifer 
pregnancy; MARB = marbling score; MEN = maintenance energy; MILK = maternal milk ability; REA = rib eye muscle area; STAY = stayability; WWT = 
weaning weight; YWT = yearling weight.

2rg = genetic correlation.



Genomic prediction in Red Angus cattle 3411

Using either the 50K or the 80K, the accuracy of MBV 
based on the DEPD-PA was greater than that based 
on DEPD for WWT (33.1%), YWT (25.6%), MILK 
(14.2%), REA (8.5%), STAY (7.2%), MARB (4.7%), 
and BWT (3.0%). However, increased accuracy of 
MBV based on DEPD was found for HPG (37%), CE 
(11.5%), and ME (3.7%). Differences in accuracy of 
MBV between DEPD-PA and DEPD were not found 
for BFAT, CETM, and CWT. Across both SNP densi-
ties and all numbers of folds in cross-validation, av-
erage accuracies of MBV across all traits were 3.3% 
greater for DEPD-PA than for DEPD.

DISCUSSION

In the current study, we compared the accuracy of 
MBV across 13 traits with 2 different marker density 
genotype panels (50K vs. 80K). The results showed 
no significant improvement in the accuracy of MBV 
based on increasing the SNP density. These results are 
consistent with those of previous studies (Erbe et al., 
2012; Su et al., 2012; Gunia et al., 2014; Lu et al., 2016), 
which compared the accuracy between the 777K and 
50K genotype panels. Su et al. (2012) observed no dif-
ference in prediction accuracy when the imputed 777K 
panel was used rather than 50K panel for the traits of 
protein, fertility, and udder health in Nordic Holstein 
and Red Dairy cattle. Erbe et al. (2012) also reported 
no gain in accuracy when using the 777K panel vs. 

the 50K panel within breed. In French Charolais beef 
cattle, Gunia et al. (2014) reported that the mean ac-
curacy for 5 traits (birth and weaning weight, calving 
ease, and muscular and skeletal developments) using 
a 777K panel was slightly reduced (0.03) compared 
with using a 50K panel when using genomic BLUP 
(GBLUP), and similar accuracy was observed using 
a BayesC model. In other beef cattle breeds, for feed 
efficiency traits, Lu et al. (2016) compared the accura-
cies between 50K and high-density (e.g., 777K) panels 
and found that using the 50K panel resulted in slightly 
higher accuracy in pure breeds (Angus and Charolais) 
and similar accuracy in crossbreds (Angus–Hereford 
cross and Beefbooster composite). Taken together, our 
current results (50K vs. 80K) and the results of other 
genomic evaluation studies (777K vs. 50K) suggest 
that there are no significant differences in prediction 
accuracies by simply increasing SNP density. These 
are contrary to the expectation that the accuracy of 
genomic prediction could improve as a result of an 
increased degree of linkage disequilibrium (LD) be-
tween SNP markers and QTL (Meuwissen and God-
dard, 2010) and the result that the extent of LD had 
major impact on the prediction accuracy in simulation 
study (Brito et al., 2011). The reason why this expecta-
tion was not realized could be due to a general lack of 
strong LD between markers and QTL and the fact that 
adding additional noninformative SNP simply adds an 
additional source of noise to prediction equations.

Table 5. Genetic correlations between molecular breeding values and deregressed EPD (deregressed EPD adjusting 
for parental information [DEPD-PA] and deregressed EPD without adjusting for parental information [DEPD]) and 
their SE in U.S. Red Angus beef cattle across the studied traits for the panel consisting of approximately 80,000 SNP

Trait1

DEPD-PA DEPD

No.

3 fold 5 fold 10 fold

Average No.

3 fold 5 fold 10 fold

Averagerg
2 SE rg SE rg SE rg SE rg SE rg SE

BFAT 4,141 0.410 0.027 0.450 0.027 0.438 0.027 0.429 7,378 0.437 0.027 0.437 0.027 0.444 0.027 0.439
BWT 5,706 0.687 0.018 0.697 0.018 0.719 0.018 0.701 7,547 0.638 0.019 0.665 0.019 0.687 0.019 0.663
CE 1,142 0.604 0.046 0.663 0.044 0.626 0.047 0.631 7,597 0.703 0.040 0.773 0.037 0.773 0.038 0.749
CETM 1,240 0.618 0.044 0.645 0.045 0.620 0.046 0.628 7,591 0.611 0.023 0.631 0.023 0.664 0.034 0.635
CWT 5,702 0.775 0.019 0.830 0.017 0.836 0.017 0.813 7,479 0.799 0.036 0.833 0.035 0.836 0.023 0.823
HPG 227 0.302 0.107 0.270 0.110 0.378 0.110 0.317 3,579 0.714 0.080 0.667 0.082 0.681 0.083 0.687
MEN 505 0.549 0.054 0.465 0.059 0.535 0.059 0.517 2,086 0.563 0.053 0.541 0.057 0.555 0.056 0.553
MARB 4,452 0.526 0.032 0.495 0.032 0.521 0.033 0.514 7,292 0.468 0.033 0.489 0.033 0.478 0.033 0.478
MILK 3,653 0.417 0.034 0.397 0.034 0.428 0.034 0.414 7,530 0.264 0.032 0.266 0.032 0.271 0.031 0.267
REA 4,420 0.616 0.032 0.621 0.033 0.658 0.033 0.632 7,228 0.548 0.034 0.529 0.034 0.556 0.034 0.544
STAY 755 0.353 0.065 0.384 0.067 0.461 0.066 0.399 2,671 0.392 0.063 0.296 0.070 0.340 0.069 0.343
WWT 5,639 0.676 0.021 0.721 0.020 0.710 0.021 0.702 7,314 0.368 0.025 0.381 0.025 0.378 0.025 0.375
YWT 5,312 0.655 0.021 0.689 0.021 0.687 0.021 0.677 6,905 0.417 0.025 0.430 0.025 0.436 0.025 0.428
Average 0.553 0.563 0.586 0.567 0.532 0.534 0.546 0.537

1BFAT = back fat thickness; BWT = birth weight; CE = calving ease direct; CETM = calving ease maternal; CWT = carcass weight; HPG = heifer 
pregnancy; MARB = marbling score; MEN = maintenance energy; MILK = maternal milk ability; REA = rib eye muscle area; STAY = stayability; WWT = 
weaning weight; YWT = yearling weight.

2rg = genetic correlation.
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Cross-validation using the K-folds clustering 
method is often used to evaluate the performance of 
genomic predictions (Saatchi et al., 2011; Boddhired-
dy et al., 2014). The genotyped animals in this study 
were clustered by various numbers of folds (3, 5, and 
10 folds) for cross-validation using K-means clustering 
methodology to maximize the differences in related-
ness between training and evaluation data sets. As we 
applied the same clustering methodology, we observed 
the ratios of average relatedness between training and 
evaluation data sets (aij_ratio; 1.48 vs. 1.83 vs. 2.80) 
were larger by increasing the number of folds for cross-
validation (Table 3). According to previous studies 
(Boddhireddy et al., 2014; Lu et al., 2016), increasing 
the number of animals in training has been shown to 
increase the accuracy of genomic predictors. The re-
sults of the current study showed similar or very slight 
improvements in mean accuracy of MBV with a larger 
number of folds for cross-validation for growth (BWT, 
WWT, and YWT) and carcass (BFAT, CWT, MARB, 
and REA) traits. These traits are at least moderately 
heritable and are not sex limited, meaning that the in-
formation content of individual animal EPD is greater 
and more animals were available for training. It is pos-
sible that the advantage of increasing the training data 
size by increasing the number of folds was offset by 
increasing the average relatedness between training and 
evaluation data sets. However, this similar or very slight 
increase in accuracy of MBV was not observed for CE, 
CETM, and ME based on DEPD-PA and for HPG, ME, 
and STAY based on DEPD due to the decreased number 
of animals contained in the training data set because 
several animal records were eliminated based on a reli-
ability cutoff in the deregression process. More distant 
relationships compared with other traits in terms of the 
ratios of average relatedness (aij_ratio) between training 
and evaluation data sets were observed for CE, CETM, 
and ME based on DEPD-PA and for HPG, ME, and 
STAY based on DEPD in 10-fold cross-validation. This 
likely resulted in decreased accuracies of MBV for 10-
fold cross-validation compared with either 3 or 5 folds.

When comparing results using either DEPD-PA 
or DEPD, we found increased prediction accuracies 
for growth and carcass traits based on DEPD-PA. As 
opposed to sex-limited traits, it is possible for all indi-
viduals to have a growth or carcass (using ultrasound 
proxies) record relatively early in life (before or shortly 
after 1 yr of age). Given the added information content 
available for these traits, the removal of parental aver-
age removed a source of “noise” in the analysis. The 
comparison of results from differing response variables 
were also reported in previous studies (Guo et al., 2010; 
Ostersen et al., 2011; Boddhireddy et al., 2014; Gunia 
et al., 2014), which compared the prediction accuracies 

between daughter yield variation and EBV or DEBV 
and EBV. Ostersen et al. (2011) reported that the im-
provement in accuracy was approximately 39 and 18% 
for daily gain and feed conversion ratio when using 
DEBV compared with EBV as response variables, re-
spectively, in a swine population. Gunia et al. (2014) 
also reported a slightly greater accuracy by using 
DEBV rather than EBV for growth and development 
traits in Charolais beef cattle. On the other hand, Guo et 
al. (2010) reported that using EBV performed slightly 
better than using daughter yield variation in terms of 
prediction accuracies across simulation scenarios. Us-
ing Angus cattle, Boddhireddy et al. (2014) observed 
that the accuracies obtained using EBV as response 
variables were higher than those obtained using DEBV 
in both cross- and external validations. Interestingly, in 
the current study we found decreased prediction accura-
cies for recently introduced and sex-limited traits (e.g., 
CE, CETM, HPG, and ME) when using DEPD-PA as 
the response variable. The EPD of these traits were as-
sociated with lower reliabilities than growth and car-
cass traits and thus inherently reduce the size of the 
training population compared with these other traits af-
ter removing low-reliability animals from the analysis. 
Removing parental average as part of the deregression 
process has been reported as theoretically more appro-
priate to address the issue of double counting (Garrick 
et al., 2009; Ostersen et al., 2011). We contend that the 
inclusion of animals in training without information 
content beyond parental average contributes to the is-
sue of double counting as evidenced by the increased, 
perhaps inflated, genetic correlations when DEPD was 
used for traits that suffer from a general lack of phe-
notypic information. These results are consistent with 
those reported by Boddhireddy et al. (2014), in which 
using EBV as the response variable without removing 
parental contribution yielded greater prediction accura-
cies compared with DEBV with the parental contribu-
tion removed for the traits with low heritability.

Comparison of Genomic Prediction Accuracy  
in Other Beef Cattle Breeds

A direct comparison of the accuracy of MBV 
across studies and populations is challenging given 
differences in clustering methodologies (e.g., random 
vs. K-means vs. identity by state IBS clustering), the 
metric used to assess accuracy (e.g., simple vs. ge-
netic correlation), and the models used (e.g., GBLUP 
vs. Bayesian mixture models). The mean accuracies 
of MBV across the studied traits obtained for Red An-
gus beef cattle in this study were greater than those 
reported by Gunia et al. (2014) in Charolais beef cattle 
(0.40) using a BayesC model and the Bovine SNP50K 
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genotype panel and by Fernandes Júnior et al. (2016) 
in Nellore cattle when applying adjusted phenotype 
(0.35) or EBV (0.31) as response variables using a 
BayesC model. Similar mean accuracy of MBV across 
the studied traits was reported by Saatchi et al. (2012) 
in Limousin (0.55) and Simmental (0.50) beef cattle 
breeds using K-means clustering. Boddhireddy et al. 
(2014) reported mean accuracies of 0.51 in Angus 
beef cattle with K-means cross-validation and using 
DEBV as the response variable.

Conclusion

This study compared 2 response variables, 2 panel 
densities, and various cluster sizes for K-mean cross-
validation and reported the corresponding impacts on 
the accuracy of MBV. The differences between panel 
densities (50K vs. 80K) were negligible. The number 
of clusters used for cross-validation is likely popula-
tion specific and is defined a priori. The current study 
showed little impact on the number of clusters assumed 
and further illustrated that there is a trade-off between 
the number of clusters, the training population size, 
and the relationship between clusters. Of the 3 consid-
erations contemplated herein (panel density, number of 
clusters for cross-validation, and the choice of response 
variables), resulting genetic correlations seem to be the 
most sensitive to the choice of response variables. The 
DEPD-PA response variable resulted in higher MBV 
accuracies for growth and carcass traits and much 
more conservative values for recent sex-limited traits 
where information content, and therefore, the number 
of animals in training, is the lowest. Genomic predic-
tions built for traits with limited training data, as was 
the case for some sex-limited traits in the current study, 
should be viewed with caution. Consequently, for U.S. 
Red Angus beef cattle, the recommendation would be 
to use genomic prediction equations derived from the 
use of DEPD-PA, and that the choice of the 2 panels 
considered herein is not consequential and should be 
based on factors other than prediction accuracy.
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