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It is well known that the Type I error rate will exceed α when multiple hypothesis 

tests are conducted simultaneously.  This is known as Type I error inflation.  The 

probability of committing a Type I error grows monotonically as the number as the 

number of hypothesis being tested increases.  A class of methods, known as multiple 

comparison procedures, has been developed to combat this issue.  However, in turn for 

maintaining the Type I error rate below α, multiple comparison procedures sacrifice 

power to correctly reject false hypotheses.  The loss of power is exacerbated when 

variance heterogeneity is present. 

In the case of making multiple comparisons among means, a possible alternative 

to multiple comparison procedures is to use Bayesian multilevel models to control for 

Type I error inflation.  Bayesian multilevel models reduce the risk of committing a Type I 

error by shrinking all means towards the grand mean, in turn, making it more difficult to 

declare any mean significantly different from one another.   

To compare the performance of multiple comparison procedures and Bayesian 

multilevel models, a Monte Carlo simulation study, in which the number of hypotheses 

and variance heterogeneity was manipulated, was conducted.  The results indicated that 

the Bayesian multilevel models maintain the Type I error rate at α and display greater 

power than the traditional methods when a large number of hypotheses are tested.  When 



 
 

the number of hypotheses tested were small, the Bayesian models were not able to 

maintain strong control of the Type I error rate. 
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CHAPTER I.  INTRODUCTION 

 Background 

 In educational policymaking, it is often necessary to make decisions about 

the performance of schools, teachers and programs.  Among other possible 

outcomes, these decisions may influence whether a school is administered 

sanctions, a teacher is recommended for promotion, or the continuation of 

resources towards an educational policy.  A variety of standards are used to make 

such high stakes decisions; however, one measure is to evaluate performance 

relative to a criterion via hypothesis testing.  For instance, the performance of a 

school might be evaluated by testing whether that school’s average score on a 

standardized instrument is statistically different from some, pre-determined 

benchmark.  As another example, a hospital’s success at performing ome 

operation might be judged against the average success rate for all hospitals in a 

state.  In such a scenario, a hypothesis test would be conducted for each hospital 

under evaluation.  Under the frequentist paradigm to statistics, the probability of 

committing a Type I error is inflated when multiple hypotheses are tested 

simultaneously.  This inflation issue is called the multiplicity or multiple 

comparisons problem. In the context of educational policy decisions, an increased 

probability of arriving at an incorrect conclusion could have undesirable 

consequences. 

 A set of methods, known as multiple comparison procedures (MCPs), 

have been developed to control the Type I error rate at an upper limit of α when 

multiple hypotheses are tested simultaneously.  This property is known as strong 
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control of the Type I error rate.  Traditional MCPs typically treat the sample 

means under consideration as estimates of a fixed population mean.  The 

performance of MCPs are primarily judged on two qualities:  The ability to 

maintain strong control of the Type I error rate and the power to correctly detect 

false null hypotheses (Ramsey, 1981).  Two popular classes of MCPs are methods 

that adjust the p-values generated from statistical tests and methods that control 

for multiplicity by utilizing the studentized range distribution. (Shaffer, 1995).  

Within these two classes, MCPs have been developed that guarantee strong 

control of the Type I error rate.  Both classes of MCPs make distributional 

assumptions about the data, such as normality and variance homogeneity. 

Unfortunately, in exchange for maintaining strong control of the Type I 

error rate at α, MCPs sacrifice significant power to detect true significant 

hypotheses.  Further, as the number of hypotheses being tested increases, the 

probability of committing a Type I error increases as well.  To combat this, MCPs 

become increasingly conservative as the number of hypotheses rise making it 

more difficult to correctly detect false hypotheses.  This loss of power is further 

exacerbated when the distributional assumptions of the MCPS are violated 

(Shaffer, 1995).  In particular, the presence of variance heterogeneity has been 

shown to significantly reduce the power of MCPs (Games & Howell, 1976; 

Kromrey & La Rocca, 1995; Shaffer, 1995).  It would be desirable if an 

alternative method existed which exhibited strong control of the Type I error rate 

while maintaining the power to correctly reject false null hypotheses in the face of 

such circumstances. Multilevel models (MLMs) may provide such an alternative.   
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MLMs specify two or more, hierarchical levels of relationships among 

parameters (Greenland, 2000).  For example, student performance, termed the 

level-one unit, is nested within the school the student attends, the level-two unit.  

Unlike fixed effects estimation, MLM is a random effects model, which assumes 

that the higher-level units are drawn at random from some larger population. 

Inclusions of random effects are typically treated as nuisance parameters intended 

to account for unexplained variance in lower level units (Raudenbush & Bryk, 

2002).  However, educational researchers have used MLMs to test hypotheses 

about level-two means, such as using student level data to make inferences about 

schools (Ohlessen, Sharples, & Spiegelhalter, 2007). 

MLMs provide some control for multiplicity by shrinking the level-two 

group mean estimates towards the aggregate mean (Gelman, Hill, & Yajima, 

2012; Normand, Glickman, & Gastonis, 1997).  This results in level-two mean 

estimates that are closer to one another as compared to their fixed effects 

counterparts.  Moreover, the degree of reduction to the aggregate mean is 

influenced by the within and between level variances, not the level-two sample 

size.  This suggests that when using MLMs to conduct hypothesis tests about the 

level-two means, increasing the number of tested hypotheses will not affect the 

power to detect true statistically significant results.  However, frequentist MLMs 

are not used to control for multiplicity because it is not possible to evaluate the 

Type I error rate of these models via simulation study.  The reason for this is 

when data are simulated so that no variance exists between the level-two units, the 
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frequentist multilvel models reduces to an ordinary least squares regression model 

in which the random effects are identical for all level-two units. 

Adopting a Bayesian approach to multilevel models could avoid this 

problem and is discussed in more detail below.  The Bayesian paradigm may offer 

additional adjustments that allow researchers to ensure strong control of the Type 

I error rate and to directly incorporate variance heterogeneity into their model.  

The Bayesian approach to statistics differs from the frequentist approach in that 

all model parameters are assigned a probability distribution rather than being 

assumed to have some true, fixed value (Lynch, 2007).  Parameter estimates are 

typically summarized by the descriptive statistics of a distribution (called the 

posterior distribution) which is formed as the product of the likelihood estimate of 

the parameter of interest and a hypothesized sample space in which the parameter 

may lie (called the prior distribution).  The prior distribution may be chosen based 

upon previous knowledge or theory such that the prior distribution encapsulates 

all possible values of the true parameter (Kaplan, 2014).  The first case is referred 

to as an informative prior, whereas the second case is referred to as an 

uninformative prior.  This study will use uninformative priors for all parameters, 

except when noted otherwise.  Bayesian analysis has several advantages over 

frequentist methods, among which are the ability to incorporate the results of 

previous research into the prior distributions and increased flexibility in modeling 

MLMs. 

The concept of Type I error inflation does not exist in the Bayesian 

framework because there is no assumption that the true population parameter is 
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fixed (Freedman, 1996).  However, it is still possible to reach incorrect 

conclusions.  Further, when uninformative prior distributions are used, Bayesian 

inferences approximate frequentist estimates.  As a result, Bayesian models are 

not guaranteed to maintain the Type I error rate at a value pre-determined by the 

researcher. 

The Bayesian MLM (Gelman et al., 2012) with uninformative priors is 

very similar to the frequentist MLM; however, there is one crucial difference. 

This difference is that the Bayesian MLM assumes that the variance components 

in the MLM are drawn from a random distribution and, consequently, are 

assigned their own prior distribution.  By placing a prior distribution on the 

between groups variance components, it is possible to evaluate the empirical Type 

I error rate of MLMs.  Even if the between group variance is specified to arise 

from a distribution with a mean of zero, there is still some unique error variance 

incorporated into the estimated random effect of a level-two unit.  Beyond that, 

the frequentist MLM and unadjusted Bayesian MLM should provide similar 

benefits for controlling multiplicity. 

 An alternative method of specifying the Bayesian MLM is to assign a 

parameter that denotes the difference between any mean and a criterion, this 

difference is represented as δq.  This difference parameter is assigned a mixture 

prior distribution with a hyper-parameter that signifies the probability that the 

difference between a mean and the criterion is 0 (Li & Shang, 2015; Nashimoto & 

Wright, 2008; Shang, Cavanaugh, & Wright, 2008; Shang, 2011).  If this 

parameter indicates that the difference between the mean and a criterion is zero, 
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then the difference prior distribution is assigned to be a point mass prior with its 

entire mass at zero.  Otherwise, δq is assigned a continuous distribution (Li & 

Shang, 2015; Nashimoto & Wright, 2008). 

 The Bayesian MLMs described so far do not account for variance 

heterogeneity among the level-two units beyond the adjustment all MLMs make 

by shifting means with large variances closer to the grand mean.  Recalling that 

Bayesian analysis assigns all model parameters a random distribution, the 

Bayesian MLMs described thus far assign a common prior distribution to the 

variance of each level-two mean.    In order to account for variance heterogeneity, 

these models may be expanded so that the variance of each level-two mean is 

assigned its own unique prior distribution.  The result of this is that variance of 

each level-two mean is allowed to vary depending on the sample data (Nashimoto 

& Wright, 2008).  The variance for each level-two unit, alternative referred to as 

the within groups variance, is denoted by 𝜎𝑖𝑗
2 .  These unique prior distributions are 

chosen by using the estimate of each level-two sample variance to inform the 

variance of the prior distribution.  In this way, differences in variability between 

level-two units are directly modeled.  These semi-informative prior distributions 

for the within group variance components may be applied to both methods of 

Bayesian MLMs.  Like the frequentist MLMs, there is a lack of empirical 

research on the operating characteristics of these Bayesian methods when used as 

corrections for multiplicity.  
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Purpose 

The purpose of this study was to evaluate the Type I error control of four 

MLM approaches (Bayesian MLM, Bayesian MLM with a difference parameter, 

both Bayesian approaches to MLMs with unique prior distributions for 
2

j ) when 

testing whether several level-two means differ significantly from a criterion. The 

Type I error rate of these procedures was also compared to the Type I error rate of 

two traditional MCPs (Hochberg and Tukey’s HSD procedures). Additionally, 

this study evaluated the extent to which these six methods correctly detect when 

the level-two means differed significantly from a criterion, especially when a 

large number of comparisons were made and variance heterogeneity was present 

among the level-two means. 

A Monte Carlo simulation study was conducted to evaluate the Type I 

error rate and power of these procedures.  Data were simulated from a three-level 

multilevel model.  While the primary focus of this study is to examine level-two 

means, a third hierarchical level was included in the data generation process to 

simulate the scenario in which unexplained covariance between level-two units 

was present.  The factors that were manipulated were the mean difference of the 

level-two units from the criterion, the presence of level-one variance 

heterogeneity, the number of level-two units, the amount of variance between 

level-two units due to level-three variability, and the amount of variance in the 

level-one units that was due to variance in the level-two units.  Table 1 

summarizes the levels of the independent variables. 
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Table 1. Independent Variables 

Factor Levels 

Within Group 

Variances 

All 𝜎𝑖𝑗𝑘
2  =1 

50% of 𝜎𝑖𝑗𝑘
2  =.5 & 50% of 𝜎𝑖𝑗𝑘

2  =1.5 

Level-two Sample 

Size 

Nj = 8 

Nj = 20 

Nj = 40 

Effect Size 

𝛽𝑖𝑗𝑘 = 0 

𝛽𝑖𝑗𝑘 = .2  

𝛽𝑖𝑗𝑘 = .5 

Level-two ICC 

𝐼𝐶𝐶2 = 0 

𝐼𝐶𝐶2 = 0.15 

            𝐼𝐶𝐶2 = 0.25 

Level-three ICC 
𝐼𝐶𝐶3 = 0 

𝐼𝐶𝐶3 = 0.1 

 

Procedures 

Hochberg’s MCP 

Tukey’s MCP 

Bayesian MLM 

Bayesian δ MLM 

Variance Informed Bayesian MLM 

Variance Informed Bayesian δ 

MLM 

 

The levels of 𝜎𝑖𝑗𝑘
2  were chosen to ensure that a sufficient number of level-

two units exhibited variance heterogeneity.  Because previous research (e.g., 

Games & Howell, 1976; Kromrey & La Rocca, 1995) has demonstrated that even 

small amounts of variance heterogeneity results in noticeable power loss, a 

moderate degree of variance heterogeneity was selected.  The level-two sample 

sizes were chosen to facilitate the variance heterogeneity conditions and to allow 

for an increasing number of comparisons among the level-two units.  

Additionally, research has demonstrated that MLMs may not produce reliable 

estimates when the number of level-two units are small (Raudenbush & Bryk, 
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2002).  The effect sizes were chosen in accordance with Cohen’s suggestions for 

small and medium effects (1988).  The levels of the intraclass correlation 

coefficient, the ICC, were chosen to align with values of the ICC that were 

commonly reported in educational research (Hedges & Hedberg, 2007a; Hedges 

& Hedberg, 2007b).   

The dependent variables in this study were the Type I error rate and power 

of each procedure.  The Type I error rate for each procedure was evaluated under 

the condition in which the effect size equal to zero, resulting in 54 experimental 

cells.  The power of each procedure was evaluated under the condition in which 

the effect size was not equal to zero, resulting in 60 experimental cells. 

Organization 

 The organization of the remainder of the text is as follows.  Chapter Two 

provides an overview of multiple testing, traditional approaches to controlling for 

multiplicity, and limitations to traditional MCPs.  Additionally, frequentist and 

Bayesian MLMs are introduced and the use of Bayesian models as MCPs is 

explored.  A literature review of research in this field is provided.  Chapter Three 

describes the methods used to conduct this study.  Chapter Four presents the 

results of the study.  Chapter Five discusses the implications of the results in 

addition to describing limitations and future directions. 

Significance 

 The present study is novel in that it provides an empirical examination of 

the operating characteristics of Bayesian MLMs when used as a correction for 

Type I error inflation and compares their performance to traditional MCPs.  This 
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study provides insight as to whether MLMs may be a viable alternative to 

traditional MCPs, particularly when a large number of hypotheses are being tested 

and variance heterogeneity is present.  
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CHAPTER II.  LITERATURE REVIEW 

 When statistical tests are used as a part of the educational policy decision-

making process, it is common for investigators to test several hypotheses 

simultaneously.  In the frequentist approach to statistics, doing so results in an 

inflation of the Type I error rate, which corresponds to a higher probability of 

making an incorrect decision.  Several procedures have been developed to control 

the Type I error rate at or below α.  However, these procedures are known to 

suffer a severe loss of power when variance heterogeneity is present among the 

level-two units and a large number of hypotheses are being tested.  MLMs may 

provide an alternative for controlling multiplicity.  MLMs provide some inherent 

control for Type I error rate inflation by shifting level-two means closer to the 

aggregate mean.  In the case in which no level-two mean differs significantly 

from the criterion, MLMs would estimate the grand mean as the criterion and the 

level-two mean estimates would be drawn towards the criterion.  This, 

consequently, would make it more difficult to commit a Type I error.  Further, 

estimates of level-two means become more accurate as the number of level-two 

units increase.  Adopting a Bayesian approach to MLMs allows the researcher to 

incorporate the presence of variance heterogeneity directly into the model. 

 The following chapter discusses several topics related to multiplicity.  The 

chapter begins by discussing Type I error rate inflation and traditional procedures 

used to control for Type I error rate inflation.  Next, the use of MLMs as a control 

for multiplicity is introduced, along with a method for testing hypotheses about 

level-two means.  The Bayesian approach to statistics is then introduced, along 
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with how the Bayesian paradigm may be applied to MLMs to better control for 

Type I error rate inflation, particularly when variance heterogeneity is present. 

Hypothesis Testing 

 The field of statistics involves describing and making inferences about a 

population parameter.  The goal of statistical inference is to describe unknown 

parameters using observed data (Kaplan, 2014).  In an ideal world, information 

would be gathered from all members of the population and the characteristics of 

the parameters of interest would be known.  However, this is often not feasible for 

many reasons, such as resource limitations or lack of access to all members of the 

population.  Instead, researchers often select a sample from the population and use 

sample statistics to estimate the relevant population parameters.   

 As a motivating example for the remainder of the paper, consider the 

scenario in which ni students exclusively attend one of J high schools.  A 

researcher wishes to compare these schools’ average academic achievement to the 

average academic achievement of the population of schools in the nation.  The 

ostensible purpose of such an endeavor may be to identify those schools that are 

under or over performing relative to their peer schools. Note that this scenario 

may easily be extended to the situations in which a researcher is comparing the 

academic achievement of several schools against one another, known as the 

pairwise comparisons case, or evaluating several schools’ academic achievement 

against a control school, known as the multiple one case.   

 The motivation for identifying these schools may be to reward those 

schools designated as high achieving and to provide additional aid or 
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improvement to those schools designated as low achieving.  The national average 

academic achievement will be referred to as the criterion.  Assume that academic 

achievement is operationalized as a normal, continuous outcome and has been 

grand mean centered such that the average national academic achievement is zero.  

In this paper, schools will be referred to alternatively as the independent variable 

or the level-two unit and students will be referred to as the level-one unit.  This 

may be represented in the one-way ANOVA paradigm as: 

,          (1) 

where yij is academic achievement score for student i in school j (j = 1 ... J), μj is 

the mean academic performance in school j, and eij is an error term distributed as 

N(0,σ2).  This scenario may also be expressed identically as an ordinary least 

squares linear regression model with a categorical predictor: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑗𝑥𝑗 + 𝑒𝑖𝑗,       (2) 

Where β0 is the mean of the school assigned as the reference school (also referred 

to as the intercept), βj corresponds to the mean difference in academic 

achievement between the remaining J-1 schools and the reference school and each 

xj is a binary variable indicating which school is being examined.  Further, 

Equation 1 is analogous to an ordinary linear least squares model with school as a 

categorical predictor and with the intercept removed.  Because these three models 

produce identical results, the ANOVA and regression models will be used 

interchangeably in this paper. 

 Let us assume that an individual school’s influence on a student’s 

achievement score is a fixed effect.  The effect of schools is said to be fixed when 

ij j ijy e 
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the schools are specifically selected by the experimenter.  As a result, 

generalizations are restricted to only those schools included in the model.  

Additionally, the fixed effect estimate of an individual school’s performance is 

assumed to be completely independent from the effect of any other school in the 

sample.   

 Making multiple comparisons among level-two means by using level-one 

data has real world parallels.  For instance, the National Center for Education 

Statistics (1997) produced a report which ranked each US state by mean 

mathematics performance in mathematics on the National Assessment of 

Educational Progress test.  Federal educational initiatives such as the No Child 

Left behind Act of 2001 and the Elementary and Secondary Education Act have 

inspired researchers to investigate how student level data, such as standardized 

test scores, may be used to infer knowledge on the performance of schools and 

teachers (Shaw, 2012).  The United Kingdom’s Parents’ charter requires the 

department of education to publish rankings of secondary schools using the 

results of the General Certificate of Secondary Education exam (Goldstein & 

Thomas, 1996; Leckie & Goldstein, 2009).  The purpose of publishing these 

results is to provide parents with a metric to use when choosing which school for 

their children to attend.  When considering teacher evaluation, value added 

models provide scores on teacher effectiveness based upon the achievement of 

their students (Schochet & Chiang, 2013). 

 Inferences drawn from comparisons between level-two units is not limited 

to the field of education.  In medical research, biostatisticians may perform 
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subgroup analysis to evaluate differences in treatment effects for groups of 

patients who differ on some baseline characteristic (Wang, Lagakos, Ware, 

Hunter, & Drazen, 2007).  Similar to comparing schools using student level data, 

it is often desirable to evaluate hospital performance using patient level data, such 

as the mortality risk among myocardial infarction patients (Austin, Naylor, & Tu, 

2001).  As another example, genetic association studies are often concerned with 

using data from multiple genetic variations nested within candidate genes in order 

to detect genes that are more likely to be associated with a disease (Yi, Xu, Lou, 

& Mallick, 2014).  

 To evaluate the question of whether a school’s academic achievement 

differs significantly from the criterion, again defined as the grand mean centered 

national achievement average, the researcher specifies two hypotheses for each of 

the J schools included in the study.  The null hypotheses (H0) for any school states 

that the mean academic performance for that school does not differ significantly 

from the criterion.  This may be written as H0:  μj = 0.  The alternative hypothesis 

(H1) states that the null hypothesis is not true, in this case meaning that the school 

under consideration does differ in academic achievement from the criterion.  This 

may be written as H1:  μj ≠ 0.  Null and alternative hypotheses are stated for every 

school under consideration.  The researcher then collects statistical evidence in 

order to make an inference about whether a given school’s true population 

academic achievement is different from the criterion.   
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Frequentist Paradigm 

 What, then, constitutes enough statistical evidence to reject the null 

hypothesis and declare that a school’s academic performance differs statistically 

from the national average?  The frequentist paradigm in statistics provides one 

philosophy for answering the above question.  This is done by constructing the 

distribution of a sample statistic.  In our example, we are concerned with the 

distribution of sample means.  Given that level-one units are sampled at random 

from a population, the distribution of sample means is composed of the means 

taken from every possible combination of level-one units of sample size n.  

Constructing the distribution of sample means assumes that it is possible to 

sample all possible permutations of level-one units, which is not realistic if the 

population size is even moderately large.  However, the central limit theorem 

states that for samples of sufficient size (30 is a generally accepted as a rule of 

thumb; Gravetter & Wallnau, 2017) the distribution of sample means will be 

normally distributed; the distribution of sample means will have a mean equal to 

the mean of the total population; the standard deviation of the distribution of 

sample means will be equal to the standard deviation of the population divided by 

the square root of the sample size (Gravetter & Wallnau, 2017).   

 The central limit theorem allows the researcher to calculate the probability 

that the absolute value of a randomly selected sample mean is greater than the 

absolute value of the population mean due to chance alone; this probability is 

called the p-value. Stated more formally, the p-value is the probability of 

observing a sample statistic that is equal to or more extreme than the parameter’s 
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value given the null hypothesis (Wasserstein & Lazar, 2016). If this probability is 

sufficiently small, then there is evidence that the population parameter is most 

likely something other than the value specified in the null hypothesis.  

Conversely, a large p-value conveys that there is a lack of evidence that the 

population parameter is different from the value specified in the null hypothesis 

(Wasserstein & Lazar, 2016).  Researchers set the criterion for what defines a 

small probability for an observed sample statistic.  This probability value, α, is 

chosen a priori.  Researchers reject the null hypothesis when the obtained p-value 

is less than or equal to α and retain the null hypothesis otherwise.  Most 

commonly α is set to .05; this will be the value used in this paper.  Equivalently, 

researchers may construct a confidence interval around the sample estimate.  A 

95% confidence interval around the sample statistic signifies that if an infinite 

number of independent samples of a given size were drawn from the population 

of interest, then the probability is .95 that a randomly sampled confidence interval 

will contain the population parameter (Gravetter & Wallnau, 2017).  With respect 

to testing the null hypothesis, confidence intervals that do not contain the 

hypothesized parameter value provide evidence that the null hypothesis is not 

true.   

 There are several implications of the frequentist approach to statistics.  

First, the frequentist paradigm makes the assumption that the parameter of interest 

has a single, true value that is unknown to the researcher.  Second, frequentist 

hypothesis testing only allows inferences about the null hypothesis.  Perhaps most 
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importantly, the frequentist approach to statistics is based upon the premise of a 

population being sampled an infinite number of times. 

  Type I/Type II error. 

 When testing hypotheses, it is possible to make incorrect inferences.  

Specifically, a researcher may make a Type I error by rejecting a null hypothesis 

that is true or a Type II error by failing to reject a null hypothesis is false. When 

testing a single hypothesis, the Type I error rate will be equal to α.  In this way, 

the researcher is able to select the tolerable Type I error risk.  It is generally not 

desirable to specify the tolerable Type II error risk a priori.  Table 2 provides a 

summary of the two errors. 

Table 2. Type I and II Errors 

  Decision 

R
ea

li
ty

 

  Retain H0 Reject H0 

H0 True 
Correct 

Decision 
Type I Error 

H0 False Type II Error 
Correct 

Decision 

 

 Type I errors occur because the distribution of sample means under the 

null hypothesis contains legitimate values that have a probability of less than α of 

being sampled (Gravetter & Wallnau, 2017).  The probability of randomly 

selecting a given sample mean is determined by its distance from the mean 

specified under the null hypothesis divided by the variability of the distribution of 

sample means.  When the probability of randomly sampling these values is small, 

there appears to be evidence that the mean under the null hypothesis is incorrect 

and the researcher wrongly concludes the null hypothesis is false.   
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 Type II errors occur because a portion of distribution of sample means 

around the true population mean overlaps with the critical region of the 

distribution of sample means as specified by the null hypothesis and α.  This leads 

researchers to incorrectly conclude there is no effect when in fact the null 

hypothesis is false.  Type II errors often occur because the statistical test does not 

contain enough power to detect a true, significant effect (Gravetter & Wallnau, 

2017). 

 Researchers are generally more concerned with the risk of committing 

Type I errors than the risk of committing Type II errors (Ludbrook, 1998).  

Committing a Type I error may lead to the spread of misinformation, incorrect 

policy implementations, or the adoption of a potentially harmful treatment 

(Ludbrook, 1991). Type II errors, on the other hand, may lead a researcher to fail 

to implement a useful treatment.  The severity of committing a Type I error as 

compared to committing a Type II error can be seen in the motivating example.  

Committing a Type I error would result in a school being incorrectly identified 

either over or under performing.  Hypothetically, suppose schools identified as 

underperforming are subject to a loss of federal funding.  A Type I error then 

would result in the incorrect decision to reduce funding in the school that the 

Type I error was committed against.  A Type II error would result in the 

declaration that a school’s academic achievement did not differ significantly from 

the criterion when, in fact, it did. Committing a Type II error, on the other hand, 

would result in no appreciable consequence because the school’s performance 

would not be distinguishable from the criterion.   
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  Multiplicity. 

 In the frequentist framework of statistical analysis, when multiple 

hypotheses are tested on a single data set the Type I error rate will not be 

maintained at α.  Instead, the probability of committing a Type I error is inflated.  

Recall that for a single hypothesis test, the researcher has a probability of α for 

committing a Type I error.  If another hypothesis is tested, the probability of 

committing at least one Type I error between the two tests is compounded.  

Assuming that the hypotheses being tested are independent of one another, the 

probability of observing one or more Type I errors may be calculated as: 

 ,         (3) 

where C is the number of hypotheses to be tested (Abdi, 2010) and α is the 

(common) significance level used for the C tests.  As an illustration using the 

ongoing example, suppose separate hypothesis tests are conducted to identify 

whether the academic achievement of four schools differs significantly from the 

criterion.  If α is set to .05, then Equation 3 yields a probability value of .186 for 

committing a Type I error when, in reality, none of the four schools differ from 

the criterion.  This phenomenon is known to as the multiplicity or multiple 

comparisons problem.  Figure 1 illustrates how the probability of committing at 

least one Type I error increases with the number of tested hypotheses. 

  

1 (1 )C 
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Figure 1. Relationship between Number of Hypothesis & the Type I Error Rate 

 

 When hypotheses are not independent of one another, as in the case of 

making all pairwise comparisons, it is not possible to calculate the extent of the 

Type I error rate inflation a priori due to the fact that the degree of dependency is 

not known beforehand.  However, research has provided evidence that dependent 

hypotheses exhibit a slightly lower degree of Type I error rate inflation (Fink, 

McConnell, & Vollmer, 2014).  

  Implications. 

 In educational research, it is common for several hypotheses to be tested 

simultaneously.  Gelman et al. (2012) list examples such as examining differences 

in demographic information across multiple schools, counties, and states, 

searching for differences among subgroups of a population, or evaluating the 

effect of an intervention on several outcomes. As a result, multiplicity presents a 

serious concern to applied researchers.   

 There is some debate as to when one should be concerned about Type I 

error rate inflation.  Ryan (1959) listed five situations in which it may be 

appropriate to control for multiplicity.  The first situation is when more than two 
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groups are being compared to one another.  The second situation is when 

determining whether significant correlations between three or more variables 

exist. The third situation is when the researcher is attempting to determine which 

main effects and interactions are significant in a factorial analysis of variance 

(ANOVA) design.  The fourth situation is when a researcher tests the significance 

of the same experiment over several different independent samples.  The final 

situation that Ryan describes is when several different measures for evaluating a 

variable are compared. Additionally, several authors (Bender & Lange, 2001; 

Dunnett & Tamhane, 1992) have argued that it is necessary to control for inflated 

Type I error rate in confirmatory studies and whenever multiple hypothesis have 

to be synthesized to a single conclusion. 

 In contrast, some researchers have argued against controlling for 

multiplicity (deCani, 1984; Gelman et al., 2012; O’Keefe, 2003).  Several authors 

(Ludbrook, 1991; Seaman, Levin, & Serlin, 1991) have posited that Type I error 

rate inflation is not a concern in exploratory settings because the researcher is 

approaching the data from a uninformed perspective and wishes to uncover 

interesting relationships within the data.  O’Keefe (2003) noted that even if one 

justifies controlling for multiplicity in an experimental setting, the application of 

Type I error rate adjustment is inconsistent in practice.  O’Keefe (2003) further 

states that while it is common for researchers to control for multiplicity in the 

ANOVA setting, it is less common for researchers to correct for Type I error 

inflation when analyzing regression models with multiple predictors or when 

examining several bivariate correlation coefficients. 
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 Others have argued that it is not necessary to use multiple comparisons 

when independent, planned, or a priori, comparisons are used (Hays, 1994; 

Keppel & Wickens, 2004; Ludbrook, 1991). In order to test these planned 

contrasts, a set of weights are applied to each mean.  The values of the weights are 

chosen such that hypothesized comparisons of interest can be made among the 

means.  The sum of the weights multiplied by the group means is the estimated 

comparison value.  An F statistic may be constructed from the estimated 

comparison value and used to provide evidence that there is a significant 

difference between the contrasted groups.  Assuming orthogonal contrasts, the 

Type I error rate will be maintained at α for all contrasting hypotheses.  

Comparisons are said to be orthogonal of one another if, assuming equal sample 

sizes, the sum of the products of weights assigned to each comparison is equal to 

zero (Hays, 1994).  A drawback to planned comparisons is that the number of 

orthogonal comparisons that can be made is limited to the number of level-two 

units minus one (Toothaker, 1991).  Non-orthogonal a priori contrasts, such as in 

the case of all pairwise comparisons, do not maintain the Type I error rate at α, 

because the comparison being made is based on redundant information already 

gathered from a previous comparison (Hays, 1994).   

 By far the most common argument against controlling for multiplicity is 

that doing so sacrifices too much power to correctly reject the null hypothesis 

(Benjamini & Hochberg, 1995; deCani, 1984; Dunnett & Tamhane, 1992; 

O’Keefe, 2003).  While the loss in power from using MCPs can be substantial, 

researchers have generally agreed that maintaining the Type I error rate at α is of 
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greater concern than maintaining power (Tollenaar & Mooijaart, 2003).  As a 

result, it is typically considered necessary to account for multiplicity when several 

hypotheses are tested simultaneously. 

Multiple Comparison Procedures 

 Accepting that it is generally necessary to control for multiplicity when 

several hypotheses are tested on the same data set some action must be taken.  

MCPs have been specifically developed to address multiplicity.  Most MCPs 

increase the threshold(s) necessary to declare that a test’s result is significant 

while attempting to retain the greatest amount of power to detect true differences.  

The effectiveness of MCPs is judged primarily on two qualities:  The ability to 

maintain the Type I error rate at or below α, and the ability to correctly detect 

false null hypotheses, referred to as the power of the MCP (Ramsey, 1981). 

Before describing the properties of effective MCPs a more thorough discussion of 

the Type I error rate is needed.   

  Type I error definitions. 

 There are a number of possible definitions of the Type I error rate when 

testing multiple hypotheses.  As a result, there is some debate in the literature 

regarding which definition of the Type I error rate is most appropriate (Ramsey, 

1981).  To define the Type I error rate, the researcher must first determine what 

constitutes the family of hypotheses to be tested.  The family of hypotheses 

informs the extent of the Type I error rate inflation.  The most general definition 

of a family of hypotheses is the set of hypotheses that the researcher evaluates 

during an experiment or study (Games & Howell, 1976; Ludbrook, 1998; Shaffer, 
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1995).  Ultimately, the make-up of the corresponding family of tests depends on 

the purposes of the study and the research questions being asked (Ludbrook, 

1998; Shaffer, 1995).   

 Let C index the number of null hypotheses in a family of tests and m0 

denote the number of retained null hypotheses.  Table 2 may be redrawn for 

multiple hypothesis tests as: 

Table 3. Type I and II Errors Notation 

H0 Retained Rejected Total 

True U V C0 

False T S C - C0 

Total W R C 

 

Several definitions of the Type I error rate may be constructed using Table 3 

(Bretz, Hothorn, & Westfall, 2011).  Three of the most popular definitions are the 

per-comparison (PCE) error rate, the familywise error rate (FWE), and the false 

discovery rate (FDR). 

 The per-comparison error rate is the simplest definition of the Type I error 

rate.  The per-comparison error rate is also known as the comparisonwise error 

rate, the individual level, or the individual error rate (Bender & Lange, 2001).  

The per-comparison error rate is the expected proportion of Type I errors among 

all hypotheses being independently and separately tested, and may be written as: 

( )
PCE

E V

C
  ,         (4) 

where E(V) is the expected number of Type I errors in a family of tests.  The per-

comparison error rate is equal to α for each test and procedures that control for the 

per-comparison error rate essentially ignore the effects of multiplicity.  As a 
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result, this definition of the Type I error rate is not useful when testing multiple 

hypotheses. 

 The familywise error rate is the probability of committing at least one 

Type I error among a family of tests (Games & Howell, 1976; Ryan, 1959) and is 

written as: 

( 0)FWE P V   ,        (5) 

where P(V>0)  is the probability that at least one Type I error occurs in a family 

of tests. This is the most commonly used definition of the Type I error rate and a 

number of MCPs have been developed to control the familywise error rate at or 

below the value of αFWE selected a priori by the researcher (Bretz et al., 2011).  

Given independent tests, the familywise Type I error rate may be determined by 

Equation 3.    

 Alternatively, the false discovery rate is the expected proportion of falsely 

rejected hypotheses among the total number of rejected hypotheses: 

.         (6) 

If no hypotheses are rejected, then R is equal to zero and the FDR is set equal to 

zero (Benjamini & Hochberg, 1995; Bretz et al., 2011).  The false discovery rate 

is equal to the familywise error rate when all hypotheses are true but smaller than 

it when at least one hypothesis is false (Benjamini & Hochberg, 1995).  Any MCP 

that controls for the familywise error rate will also control for the false discovery 

rate, but the converse is not necessarily true (Bretz et al., 2011) 

 It appears as if the familywise error rate has become the most popular 

definition of the Type I error rate when making multiple comparisons (Brown & 

( )
V

FDR E
R
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Russell, 1997; Einot & Gabriel, 1975; Lehmann & Romano, 2005; Ludbrook, 

1998).  The familywise error rate definition has often been used when the size of 

the family of hypotheses is small to moderate or when strong support for rejecting 

the null hypothesis is required (Bretz et al., 2011).  As a result, the familywise 

error rate may be preferred in situations where high stakes are attached to the 

inferences drawn from the hypothesis test. 

 However, MCPs that control for the familywise error rate are less 

powerful than those procedures that control for the false discovery rate.  

Moreover, the power of familywise MCPs drastically decreases as the family of 

hypotheses increases.  Procedures controlling for the false discovery rate are 

generally able to maintain more stable power as C increases. Ultimately, deciding 

on the appropriate definition of the Type I error rate depends on which research 

questions are being asked and the purpose of the study (Ryan, 1959).  Because 

consequences tied to research in education are often high stakes, the familywise 

error rate definition will be used for this study. 

Power definitions. 

 Before continuing on, a brief discussion about power is necessary.  As a 

reminder, power is the probability of correctly rejecting the null hypothesis.  In 

the running example, this corresponds to correctly identifying those schools 

whose academic achievement was significantly different from the criterion.  As 

with Type I error rate, several definitions of power exist:  any-pair power, all-pair 

power, and per-pair power (Shaffer, 1995).  Any-pair power is defined as the 

probability of correctly rejecting at least one false hypothesis in a set of tests 
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(Ramsey, 1978).  Any-pair power approximates the power of an omnibus F test 

statistic and is most often of interest in exploratory studies (Ramsey, Ramsey, & 

Barrera, 2010).  All-pair power is the probability of correctly detecting all false 

hypotheses within a family of tests (Ramsey, 1978).  It has been recommended 

that all-pair power is the most appropriate definition of power for confirmatory 

studies (Ramsey et al., 2010).  Per-pair power is defined as the average 

probability of correctly rejecting a false hypothesis in a family of tests (Einot & 

Gabriel, 1975). 

  Properties of MCPs. 

 There have been dozens of MCPs developed to control for the inflation of 

the familywise Type I error rate.  As stated above, the best MCPs maintain the 

Type I error rate at α while maintaining the highest power.  A MCP is said to be 

robust if the procedure maintains the Type I error rate at or below α even when 

the theoretical assumptions of the procedure are violated (Games & Howell, 

1976).  MCPs that maintain strong Type I error control are to be preferred over 

those procedures that maintain weak Type I error control. In addition to strong 

Type I error control, researchers should be concerned with the power of the 

procedure.  There are several characteristics that ensure strong Type I error 

control while increasing the power of MCP.  In the following section, two of these 

characteristics are discussed:  protected vs unprotected MCPs, and simultaneous 

vs sequential MCPs.   
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  Protected vs. unprotected. 

 A MCP is said to be protected if a significant omnibus test is required 

before the procedure can be utilized (Seaman et al., 1991).  For instance, when 

testing all pairwise comparisons in a one-way ANOVA setting, a significant 

omnibus F test may be necessary first.  This omnibus test indicates that at least 

one pairwise comparison is significant.   

 If no omnibus test statistic is needed, then the MCP is said to be 

unprotected.  In general, protected MCPs are more powerful than unprotected 

procedures (Seaman et al., 1991).  Tukey’s HSD test is an example of a protected 

test while Fisher’s Least Significant Difference (LSD) is an example of an 

unprotected test (Seaman et al., 1991).  

  Simultaneous vs. sequential. 

 MCPs that correct for the inflation of the Type I error rate in one step are 

known as simultaneous procedures.  Simultaneous MCPs use a single, adjusted α 

for all hypotheses.  Simultaneous procedures tend to be some of the oldest MCPs 

(Toothaker, 1991).  On the other hand, a sequential procedure is any procedure 

that tests two or more stages of a hypothesis or a procedure that depends on a 

statistic other than the comparison itself (Seaman et al., 1991; Toothaker, 1991).  

In general, sequential procedures are more powerful than simultaneous procedures 

(Seaman et al., 1991; Strassburger & Bretz, 2008).   

 Sequential MCPs may be either step-up or step-down procedures (Brown 

& Russell, 1997). Step-down procedures begin by comparing the smallest p-value 
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to α’ and, assuming rejection of the null hypothesis, iteratively compare each 

subsequently larger p-value to α’ until a null hypothesis is retained.   

 In the next section, two classes of MCPs are discussed:  MCPs derived 

from the Bonferroni inequality and MCPs based upon various range distributions.  

To be clear, these two classes are not encompassing of all MCPs. For example, 

methods exist which utilize resampling procedures or graphical analysis.  

However, these two classes of MCPs have traditionally been the most popular 

MCPs when multiple hypotheses are tested on a set of means.   

  Simultaneous Bonferroni based MCPs. 

 As stated above, when independent hypotheses are tested the familywise 

Type I error rate inflation may be calculated using Equation 3.  Equation 7 adjusts 

α so that the Type I error rate for a family of tests will not exceed the α selected 

by the researcher. 

.        (7) 

 

The adjusted alpha level is denoted as α’.  This is called Šidàk’s equation and it 

controls for the familywise Type I error rate inflation (Šidàk, 1967).  To 

demonstrate, suppose a researcher was testing four hypotheses and wanted to 

maintain the familywise α at .05.  Šidàk’s equation would produce an α’ of .0127.  

To test for significance, p-values associated with the t-tests used to test the four 

hypotheses would be compared to an α’ of .0127, as opposed to the nominal value 

of .05.   

 Šidàk’s equation maintains strong Type I error control but assumes that all 

comparisons are independent of one another.  This is a result of Šidàk’s equation 

1/' 1 (1 ) C   
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being derived from Equation 3.  A benefit of Šidàk’s equation, and all equations 

derived from it, is that it may be used for any set of multiple p-values (Ludbrook, 

1998).  However, because Šidàk’s equation involves the use of a fractional power 

it failed to gain favor in the pre-computer days (Abdi, 2010).  In addition, Šidàk’s 

procedure is a conservative method in that it controls the Type I error rate 

inflation at a value less than α at the cost of a significant loss of power (Abdi, 

2010).   

  Bonferroni’s procedure. 

 Dunn (1961) popularized a computationally simpler method of controlling 

the familywise Type I error rate via Bonferroni’s inequality (Bonferroni, 1936). 

This method is alternatively called Boole’s inequality or Dunn’s approximation 

(Dunn, 1961).  Bonferroni’s inequality is the first linear term of the Taylor series 

expansion of the Šidàk equation (Abdi, 2010).  Bonferroni’s inequality is written 

as: 

.         (8) 

 After obtaining p-values, Bonferroni’s procedure also may be used to 

directly adjust p-values by multiplying the p-values by the number of hypotheses.  

It should be noted that this may result in individual adjusted p-values greater than 

one.  This may occur when a large number of hypotheses are being tested and, in 

such a situation, the adjusted p-values should be rounded down to one (Abdi, 

2010).  As an illustration, suppose the following p-values are obtained: .02, .04, 

and .9.  The adjusted Bonferroni adjusted p-values would be .01(3) = .03, .04(3) = 

'
C
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.12, and .9(3) = 2.7.  The same decision about the null hypothesis will be obtained 

whether α or the p-values are adjusted.  

 Bonferroni’s inequality and Šidàk’s equations are related to one another: 

.        (9) 

The above inequality states that the adjusted α produced by Šidàk’s equation will 

always be greater than or equal to the adjusted α produced by Bonferroni’s 

inequality.   In other words, Šidàk’s equation will always be more powerful than 

Bonferroni’s inequality (Abdi, 2010).  Empirical evidence, however, suggests the 

difference in power is very small (Abdi, 2010).  As is the case with Šidàk’s 

equation, Bonferroni’s inequality maintains strong Type I error control.  Similar 

to Šidàk’s equation, Bonferroni’s inequality assumes independence of 

comparison.  Unfortunately, in exchange for strong control of the Type I error 

rate, the Bonferroni MCP sacrifices significant power – particularly as the number 

of hypothesis tests increases (Gelman et al., 2012; Lu & Westfall, 2009).  Other 

procedures, derived from the Bonferroni inequality, have been developed that 

produce increased power. 

Sequential Bonferroni based MCPs. 

  Holm’s procedure. 

 Holm’s procedure is an example of a sequential step-down procedure for 

controlling the familywise Type I error rate at or below α (Holm, 1979).  To 

perform Holm’s procedure, one obtains the p-values from a family of statistical 

tests.  As with Šidàk’s and Bonferroni’s procedures, these values may be obtained 

from any test that produces a p-value (Holland & Copenhaver, 1988).  Holm’s 

1/1 (1 ) C

C
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procedure begins by ordering p-values obtained from multiple hypothesis tests 

from smallest to largest.  The first p-value is then compared to 
𝛼

𝐶
.  If this p-value is 

larger than 
𝛼

𝐶
 , then the null hypothesis is retained along with all subsequent null 

hypotheses and the procedure is terminated.  However, if this p-value is smaller 

𝛼

𝐶
 , then the null hypothesis is rejected and the next largest p-value is then 

compared to 
𝛼

𝐶−1
.  If this hypothesis is rejected, the next largest p-value is 

compared to 
𝛼

𝐶−2
.  These comparisons continue until a null hypothesis is retained 

or the smallest p-value is compared to α (Holm, 1979).   

 Similar to Bonferroni’s procedure, Holm’s procedure can also modify p-

values directly by multiplying the p-value by C-i+1, where i is an index of the 

step associated with the p-value.  For instance, if ten comparisons are being made 

and one wished to adjust the third smallest p-value, the researcher would multiply 

that p-value by 10-3+1. Holm’s procedure will always be more powerful than 

Bonferroni’s inequality (Aikin & Gensler, 1996).  In addition, Holm’s procedure 

makes no logical assumptions about the hierarchy of the hypotheses to be tested 

and does not assume independence of comparisons (Seaman et al., 1991).  As a 

result, Holm’s procedure may be used whenever a p-value is available or as 

Seaman et al. (1991) stated it may be used in a “virtually limitless variety of 

inferential statistical contexts” (p. 585).   

 Holm’s procedure does share with Bonferroni’s inequality the undesirable 

attribute of occasionally producing adjusted p-values greater than one.  As with 

Bonferroni’s inequality, if this occurs, the adjusted p-value should be rounded 
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down to one.  The Holm’s procedure may be modified to include Šidàk’s equation 

(Abdi, 2010).  This is called the Šidàk-Holm’s procedure and is slightly more 

powerful than Holm’s procedure and will not produce adjusted p-values greater 

than one.  

  Hochberg’s procedure. 

 Step-up procedures, on the other hand, compare the largest p-value to α’ 

and, upon retention of the null hypothesis, continue iteratively to the next largest 

p-value until a null hypothesis is rejected.  Step-up procedures are based off the 

Simes’ inequality (1986) for independent comparisons: 

𝑝(𝑖) >
𝑖𝛼

𝐶
= 1 − 𝛼,        (10) 

where C is the number of comparisons to be made and i is an integer between 1 

and C corresponding to the rank ordered p-values.  Simes’ inequality itself has 

weak control of the Type I error rate (Levin, 1996).  However, the step-up 

procedures derived from Simes’ inequality have demonstrated strong control of 

Type I error rate (Klockars & Hancock, 1992).   

 Monte Carlo simulation studies have demonstrated that step-up procedures 

are empirically more powerful than step-down procedures, particularly when a 

large number of null hypotheses are false (Dunnett & Tamhane, 1992; Hochberg 

& Tamhane, 1987; Horn & Dunnett, 2004).  The difference in power between 

step-down and step-up procedures increases with the number of hypotheses to be 

tested (Dunnett & Tamhane, 1992).  Two examples of step-up MCPs are 

Hochberg’s (1988) and Hommel’s procedures (1988).   
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 Hochberg’s (1988) MCP is a sequential MCP derived from Bonferroni’s 

inequality.  To perform Hochberg’s procedure, one obtains the p-values from a 

family of statistical tests. Hochberg’s approach begins with the ordering of the 

statistical test’s p-values from largest to smallest.  The largest p-value is 

compared to α.  If the first p-value is less than α, the null hypothesis is rejected, 

the procedure is terminated and all remaining hypotheses are rejected.  However, 

if the largest hypothesis is retained, then the second largest p-value is evaluated 

against  
𝛼

2
 .  This process continues iteratively until a hypothesis is rejected or all 

hypotheses are tested.   

  Hommel’s procedure. 

 Hommel’s (1988) procedure is another sequential that utilizes several 

logical decision steps, making it a more complex procedure then Hochberg’s 

procedures.  Let C be the total number of hypotheses, i be the number of 

hypotheses considered at a given step, and k index each of the hypotheses by p-

value beginning with the smallest p-value. Beginning with i = 1, the following 

equality is evaluated: 

.         (11) 

If Equation 11 is true, we move next to i = 2 and so on until either j is equal to C 

or Equation 11 is found to be not be true.  Each p-value is then compared against:  

,         (12) 

where i is the largest value for which Equation 11 is true. 
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 If no values of i exist for which Equation 11 is true than all hypotheses are 

rejected. (Hommel, 1988; Shaffer, 1995).  To illustrate, consider an example 

given by Nee (2014), where, the p-values for three hypotheses are p1 = .024, p2 = 

.03, and p3 = .073.  Beginning with i = 1, we evaluate the p-value corresponding 

to pC=3-i=1+k=1, which is p3 or .073. Because this p-value is greater than 
𝐶𝛼

𝑖
 = 

1(.05)

1
  

= .05, we continue to i = 2.  We now evaluate two p-values pC=3-i=2+k=1 and pC=3-

i=2+k=2, which correspond to p2 and p3.  P2 is compared to 
1(.05)

2
 and p3 to 

2(.05)

2
.  

Again, both p-values are greater than their comparison values.  When i = 3 we 

find that the inequality in Equation 11 no longer holds, and as a result a value of 

two is chosen for i in Equation 12, giving an adjusted p-value of .025.  Finally, 

any p-value less than .025 is rejected. 

 When hypotheses are logically independent, Hommel’s procedure will be 

slightly more powerful than Hochberg’s procedure (Shaffer, 1995).  Both 

procedures will always be more powerful than the Bonferroni and Holm’s 

procedures.  

  Range based MCPs.  

 MCPs have been developed to specifically control for normally distributed 

means using several related range distributions:  Student's t, studentized q, and F 

distribution.  Test statistics drawn from these distributions are related through the 

following equality: 

𝐹 = 𝑡2 =
𝑞2

2
,         (13) 

where the within groups degrees of freedom for the F distribution are equal to the 

total level-one sample size minus the level-two sample size, the between groups 



37 
 

degrees of freedom for the F distribution are equal to the number of level-two 

units minus one, the degrees of freedom for the Student’s t distribution is equal to 

the total level-one sample size minus one, and the degrees of freedom for the q 

distribution are equal to the total level-one sample size minus the level-two 

sample size.   

  Tukey’s HSD. 

 The Tukey Honestly Significant Difference (HSD) procedure adjusts for 

multiplicity by utilizing the studentized range distribution (Toothaker, 1991; 

Tukey, 1953).  The Tukey HSD is a simultaneous MCP that compares a t-statistic 

against a single q critical value: 

𝑞𝑗,𝑑𝑓

√2
,          (14) 

where j is the total number of level-two units being tested and df is the within 

groups degrees of freedom defined above (Toothaker, 1991).  The numerator for 

Equation 14 is drawn from a table of critical values of the studentized range 

distribution.  The null hypothesis is rejected when the absolute value of the t 

statistic exceeds or is equal to this critical value.  Because the studentized q 

distribution has thicker tails than the t distribution, Tukey’s HSD controls for 

multiplicity by taking advantage of the fact that the q distribution necessitates 

larger evidence to declare a significant mean difference.  While Tukey’s HSD was 

designed to control for multiplicity in the all pairwise comparisons scenario, this 

MCP can easily be adopted to comparing several means against a criterion by 

obtaining t-values drawn from single-sample t-tests. 



38 
 

  Scheffé’s Procedure. 

 The Scheffé MCP (1959) is a simultaneous MCP based upon the F 

distribution.  The Scheffé MCP compares t values drawn from any linear 

combination of means against the critical value: 

√(𝑗 − 1)𝐹𝑗−1,𝑑𝑓,        (15) 

where F is drawn from a table of critical values for the F distribution, and the 

remaining terms are defined above. 

 Tukey’s HSD is more powerful than Bonferroni’s MCP and Scheffé’s 

MCP when making all pairwise comparisons.  Scheffé’s MCP gains power as the 

number of hypotheses increase and is more powerful than Tukey’s HSD when 

level-two units have unequal sample sizes (Shaffer, 1995). Both range procedures 

may be used as a protected or unprotected MCP.  Both Tukey’s HSD and 

Scheffé’s MCP tend to be slightly less powerful than the sequential derivations of 

the Bonferroni procedure. 

  Factors affecting MCPs. 

 A variety of factors may affect the Type I error control or, more 

commonly, the power of MCPs.  These factors may arise from the MCP’s 

assumptions, an underlying statistical test, or as the result of properties of the 

sample and the decisions made during the construction of the research design.  In 

the following section, these factors are categorized as either statistical 

assumptions or practical considerations.  
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  Assumptions. 

 MCPs either have their own assumptions about the data, as is the case with 

the range procedures, or are affected by the assumptions underlying the statistical 

tests from which the p-values are obtained, as is the case with the Bonferroni 

based procedures.  When making multiple comparisons among means, the 

assumptions of both classes of MCPs are similar because the p-values for the 

Bonferroni based procedures are often taken from t-tests, which share many of the 

assumptions of the range MCPs.  Specifically, these procedures assume 

independence of observations and normally distributed data.  The independent 

samples t-test, which is appropriate when making pairwise comparisons, contains 

and additional assumption regarding variance homogeneity among the level-two 

units.  It should be noted that the fixed effects regression approach to testing 

hypotheses about level-two units makes the same assumptions.  Research has 

generally shown that the MCPs described above are not greatly affected by 

violations to the normality assumption (Brown & Russell, 1997; Einot & Gabriel, 

1975; Ramsey et al., 2010). 

 Violating the variance homogeneity assumption has drastic effects on the 

performance of MCPs (Nashimoto & Wright, 2008).  While the MCPs described 

thus far are generally able to maintain the Type I error rate at or below α when 

this assumption is not met, the power to detect true pairwise mean differences is 

severely reduced when even moderate heterogeneity of variance is present 

(Games & Howell, 1976; Hsiung & Olejnik, 1994; Kromrey & La Rocca, 1995).  

When comparing every level-two unit mean to a criterion, those level-two units 
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with larger within-groups variances will have less power to detect true differences 

from the criterion as compared to those level-two units with smaller variances, 

even when the mean difference from the criterion are identical.  This in turn may 

affect the all-pairs power of an MCP to detect true differences from the criterion 

for the family of tests under consideration. However, this has not been evaluated 

empirically. 

  Practical considerations. 

 A number of practical considerations may also affect the performance of 

MCPs.  These factors may be the result of the research design, available 

resources, or the limitations of the sample itself.  Factors that may affect the 

performance of MCPs include the total sample size across all level-one units, the 

number of level-two units, and the definition of power used. 

  Level-one sample size. 

 Increasing the total level-one sample size across all level-two units will 

increase the power of all MCPs under consideration.  This has been consistently 

demonstrated in the literature (Hsiung & Olejnik, 1994; Kromrey & La Rocca, 

1995; Olejnik, Li, Supattathum, & Huberty, 1997; Ramsey, 1981; Ramsey et al., 

2010; Seaman et al., 1991).   

  Unequal level-one sample sizes. 

 When the level-one sample sizes vary between the level-two units, the 

power of MCPs will be adversely affected.  Those level-two units with smaller 

level-one sample sizes will have less power to reject the null hypothesis as 
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compared to those level-two units with larger sample sizes, even when the level-

two means are equivalent.  This in turn reduces the all-pair power of MCPs. 

Level-two sample size. 

 Increasing the number of level-two units drastically decreases the power 

of the MCPs described above (Kromrey & La Rocca, 1995; Olejnik et al., 1997; 

Seaman et al., 1991).  This can be seen by revisiting Equation 3.  To begin with, 

assume six hypotheses are evaluated.  To illustrate, using Bonferroni’s procedure 

each hypothesis would be evaluated against an α’ of .05/6 = .0083. If the number 

of hypotheses is increased to 45 each hypothesis would be tested against an α’ of 

.05/45 = .0011.  As can be seen, the inverse relationship between the number of 

level-two units and α’ substantially reduces the probability of correctly rejecting 

the null hypothesis.  The critical values for the range based procedures are based, 

in part, by the number of level-two units.  A greater number of level-two units 

results in a higher critical value, decreasing the power to detect true differences.  

This problem seriously limits the applicability of MCPs in educational research 

situations when a large number of hypotheses are tested. 

  Power. 

  As stated above, there are three popular definitions of power (all-pair, 

any-pair, and per pair) and the choice of which definition to use will affect the 

performance of an MCP.  Typically, MCPs demonstrate stronger any-pair than 

all-pair power, and usually by a large amount (Kromrey & La Rocca, 1995; 

Olejnik et al., 1997), with this discrepancy increasing as a direct function of the 

number of hypotheses to be tested (Horn & Dunnett, 2004).  Per-pair power 
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depends on the number of hypotheses to be tested but generally falls between any-

pair and all-pair power.  Increasing the number of hypotheses to be tested 

increases the per-pair power (Horn & Dunnett, 2004).  Analogous to choosing 

which definition of the Type I error rate to use, selecting which definition of 

power to use depends on the purpose of the research questions being asked.  As a 

result, the chosen definition of power may be made independently of the 

definition of the Type I error rate. 

 Among the multiple factors that may influence the performance of MCPs, 

two factors, variance heterogeneity and the number of level-two units, are of 

particular concern.  These factors reduce the power of MCPs so substantially that 

they render MCPs, for all intents and purposes, useless in detecting true mean 

differences.  A method outside traditional MCPs is needed that maintains strong 

control of the Type I error rate while preserving power when variance 

heterogeneity and a large number of level-two units are present.  Up to this point, 

all level-two parameter estimates have been treated as fixed parameters.  One 

possible solution may be to treat the level-two units as random effects through the 

use of multilevel models (MLMs).  

 Multilevel Models 

  Overview. 

 MLMs expand on fixed effects models by allowing parameters to vary 

among higher-level units.  The MLM corresponding to Equation 1, where we 

wish to account for the effect of a grouping variable, may be expressed as a 

hierarchical linear model (Raudenbush & Bryk, 2002): 
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          (16) 

,         (17) 

where yij is the achievement for student i for school j, β0j is the average 

achievement for the jth school, and εij is the level-one error term distributed as 

N(0,σ2).  For the level-two parameters, γ00 is the average population school 

academic achievement and µ0j is the deviation from the grand mean for school j 

and is distributed as N(0,τ00).   

Intraclass correlation coefficient. 

The intraclass correlation coefficient (ICC) is a measure of the extent to 

which the variability in the outcome is due to variability in the higher-level units 

(Raudenbush & Bryk, 2002).  The ICC may be thought of as a measure of the 

necessity of modeling data in a multilevel format.  The ICC statistic ranges from 

zero to one. Research has indicated that ICC values between .15 and .3 are most 

often observed in educational research (Hedges & Hedberg, 2007a; Hedges & 

Hedberg, 2007b).  The ICC is expressed as: 

𝐼𝐶𝐶 =
𝜏00

𝜏00+𝜎2 .         (18) 

A value of zero indicates that none of the variance in the lower level was 

due to variability in the higher-level units.  Using the running example, an ICC of 

zero would indicate that any variability in student achievement was due to within 

student variability and the school had no effect on achievement.  This effect is 

analogous to aggregating over the effect of schools.  When the ICC is zero or it is 

not necessary to model the data hierarchically. 

0ij j ijy   

0 00 0j j   
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An ICC of one, on the other hand, indicates that variability in the outcome 

can be completely explained by higher-level membership.  This corresponds to 

the scenario in which any variability in academic achievement can be totally 

explained by the school a student attends.   

  Random effects. 

 In recent years, MLMs have become more popular in educational research.  

Federal educational initiatives such as the No Child Left Behind Act of 2001 and 

the Elementary and Secondary Education Act have inspired researchers to 

investigate how student level data, such as standardized test scores, may be used 

to infer knowledge on the performance of schools and teachers (Shaw, 2012).  

The line of research, spurred on by these government policies, acknowledges the 

inherent nesting of students within schools or teachers.  Thus, researchers have 

increasingly focused on developing models that isolate the teacher or school 

effects on student performance above and beyond what may be explained by 

student characteristics such as maturation or demographic information.  As a 

result, MLMs present themselves as an attractive option for applied researchers 

and, increasingly, researchers have parameterized the effects of schools and 

teachers as random.  Two prominent examples of this line of research are value 

added models and models for the accreditation of various institutions (Goldstein 

& Thomas, 1996; Ohlessen et al., 2007; Shaw, 2012)  

 MLMs are appealing to researchers for several reasons.  First, MLMs 

represent a compromise between aggregating over level-two units and the fixed 

effects model seen in Equation 1 (Gelman & Hill, 2007; Gelman et al., 2012; 
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Ohlessen et al., 2007; Raudenbush & Bryk, 2002).  Aggregating over the levels of 

a categorical variable assumes that the level-two units are homogenous in their 

effect on the outcome (Pedhazur, 1997).  In the running example these fixed 

effects models would assume that all schools had an equivalent effect on student 

achievement. Treating the effects of schools as fixed assumes that the effect of 

each school is completely independent of every other school. For example, 

although schools in a region may share characteristics that affect student 

achievement the influence of these commonalities would be ignored in a fixed 

effects model.  MLMs acknowledge that individual level-two units provide 

information about the effects of other level-two units and incorporate this 

knowledge into the parameter estimates by shifting the level-two unit mean 

estimates towards the grand mean (Gelman et al., 2012).   

 Second, because the level-two units are assumed to be sampled from a 

larger distribution of level-two units, MLMs allow researchers to generalize the 

results to level-two units not considered in the analysis.  Fixed effects analysis, on 

the other hand, limits generalizations to only the level-two units included in the 

study.   

 Third, MLMs allow the inclusion of predictors at multiple levels.  For 

example, in a two-level scenario the gender or SES of the students might be 

examples of a level-one predictor and the region in which the school was located 

or whether the school was public or private might be examples of a level-two 

predictor.  Neither aggregate nor fixed effects models can incorporate level-one 

and level-two predictors simultaneously.    
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 Lastly, when a large number of higher-level units are available, there may 

not be sufficient degrees of freedom for a fixed effects model to arrive at a viable 

solution (Tabachnick & Fidell, 2013).  To understand this, recall that for ordinary 

least squares linear regression the residual degrees of freedom are equal to n-

(k+1), where k is the number of independent variables.   Essentially, residual 

degrees of freedom indicate the amount of information remaining to estimate 

variability in the dependent variable.  If the residual degrees of freedom is zero or 

negative, the variability of the dependent variable cannot be estimated.  As an 

example, suppose a researcher wishes to predict student academic achievement 

using one of ten schools and one of five levels of funding as separate, categorical 

independent variables.  A sample size of at least 16 students would be necessary 

to run this model otherwise the residual degrees of freedom would be zero or 

negative and the model could not be estimated. The minimum sample size 

increases as the number of higher-level units increases.  MLMs avoid this 

problem and conserve the residual degrees of freedom spent on the level-two units 

by treating the level-two units as a single variance parameter to be estimated 

(Raudenbush & Bryk, 2002). 

  Hypotheses about level-two means. 

 Random effects are typically included as a nuisance parameter to account 

for unexplained variance rather than as a parameter worth exploring in and of 

itself.  However, researchers have used estimates of random level-two means to 

make inferences about level-two units.  For example, Raudenbush and Willms 
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(1995) investigated using multilevel models to estimate school effects.  Goldstein 

and Thomas (1995) conducted a similar study on schools in the United Kingdom.   

 In order to calculate parameter estimates for the means of the level-two 

units, one may follow the procedure detailed by Raudenbush and Bryk (2002).  

First, letting nj represent the level-one sample size for level-two unit j, we define 

the sample mean for each level-two unit as: 

,         (19) 

where 

 .        (20) 

The variance for Equation 20, referred to as the error variance, is defined as: 

 

,         (21) 

where σ2 is the level-one error variance.  The variance for Equation 19 can then be 

defined as: 

.         (22) 

Assuming that all  are known and equal level-one sample sizes between the 

level-two units, the estimated grand mean is defined as: 

,       (23) 

with variance: 

.        (24) 

We can then calculate an estimate for each level-two mean by: 

,       (25) 
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where  is the reliability of the estimated sample mean for level-two unit j and 

defined as: 

.     (26) 

We can then construct a confidence interval for  by first defining its variance: 

.      (27) 

The 95% confidence interval for  (assuming normality) is then: 

.      (28) 

 The above equations have assumed that the variance parameters and τ00 

are known a priori, which is almost never the case in practice.  More commonly, 

the maximum likelihood of variance parameters is estimated using iterative 

methods, such as the expectation-maximization algorithm (Raudenbush & Bryk, 

2002).  Maximum likelihood estimators select estimates of and τ00 that 

maximize the likelihood of the observed sample data. 

 Using Equation 28, researchers may then test the hypothesis that any 

level-two mean differs significantly from a criterion by inspecting whether the 

confidence interval for the level-two unit encapsulates the criterion.  In the 

ongoing example, this is done by evaluating whether zero is contained in the 

confidence interval for β0j.  If the confidence interval excludes the criterion, there 

is evidence that the level-two mean differs significantly from the criterion.  

Alternatively, researchers could test the hypothesis that a level-two mean is 

different from a criterion by deriving a Wald z statistic and testing a point 

hypothesis about the level-two mean. 
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 There is an argument to be made about the appropriateness of declaring as 

random a level-two mean that was previously treated as a fixed effect.  The above 

formulas demonstrate that the estimate of a mean will often differ depending on 

whether it is treated as a fixed or random effect.  Arguments regarding the 

correctness of treating an effect as fixed or random outside of theoretical grounds 

are beyond the scope of this paper.  Having said that, this paper largely avoids this 

issue because the focus is on the probability of making a correct decision rather 

than providing the most accurate estimates of the level-two means.  Further, as 

discussed below, differentiating between fixed and random effects is resolved 

when variables are viewed through the Bayesian lens because it treats all variables 

as random. 

  Three level models. 

 Although this paper focuses on testing hypotheses about the level-two 

means, it should be noted that it is straightforward to expand this model to a three 

level hierarchical model.  Building upon the ongoing example, suppose each of i 

students are nested in one of j schools which, in turn, are nested within one of k 

districts.  The three-level model has the added benefit of accounting for variance 

between level-two units that are due to a shared level-three unit.  The three level 

MLM may be expressed as: 

𝑦𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝑒𝑖𝑗𝑘        (29) 

𝛽0𝑗𝑘 = 𝛿00𝑘 + 𝑈0𝑗𝑘        (30) 

𝛿00𝑘 = 𝛾000 + 𝑉00𝑘,        (31) 
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where yijk is the academic achievement of student i attending school j nested 

within district k, eijk is the level-one error term distributed as N(0,σ2), β0jk is the 

school level deviation from its district level mean, δ00k, U0jk is the level-two error 

term distributed as N(0, 𝜏𝑈0
2 ), γ000 is the grand mean, and V00k is the level-three 

error term distributed as N(0, 𝜏𝑉00
2 ).  Testing hypotheses about the means of the 

higher-level units follows from the procedures detailed above in Equations 19 

through 28 (Raudenbush & Bryk, 2002). 

 Calculating the ICC for three level models is a bit more complicated than 

calculating the ICC for two level models.  This is because two separate ICCs must 

be computed.  The first, referred to as the ICC2, is a measure of the total variation 

in the outcome that is due to the level-two unit (Hoffman, 2016).  Under the 

running example, the ICC2 corresponds to the variation in academic achievement 

that is attributable to school membership.  Previous research has indicated that 

ICC2 values between .15 and .25 are observed in educational data (Hedges & 

Hedberg, 2007A).  The ICC2 is expressed as: 

𝐼𝐶𝐶2 =  
𝜏𝑉00

2 +𝜏𝑈0
2

𝜏𝑉00
2 +𝜏𝑈0

2 +𝜎2.        (32)  

The second, referred to as the ICC3, is a measure of the total variation in level-

two that is due to level-three membership (Hoffman, 2015).  Using the ongoing in 

example, the ICC3 is a measure of the variability in academic achievement 

between schools that is due to the district a school belongs.  The ICC3 is 

expressed as: 

𝐼𝐶𝐶3 =  
𝜏𝑉00

2

𝜏𝑉00
2 +𝜏𝑈0

2 .         (33) 
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There is a lack of research on common values of the ICC3 in the social sciences 

however it has been suggested that the ICC3 is typically lower than the ICC2 

(Siddiqui, Hedker, Flay, & Hu, 1996). 

 More complex models, which may include predictors at both levels, 

additional random effects, and cross-classified levels of nesting, are available and, 

if properly specified, improve the parameter estimates of MLMs (Gelman et al., 

2012).  For example, value added models typically nest students both within 

teachers and time points, in addition to including a variety of additional 

covariates.   

  Using MLMs as a MCP. 

 Several authors (Gelman et al., 2012; Kruschke, 2011; Raudenbush, 1988) 

have speculated that MLMs may provide some inherent control for Type I error 

rate inflation by shifting the estimates of the level-two means towards the grand 

mean, a phenomenon termed shrinkage. Shrinkage makes it more difficult to 

declare any a level-two unit as significantly different from the grand mean 

(Gelman et al., 2012; Raudenbush & Bryk, 2002).  Suppose that no level-two 

mean differs significantly from the criterion of zero in our example, which is the 

true population mean.  In this situation, each level-two mean estimate would be 

pulled towards the criterion, decreasing the probability of committing a Type I 

error.  On the other hand, suppose each level-two mean in our sample was ten 

points higher than the true, population mean of zero.  In this scenario, the 

estimated level-two means would be shrunk towards the estimated population 

mean of ten, and the confidence intervals surrounding the level-two mean 
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estimates would exclude the true population mean of zero.  These two examples 

encompass the extreme situations in which all level-two means are either equal or 

different than the true population mean.  For scenarios in between, where only a 

portion of the level-two means are different from the criterion, the non-zero level-

two means would not be drawn as close to the criterion as the level-two units with 

means of zero. 

 In fact, shrinkage is similar to how MCPs operate.  For example, assume 

there are three level-two units, all with a standard error equal to 1.  The null 

hypothesis that a level-two mean is significantly different than the aggregate 

mean, H0: μj = 0, is rejected if |
�̅�𝑗

𝑠𝑒
| > 𝑡(

𝛼

2
,𝑑𝑓).  If alpha is equal to .05 and the 

sample size for each level-two unit is 30, H0 is rejected if |
�̅�𝑗

𝑠𝑒
| > 2.045. Applying 

the Bonferroni correction, the mean difference necessary to reject H0 increases to 

|
�̅�𝑗

𝑠𝑒
| > 2.541.  With shrinkage, the mean estimates are shrunk towards the 

aggregate mean and the amount of shrinkage for a given level-two unit may be 

calculated as: 

 ,        (34) 

where  is the shrinkage adjusted mean and  is the aggregate mean 

(Gelman & Hill, 2007).  Using the above value for the standard error, suppose  

is equal to 3.5, σ2 is equal to 30, τ00 is equal to .5, and is equal to 1. With 

shrinkage, the t critical value remains constant at 2.045.  The fixed effect test of 
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H0: μ1 = 0 would be rejected in a fixed effects model because|
3.5

1
| > 2.045.  

However, shrinkage would alter the estimates of  to 1.833.  As a result, with a 

random effects model H0 would be retained since|
1.833

1
| < 2.045.  As can be seen, 

shrinkage decreases the probability of committing a Type I error.  

 Using MLMs as a MCP may also address some of the issues that follow 

with testing a large number of hypotheses.  MLMs parameter estimates become 

more accurate as the number of level-two units increase (Baldwin & Fellingham, 

2013; Raudenbush & Bryk, 2002; McNeish & Stapleton, 2016; Stegmueller, 

2013).  Further, as seen in Equation 34, the degree of shrinkage for a given level-

two mean is not directly influenced by the level-two sample size, rather it is solely 

a function of the within and between level variances.  This suggests that the 

power of using MLMs as an MCP would not be adversely effected by increasing 

the number of tested hypotheses. 

 Unfortunately, there has been a lack of research on how effectively 

frequentist MLMs operate as a control for multiplicity.  As noted above, this is 

likely because researchers have not been interested in individual level-two 

parameter estimates beyond the extent to which the random effect controls for 

unexplained variance.  Additionally, it may not seem intuitive to make an 

inference about level-two means because the level-two units are assumed to be 

randomly sampled from a larger population.  However, because confidence 

intervals are used to test hypotheses about level-two means, testing several level-

two means against a criterion should result in some Type I error rate inflation 

above and beyond the protection provided by the shrinkage phenomenon.   

1x
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Few studies have investigated the error rates of making classification 

decisions based on using MLMs.  Because the variance components of frequentist 

MLM are commonly estimated via maximum likelihood, it is not uncommon to 

obtain estimates of the variance components that are equal to zero (Bayarri & 

Berger, 2004); which would make the evaluation of the Type I error difficult.  

One study, by Schochet and Chiang (2010), examined the error rate of complex 

MLMs in which students were nested within teachers.  The models examined had 

several predictors at both the teacher and student level in addition to time varying 

random effects.  The authors found that these model exhibited Type I error rates 

greater than α.   

 Additionally, MLMs provide no adjustment for Type I error inflation 

when τ00 is equal to zero, which is the situation in which protection against 

multiplicity would be most desired.  This can in Equation 34 by setting τ00 to zero, 

which is equivalent to aggregating across the level-two units. 

 Bayesian Paradigm 

 An alternative approach to controlling the multiplicity problem may be to 

adopt a Bayesian perspective to statistical testing.  The key difference between the 

frequentist and Bayesian paradigms is that the Bayesian paradigm allows 

researchers to treat all parameters as random variables arising from some 

distribution while the frequentist paradigm assumes that parameters have a single, 

fixed value (Kaplan, 2014; Lynch, 2007).  Additionally, the Bayesian paradigm 

allows researchers to assign prior distributions to all parameters in a given model.  

Returning to Equation 2, rather than treating β0 as a parameter with a single, fixed 
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value, the Bayesian model would assign a prior distribution to β0 that 

encompasses all possible values of β0.  Further, the Bayesian approach to statistics 

allows the researcher to assign prior distributions to the parameters of prior 

distributions, called hyperparameters (Kaplan, 2014).  For instance, the 

frequentist linear regression model assumes that there is an error term associated 

with every model and that is distributed N(0,σ2); this itself can be conceptualized 

as a prior distribution.  With Bayesian analysis, it is possible to assign prior 

distributions to the mean and variance of the distribution of the error term.  Note 

that this allows hyperparameters to have their own hyperparameters.  It is not 

necessary to specify a prior distribution for all hyperparameters; hyperparameters 

may alternatively be assigned fixed values (Kaplan, 2014). 

 To understand the rationale to Bayesian statistics, let Y be a random 

variable that takes on the observed data, y, and let θ be unknown to the 

researchers and represent a parameter or set of parameters that define a 

probability model meant to explain the observations, y (Kaplan, 2014).  The 

likelihood of the parameter estimates given the data may be written as L(θ|y).  

Further, the probability of obtaining y given θ, p(y|θ), is proportional to the 

likelihood and is known as the posterior distribution of θ (Kaplan, 2014).  In the 

Bayesian framework, θ is assumed to be random and have its own probability 

distribution (Kaplan, 2014). The Bayesian approach to statistics also makes the 

assumption of exchangeability which “implies that the subscripts of the vector of 

data (e.g., y1, y2, …, yn) do not carry information that is relevant to describing the 

probability distribution of the data” (Kaplan, 2014, p. 16).  The goal of Bayesian 
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statistics is to determine the probability distribution that best estimates θ given the 

data and then to summarize that distribution (Lynch, 2007).  Many of these 

summaries are integrals of the posterior distribution, such as the mean, mode, and 

variance (Lynch, 2007). 

 Because both θ and y are assumed to be random, it is possible to model the 

joint probability of θ and y, , as the product of p(y|θ) and the prior 

distribution of θ, p(θ).  The prior distribution is an acknowledgement by the 

researcher of what is known or unknown about the parameter of interest.  

Equation 35 demonstrates this relationship: 

𝑝(𝜃, 𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃).        (35) 

Using Bayes theorem, the posterior distribution of θ can be written as: 

𝑝(𝜃|𝑦) =
𝑝(𝜃,𝑦)

𝑝(𝑦)
=

𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
,       (36) 

where p(y) ensures that the posterior distribution integrates to one.  Because the 

purpose of p(y) is to scale the posterior distribution to for a proper density and 

does not contain model parameters Bayes theorem is often written: 

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃).       (37) 

When p(y|θ) is expressed in terms of an unknown θ for fixed values of y, 

this term becomes L(θ|y) and Equation 37 is rewritten as: 

.       (38) 

 Conceptually, Equation 38 shows that the posterior distribution is the 

product of the likelihood function and the prior distribution (i.e., Posterior ∝ 

Likelihood x Prior).  Essentially, the values obtained from the likelihood function 

updates the range of reasonable values that might contain θ (Kruschke, 2013). As 

p(q, y)

( | ) ( | ) ( )p y L y p  
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Lynch (2007, p. 50) succinctly writes “the goal of Bayesian statistics is to 

represent prior uncertainty about model parameters with a probability distribution 

and to update this prior uncertainty with current data to produce a posterior 

probability distribution for the parameter that contains less uncertainty.”  

Kruschke (2013, p. 574) describes Bayesian analysis as a process that “reallocates 

belief toward the parameter values that are consistent with the data and away from 

the parameter values that are inconsistent with the data.” 

 The Bayesian approach to statistics has a number of advantages compared 

to the frequentist approach to statistics.  For example, because Bayesian analyses 

seek to summarize the posterior distribution there is no need to rely on asymptotic 

assumptions to ensure normality, as is common in many frequentist hypothesis 

tests (Lynch, 2007).  Moreover, compared to the frequentist approach to statistics, 

Bayesian analysis allows for more measures of model fit and provides more 

information about parameter estimates (Lynch, 2007). 

 However, the Bayesian paradigm is not without criticism.  For instance, 

the choice of a prior distribution introduces subjectivity into the analysis and the 

assumption of whether parameters are randomly distributed is questionable 

(Lynch, 2007).  Second, some have argued that there are situations in which 

parameters do have a true single value, and as a result it is not necessary to place a 

probability distribution on these parameters.  Further, compared to frequentist 

analysis Bayesian analysis often requires increased computational power 

(Nashimoto & Wright, 2008).  



58 
 

 Elaborating on the first criticism, because researchers have the freedom to 

choose prior distributions, the choice of prior distributions may unduly introduce 

the researcher’s bias into the analysis that may affect the interpretation of the 

results (Lynch, 2007).  Additionally, two (or more) researchers may select 

different prior distributions for the same model and data.  Because the estimation 

of the posterior distribution will vary depending on which prior distribution is 

chosen, the competing researchers may come to different conclusions as a result 

of their choice of prior distributions (Lynch, 2007).   

 Bayesian proponents have responded to this criticism in several ways.  

First, Bayesians argue that all approaches to statistics are subjective to some 

extent.  The choice of α, or the selection of a likelihood function used for a given 

analysis is subjective as well.  Lynch (2007) gives the example that when faced 

with ordinal data, researchers have the option of choosing a normal likelihood 

function or a binomial likelihood with a link function. The researcher’s choice of 

function may be due in some part, to the researcher’s preferences for the chosen 

model.  Second, Bayesian researchers argue that this uncertainty grants added 

benefits to Bayesian analysis, namely that the prior distribution can incorporate 

the findings of previous research (Lynch, 2007).  Finally, priors tend to be 

dominated by the data, particularly when noninformative priors are chosen.  As a 

result, the effect of a prior distribution on the interpretation of the analysis is 

typically small (Lynch, 2007). 

 Recall that the second criticism states that because some (or perhaps all) 

parameters have a fixed value in truth then it is not appropriate to place a 
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probability distribution on the parameters (Lynch, 2007).  For example, suppose 

the parameter of interest is the average height of a particular classroom of 

students at a specific point in time; in such a situation it is difficult to argue that 

true, population average height is anything other than a single value (Lynch, 

2007).  Bayesian researchers counter this argument by stating that the Bayesian 

philosophy of statistics is a subjective approach to uncertainty.  That is, it does not 

matter whether or not a parameter is fixed as we are unclear about its true value.  

As a result, it is irrelevant if a parameter has a true, fixed value (Lynch, 2007). 

 The final criticism that Bayesian models require greater computational 

power than their frequentist counterpoints because often it is necessary to use 

complex sampling methods to estimate the posterior distribution.  However, 

computational power has continued to grow and the Bayesian approach has 

increased in popularity in concert with this growth (Nashimoto & Wright, 2008).   

  Prior distributions. 

 The prior distribution of θ is assigned by the researcher and may be 

informative or noninformative (Kaplan, 2014).  Informative prior distributions 

assume the researcher has some previous knowledge about the distribution of θ.  

This information may be drawn from previous research or knowledge about the 

domain of θ (Kaplan, 2014).  For instance, if academic achievement can range 

from 0 to 100 and it is expected that the majority of students will score in the 

middle of the distribution, it seems reasonable to specify a prior distribution N(μ, 

σ2).  Further, it makes little sense to allow the range of the prior distribution to 

produce negative estimates of academic achievement or estimates of academic 
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achievement greater than 100. A sensible prior distribution in this example might 

be N(50, 10).  

 Informative prior distributions may be further classified as conjugate or 

non-conjugate priors.  Multiplying a conjugate prior distribution by the likelihood 

results in a posterior distribution from the same family of distributions as the prior 

(Kaplan, 2014).  In contrast, a non-conjugate prior distribution produces a 

posterior distribution from an unknown family, and it may be difficult, time 

consuming, or even impossible to derive such distributions.  As a result, 

conjugacy is a desirable property when choosing a prior distribution (Kaplan, 

2014). 

  Noninformative prior distributions, equivalently called objective, vague or 

diffuse priors, are used when the researcher has little previous knowledge of θ 

(Kaplan, 2014).  As an example, suppose the researcher has no idea whether 

school J differs significantly from the criterion in academic achievement.  A 

possible non-informative prior distribution may be a uniform distribution, U[Α, 

Β], where the hyperparameters Α and Β are given values of 0 and 100 to account 

for the minimum and maximum academic achievement scores. When a 

noninformative prior distribution is used, the posterior distribution will be more 

heavily influence by the likelihood function and produce estimates that align with 

those obtained from frequentist inferences.  Additionally, noninformative prior 

distributions are generally non-conjugate. 
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  MCMC sampling. 

 In practice, it can be impossible to integrate some posterior distributions.  

This can occur when specifying models containing many parameters or when 

noninformative and non-conjugate prior distributions are used (Kaplan, 2014; 

Lynch, 2007).  Traditionally, difficulty of integrating the posterior distribution has 

been one of the factors that has limited the widespread use of Bayesian analysis 

(Kaplan, 2014).  The development of modern sampling methods and increase in 

computing power have provided researchers an avenue for summarizing posterior 

distributions (Lynch, 2007).  These methods generate a sample from the posterior 

distribution of interest and summarize these samples to approximate the 

corresponding integrals (Lynch, 2007).  For instance, the expectation of a 

posterior distribution may be estimated as: 

,       (39) 

where T samples of θ are taken from the posterior distribution.  For independent 

and increasing T the approximations of the posterior distribution becomes more 

accurate (Kaplan, 2014).  

 Markov chain Monte Carlo (MCMC) sampling algorithms are a set of 

procedures for summarizing the posterior distribution.  MCMCs operate by 

sampling the domain of all elements with a non-zero probability density for one 

or more dimensions of a posterior distribution (Kaplan, 2014; Lynch, 2007).  The 

selection of random samples from a distribution is called Monte Carlo integration, 

whereas Markov chains are the tools used to sample a new value from the 

posterior distribution (Kaplan, 2014; Lynch, 2007).   
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 A Markov chain is a series of sequential, dependent, random variables in 

which the conditional probability of drawing a particular variable in the sequence 

depends only on the immediate previous variable (Kaplan, 2014).  Markov chains 

have the desirable property that, given enough iterations, Markov chains will 

"forget" the initial distribution from which variables were drawn and converge 

towards the posterior distribution.  Additionally, Markov chains allow the 

relaxation of the independence assumption of Monte Carlo integration (Kaplan, 

2014).  Two of the more commonly used algorithms for constructing a Markov 

chain are the Metropolis-Hastings (Metropolis, Rosenbluth, Rosenbluth, Teller, & 

Teller, 1953) and Gibbs approaches. 

 The Metropolis-Hastings algorithm begins by specifying starting values, s, 

for the parameter θs=0.  There are several methods for choosing starting values 

such as the using the maximum likelihood estimate of the parameter or by using a 

random number generator to select a starting value.  Next, draw a candidate 

parameter, θc, from a proposal distribution (s = 1).  The proposal distribution is 

chosen by the researcher and commonly selected proposal distributions include 

the normal or uniform distributions.  The next step is to compute the ratio: 

.       (40) 

R is then compared with a randomly drawn value from a U[0, 1].  If R is greater 

than this value, the candidate is accepted as a value draw and θs+1 is set to equal 

θc.  Otherwise, this candidate is discarded, the previous value of θs is kept, and 

another candidate value is drawn (Lynch, 2007).  This process is repeated until 

enough draws have been accepted to converge to the posterior distribution 
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(Lynch, 2007).   The Metropolis-Hastings algorithm has the desirable property of 

converging towards the posterior distribution regardless of the starting values and 

the chosen proposal distribution (Kaplan, 2014, Lynch, 2007).   

 To explain the Gibbs sampler, let θ represent a vector of parameters, {θ1, 

θ2,…, θq}, where information for θ is drawn from the prior distribution (Kaplan, 

2014).  Starting values s are then assigned to these parameters such that θ(0) = 

(θ1
0, θ2

0,…, θq
0).  Setting s to s +1, the Gibbs sampler then generates a value for 

θq
(s) by sampling from the conditional distribution of that parameter given the 

current value of all other parameters (Lynch, 2007).  This process is described in 

the following algorithm: 

1. 
 

 

2. 
 

 

.  . 

.  .         (41) 

.  . 

q.   

q + 1. Return to step 1. 

 

 In words, a value for θ1 is drawn from the conditional distribution of θ1 

given the data and all other parameters are at start values of 0 (Kaplan, 2014).  

Next, θ2 is drawn from the conditional distribution of θ2 given the data, the 

current value for θ1, and the remaining parameters at their start values.  The 

remaining parameters are estimated using the current values for the previous 

parameters.  An iteration is finished upon estimating the last parameter in θ.  This 

process is then repeated until convergence towards the posterior distribution is 

reached.  The process of assessing convergence is discussed in more detail below. 
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 There are benefits and drawbacks to both the Metropolis-Hastings and 

Gibbs algorithms.  Both will converge to the posterior distribution regardless of 

the chosen starting values (Lynch, 2007).  However, it should be noted that 

“poor” starting values may lead to computational inefficiency.  The Metropolis-

Hastings algorithm may be more generally applied than the Gibbs sampler 

because if there is difficulty in deriving the conditional distribution for all 

parameters in θ the Gibbs sampler cannot be used.  Fortunately, this limitation 

does not apply to analyzing hierarchical parameters, such as those found in 

multilevel models.  The default MCMC procedure for many Bayesian software 

programs, such as JAGS (Just Another Gibbs Sampler), WinBugs and the 

MCMCPack (Martin, Quinn, & Park, 2011), BEST (Krushke & Meredith, 2015), 

and LaplacesDemon (Statisticat, 2016) packages in R, is the Gibbs sampler 

(Lynch, 2007).  As a result, the Gibbs algorithm enjoys more widespread use 

when estimating multilevel models than the Metropolis-Hastings algorithm. 

 Ensuring that enough iterations have been performed so that the MCMC 

algorithm converge to the posterior distributions is an important aspect of 

Bayesian analysis.  An algorithm that has not converged to the posterior 

distribution may produce inaccurate parameter estimates.  Although there are 

several methods available to assess the convergence of MCMCs, there is no 

consensus on which is the single best method or criterion for declaring that an 

algorithm has converged (Kaplan, 2014).  Popular convergence diagnostics 

include trace plots, the Gelman-Rubin convergence diagnostic, and the auto 

correlation function plot (Kaplan, 2014).   
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Trace plots are graphical displays of accepted values at each iteration, with 

the sample value on the ordinate and the iteration on the abscissa.  Convergence 

towards the posterior is demonstrated by a stationary, horizontal line across the 

plot (Lynch, 2007).  The Scale reduction factor or Gelman-Rubin convergence 

diagnostic (denoted �̂�) is a test statistic that calculates the ratio of variance in a 

parameter’s Markov chain that is due to within chain variability (Gelman, 1996; 

Lynch, 2007).  Values of �̂� close to 1 provide evidence that convergence has been 

achieved. Autocorrelation plots graph dependency between draws sampled close 

together, the presence of which produces downwardly biased estimates of the 

parameter estimates (Lynch, 2007).  It is recommended that several convergence 

diagnostics be used to determine whether the Markov chains have converged to 

the posterior distribution. 

 There are multiple practical decisions to be considered when using 

MCMC sampling methods in order to ensure convergence to the posterior 

distribution.  Early iterations of Markov chains are often unstable because a large 

degree of autocorrelation exists between early draws.  Researchers normally 

discard early draws until draws become independent of one another (Kaplan, 

2014).  This is referred to as the burn-in period.  Second, draws taken close to one 

another will also demonstrate a high degree of autocorrelation.  Researchers may 

combat this problem by thinning the chain by only taking draws from every xth 

iteration.  Additionally, it is possible to specify multiple chains from different 

starting values.  Doing so may reduce the number of iterations needed to converge 
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to the posterior distribution and may help to overcome the effect of poor start 

values (Kaplan, 2014).   

  Assessing hypotheses. 

 Using MCMC methods, Bayesian inference can be synthesized in three 

steps: establishing the posterior distributions for the parameters of interest for a 

given model, drawing samples from these posterior distributions via MCMC 

methods, and summarizing these samples to provide an estimate of the parameter 

characteristics (Lynch, 2007).  Assuming convergence towards the posterior 

distribution, several methods for testing hypotheses exist (Kaplan, 2014; Lynch, 

2007).   

 A popular method for testing hypotheses is to make inferences from 

summaries of the posterior distribution.  When testing several means against a 

criterion, two procedures for making inferences are examining the posterior 

credible interval or specifying a dichotomous parameter for indicating the 

difference between a level-two mean and the criterion and examining its posterior 

distribution (Kaplan, 2014; Kruschke, 2013; Nashimoto & Wright, 2008). The 

second method is discussed in more detail later in this chapter. 

 The posterior credible interval is a simple method for assessing hypothesis 

tests involving means, or any parameter for that matter.  The posterior credible 

interval is summarized through quantiles sampled from the posterior distribution 

(Kaplan, 2014).  For instance, the 95% credible interval for a parameter is simply 

the 2.5 and 97.5 percentiles of the posterior distribution.  It is important to note 

the difference between the Bayesian credible interval and the frequentist 
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confidence interval.  Inferences drawn from the 95% credible interval suggest that 

95% of the posterior distribution of the parameter of interest is captured within 

that interval given the data (Kaplan, 2014).  In contrast, the inferences drawn from 

frequentist confidence interval suggest to the researcher that if it were possible to 

take an infinite number of independent samples of size n from a population, 95% 

of those samples would contain the parameter of interest (Kaplan, 2014). 

 In order to determine whether level-two means differ significantly from a 

criterion, the researcher first derives the desired credible interval for each level-

two mean (Gelman et al., 2012; Krushke, 2013).  If the credible interval for a 

given level-two mean excludes the criterion, there is evidence that the two mean 

is significantly different from the criterion (Kaplan, 2014).  Likewise, if the 

posterior credible interval for a given mean includes the criterion, then there is not 

sufficient evidence to declare that level-two unit mean as significantly different 

from the criterion.  

  Type I error rate. 

 The above method for assessing hypotheses conducts separate tests for 

each level-two unit. As a result, the concept of the Bayesian Type I error rate and 

the issue of multiplicity must be discussed.  As with all hypothesis tests, it is 

possible to arrive at incorrect inferences when conducting a Bayesian hypothesis 

test.  However, while several authors have noted that the Bayesian hypothesis 

tests tend to be more conservative than their frequentist counterparts, it is 

generally unknown what the expected Type I error rate for Bayesian tests is a 

priori (Bayarri & Berger, 2004; Gelman et al., 2012; Wang, Leung, Li, & Tan, 
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2005).  As in the frequentist perspective it is desirable that the percentage of Type 

I errors among a family of tests needs be held under some criterion that is pre-

determined by the researcher. 

 The concept of multiplicity arises solely from the frequentist perspective 

to statistics.  Some Bayesians argue that an adjustment for multiplicity is inherent 

to Bayesian hypothesis testing (Bayarri & Berger, 2004).  As a result, several 

authors have suggested that in the Bayesian framework there is no need to adjust 

for multiplicity provided the assumption of conditional independence between 

hypotheses is met and the prior distribution is correctly specified (Berry & 

Hochberg, 1999; Gelman et al., 2012; Westfall, Johnson, & Utts, 1997).  

However, the first assumption is rarely met in practice.  Berry and Hochberg 

(1999) give the humorous example that this assumption might be met when 

“treatments are of very different types (one a fertilizer and another a human 

cancer drug, say)” (p. 219).  Additionally, testing several means simultaneously 

likely violates the exchangeability assumption because each mean necessarily 

refers to a specific category or group (Kaplan, 2014).  For example, when 

discussing several schools, academic achievement at school A cannot be 

exchanged indiscriminately with the achievement at school B. 

 Although the idea of multiplicity is a frequentist concept, Westfall et al. 

(1997) listed several instances in which correction for multiplicity may be 

necessary from the Bayesian perspective.  In particular, the authors state 

corrections for multiplicity are necessary when the researcher suspects that many 

of the null hypotheses are true and when the researcher is interested in testing 
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several hypotheses simultaneously rather than an omnibus test (Berry & 

Hochberg, 1999; Westfall et al., 1997).  As an example, consider a situation in 

which schools will not be accredited if the average student achievement for a 

school falls below a criterion identifying the very lowest performing schools.  A 

null hypothesis might be H0: μj < criterion.  In such a situation, it is expected that 

the majority of schools will either demonstrate an average performance above the 

cut point or display an average performance that is statistically indistinguishable 

from the cut point (i.e., the credible interval for a school contains the cut off 

value).  

 Finally, when non-informative priors are assigned the results from 

Bayesian analyses will approximate the inferences drawn from frequentist 

analyses because the prior distribution provides relatively little information to the 

posterior distribution relative to the likelihood (Bayarri & Berger, 2004; Mossman 

& Berger, 2001).  Bayarri and Berger (2004, p. 63) write “The standard normal 

linear model is the prototypical example:  frequentist estimates and confidence 

intervals coincide exactly with the standard objective Bayesian estimates and 

credible intervals.”  Following this logic, when testing hypotheses about multiple 

means, conducting simultaneous Bayesian t-tests will likely lead to conclusions 

that are in accordance with the increase in Type I errors in their frequentist 

counterparts due to multiplicity.   

 Bayesian Approaches to Multiplicity 

 Acknowledging that it is important to hold the Type I error rate of 

Bayesian tests under a predetermined α, particularly when the conditional 
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independence of hypotheses assumption cannot be met and/or uninformative prior 

distributions are used, four Bayesian models have been proposed.  The first 

method is to model the data as a fully Bayesian MLM (Gelman et al., 2012).  The 

second method is a fully Bayesian hierarchical model with a semi-informative, 

mixed prior distribution placed upon a difference parameter, δq, which signifies 

the difference between any level-two mean and the grand mean. The third and 

fourth methods are modifications of the previous two methods that use sample 

estimates of the within group variances to assign semi informed priors to σ2
.   

  Bayesian MLM. 

 Gelman et al. (2012) suggest that a fully Bayesian MLM could be used to 

control for multiplicity using many of the same arguments presented above in the 

section on shrinkage.  These authors argue that Bayesian MLM accounts for Type 

I inflation directly by incorporating multiplicity into the model by specifying a 

hierarchical structure.  Additionally, by drawing the level-two means from a 

larger distribution, the exchangeability assumption is conditionally met (Kaplan, 

2014).  Bayesian MLMs have also been suggested for use when conducting 

subgroup analysis in epidemiological studies (Jones, Ohlssen, Neuenschwander, 

Racine & Branson, 2011).   

 The Bayesian MLM differs from the frequentist MLM in two ways.  The 

first is that the level-one and two variance components, σ2 and τ00, are treated as 

random parameters and each are assigned prior distributions, whereas in the 

frequentist MLM estimates these two parameters are typically treated as fixed 

parameters and estimated via maximum likelihood methods.  It should be noted 
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that frequentist MLMs are actually semi-Bayesian in that  is drawn from the 

posterior estimate of the variance of
 
(Raudenbush & Bryk, 2002).  Second, in 

the Bayesian MLM, the mean of the level-two error term, now denoted as μα, is 

given a prior distribution as well.  This is in contrast to the frequentist approach to 

MLM which fixes μα at some value, usually zero. 

 Previous research has evaluated the use of Bayesian MLMs as a control 

for multiplicity.  Austin et al. (2001) evaluated the performance of Bayesian 

MLMs when assessing hospital performance, measured as the risk-adjusted 

mortality rate, as compared to frequentist methods using empirical data.  The 

authors found that the two approaches produced a moderate amount of 

disagreement in terms of classifying hospital’s risk of patient mortality.  Gelman 

et al. (2012) evaluated the performance of Bayesian MLMs against the use of the 

Bonferroni procedure from the frequentist perspective.  They found that the 

Bayesian MLM method produced different decisions than did the frequentist 

approach and led to smaller uncertainty about the parameter estimates.   

Nashimoto and Wright (2008) applied a Bayesian MLM model to a study 

investigating the effect of cigarette use on lung capacity.  This study was purely 

an empirical application and did not directly address multiplicity.   

 Few studies have examined the effectiveness Bayesian MLMs as a 

solution to the multiplicity problem via simulation study (Jones et al., 2011).  Yi 

et al. (2012) compared the Type I error control and power of a Bayesian MLM 

against several traditional MCPs.  The authors found that the Bayesian MLM 

exhibited a lower Type I error rate and greater power as compared to the 
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traditional procedures.  However, these studies have been limited in scope and 

generally have not investigated factors that may influence the performance of the 

Bayesian MLMs.  Ohlssen et al. (2006) conducted a simulation study 

demonstrating the use of logistic Bayesian MLM but conducted their study 

outside of the context of Type I error inflation.  As such, it is unknown how they 

will perform compared to frequentist MCPs when a large number of hypotheses 

are tested or in the presence of variance heterogeneity.   

  Bayesian model for with a δ parameter.  

 An alternative method to specifying the Bayesian MLM defined above is 

to define a hierarchical model that treats each mean sequentially based on a 

simple rank order assumption (Nashimoto & Wright, 2008; Shang, 2011; Shang et 

al., 2008).  Previous research has examined this model in the context of a one-way 

ANOVA (Nashimoto & Wright, 2008) and a two-way mixed ANOVA (Li & Shang, 

2015; Shang, 2011; Shang et al., 2008).  The rank order assumption of means is 

tenable when there is reason to suspect that a natural ordering of means exists, for 

instance it is reasonable to suspect that lighter cigarette smokers will exhibit 

greater lung capacity as compared to heavier smokers (Nashimoto & Wright, 

2008).  This method was originally developed to test the pairwise difference 

among means by first ordering the means sequentially and then reparametrizing 

the J means such that μj+1 is determined by the sum of the preceding mean, μj, 

plus a difference parameter δq (Nashimoto & Wright, 2008).  More formally, let 

β1 denote the smallest mean and then define each remaining j-1 means as 



73 
 

 for 2 ≤ i ≤ j, (Nashimoto & Wright, 2008).  The distribution of 

level-one scores is defined as: 

.     (42) 

Equation 42 necessitates prior distributions for β1, σ
2, and δq.   Previous 

researchers have assigned β1 a normal prior with a large variance N(μα,𝜏0
2) (Li & 

Shang, 2015; Nashimoto & Wright, 2008; Shang, 2011; Shang et al., 2008).  

Nashimoto and Wright (2008) fixed μα equal to the sample mean of the smallest 

group and fixed 𝜏0
2 to 106.  In papers by Shang (2008) and Shang et al. (2008) μα 

was fixed at 0 and 𝜏0
2 was fixed to 100.  Nashimoto and Wright (2008) assigned σ2 

an inverse gamma prior with hyperparameters α0 and β0.  The prior distribution 

for σ2 from the papers by Shang (2008) and Shang et al. (2008) are not included 

because these authors approached this model from a two-way mixed ANOVA 

perspective that includes additional variance components which are not relevant 

to this paper. 

 The difference parameter for each rank ordered mean, δq, is assigned a 

prior distribution that is a mixture of an exponential distribution and a discrete 

distribution with its entire mass at 0 (Li & Shang, 2015; Nashimoto & Wright 

2008; Shang, 2011).  This is useful when a simple order restriction is present 

because this prior restricts the difference between two sequential means to be 0 or 

non-negative.   
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 To model this approach, let  be an indicator of the situation in which δq 

≠ 0 and  be an indicator of the situation in which δq = 0.  The prior distribution 

for is then assigned as follows: 

,       (43) 

and  

,       (44) 

where ηq is the variance of the normal prior distribution for δq  and pq is the 

probability that δq is equal to 0.  Prior distributions are then assigned to the 

hyperparameters of δq:  pq and ηq.  The noninformative prior BETA(Α0, Β0) is 

assigned to pq and the noninformative prior 𝐼𝐺(𝛼0, 𝛽0)
 
is assigned to ηq.  

Assigning pq a BETA prior distribution allows the researcher to include 

information from previous studies pertaining to the probability that δq is 0.  When 

no preference is given to the hypothesis that δq equals 0, hyperparameters are 

chosen to ensure pq equals .5 through the equality: 

.       (45) 

 This method was adapted by Li and Shang (2016) to test for all pairwise 

differences when a simple order restriction is not realistic.  The rank order 

assumption may not be tenable when the level-two units are randomly distributed 

or in exploratory situations where the researcher has little previous knowledge 

about the order of the level-two units (Li & Shang, 2015).  Li and Shang adapted 

the prior distribution for δq to allow the prior to be a mixture of a point mass 
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distribution entirely centered at 0 and a normal distribution.  This allows for the 

possibility of negative values of δq.  The new prior distribution for δq can now be 

written as: 

,       (46) 

and 

.       (47) 

The hyperparameters for δq, pq and ηq, remain the same as above. 

 After estimating the posterior distribution for each δq, the remaining 

pairwise comparisons among non-sequential means can be made by summing the 

relevant δq posterior distributions.  For instance, when testing four group means 

the difference between the second and fourth group means is found by summing 

the posterior distributions of δ2 and δ3, which represents the difference between 

the second and third means and the third and fourth means.  Li and Shang (2016) 

found that this method maintained a Type I error rate below .05. However, the 

authors did not compare this method against any other procedures for testing 

multiple level-two means. 

 The above approaches are appropriate when making pairwise comparisons 

between means.  This model can be further modified to test hypotheses comparing 

means to a criterion.  This is done by defining δq as the difference between a 

level-two mean and the criterion that, for this study, is the grand centered mean.  

Each level-two mean is now estimated as: 

𝛽𝑗 = 𝛾00 + 𝛿𝑞 ,        (48) 
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where each term is defined above.  The distribution of level-one scores is defined 

as: 

[𝑦𝑖𝑗|𝛾00, 𝜎2, 𝛿1, 𝛿2, … , 𝛿𝑞]~𝑁(𝛾00 + ∑ 𝛿𝑞
𝑗
𝑞=1 , 𝜎2).    (49) 

The prior distribution for σ2 remains the same as above.  The grand mean, γ00, is 

assigned the same prior distribution as β1 - N(μα,𝜏0
2).  Finally, δq is assigned the 

same prior distributions in Equations 46 and 47.  The hyperparameters for δq, pq 

and ηq, remain the same as above. 

 For the sake of completeness, a simple Bonferroni correction may be 

applied to the prior pq such that: 

.      (50) 

This is a correction for multiple procedures that was suggested by Westfall et al. 

(1997) and implemented by Shang (2011), Shang et al. (2008), and Li and Wright 

(2016).  Because in the case of a large number of comparisons it will be nearly 

impossible to observe a situation in which the non-discrete segment of the prior 

distribution of pq will be called upon the procedure is not used in this paper.  As a 

result, practitioners would essentially be assigning a discrete prior distribution 

with its entire mass at zero. 

  Semi-informative variances. 

 The third and fourth proposed methods are adjustments to the previous 

two methods that acknowledge that variance heterogeneity may be present among 

the level-two units (Nashimoto & Wright, 2008).  To combat this heterogeneity a 

unique inverse gamma prior distribution is assigned to each 𝜎𝑗
2 by manipulating 

the hyperparameters α0 and β0 so that the mean of the prior distribution for each 
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group is equal to the sample variance.  By directly accounting for variance 

heterogeneity through incorporating sample variances, estimates of level-two 

means should be more accurate.  A practical application of this method was 

presented by Nashimoto and Wright (2008), but this adjustment has not been 

evaluated empirically. 

 Summary 

 In the frequentist paradigm, comparing multiple means presents a concern 

to researchers because the probability of committing a Type I error is inflated.  

This error inflation may result in various adverse consequences.  Under the 

ongoing example, in which various schools are compared against a common 

criterion, multiplicity increases the probability that a school is wrongly flagged as 

performing differently than the national average.  As a result, parents may 

disproportionately choose to send their children to those schools identified as high 

performing and avoid those schools identified as low performing (Goldstein & 

Thomas, 1996).  In the United States schools that perform exceptionally well may 

be awarded financial bonuses while poorly performing schools may face sanctions 

up to and including the loss of accreditation (Raudenbush & Willms, 1995; 

Schochet & Chiang, 2013).   

 MCPs have been developed to control for Type I error rate inflation.  

However, these procedures are known to be very conservative when variance 

heterogeneity is present and/or a large number of hypotheses are being tested.  

Both of these factors may be present when testing hypotheses about several means 

simultaneously.  MLMs may provide a solution.  MLMs intrinsically control for 
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type I error inflation by shifting level-two means towards the aggregated mean 

through shrinkage.  In addition, estimates of level-two means become more 

accurate as the number of level-two units increase.   

 The Bayesian approach to MLMs provides additional benefits.   First, the 

concept of Type I error inflation does not apply to the Bayesian approach to 

statistics and, consequently, may ameliorate the problem of multiplicity.  

However, it is unknown if Bayesian hypothesis tests hold the Type I error rate at 

or below α.  The power of these Bayesian tests as compared to the frequentist 

methods is unknown as well.  Second, Bayesian MLMs allow for the evaluation 

of the Type I error rate in the situation in which all the level-two means are equal 

to one another.  Third, Bayesian MLMs allow researchers to specify prior 

distributions that directly model the presence of variance heterogeneity amongst 

the level-two units.   

 Present Study 

 To the best of the author’s knowledge, the performance of Bayesian 

MLMs as an MCP has not been empirically evaluated against traditional MCPs 

when variance heterogeneity is present and a large number of hypotheses are 

being tested.  Therefore, the purpose of this study was to determine to what extent 

do Bayesian MLM methods control for Type I error rate when a large number of 

hypotheses are being tested and variance heterogeneity is present.  Additionally, 

this study examined the power of these procedures compared to two traditional 

MCPs, the Hochberg and Tukey HSD procedures, in the scenarios in which 
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variance heterogeneity is present and a large number of hypotheses are being 

tested. 
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CHAPTER III.  METHODS 

 

 To evaluate the above research questions, a Monte Carlo simulation study 

was conducted using the software platforms R version 3.4.2 (R Core Team, 2017) 

and OpenBugs version 3.2.3 (Lunn, Spiegelhalter, Thomas, & Best, 2009). This 

chapter begins with an explanation of the data generation process.  Following that, 

the factors that were manipulated and the rationale for the levels of each factor are 

detailed, along with a description of the constants used in this study.  Finally, the 

methods for calculating the Type I error rate and the power of the proposed 

procedures are explained. 

 Data Generation 

 Data were generated from a three level hierarchical model in R.  Although 

the primary interest of this study was to make inferences about level-two means, a 

three level model was simulated to allow for the scenario in which there is 

unexplained covariance between level-two units.  Under the running example, this 

may be conceptualized as the effect of an academic district on a subset of schools’ 

average academic achievement.  The generating model for the data was as 

follows: 

𝑦𝑖𝑗𝑘 = 𝛾000 + 𝛽𝑖𝑗𝑘𝑥𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘 + 𝑈0𝑗𝑘+𝑉00𝑘,      (51) 

 where xijk is an indicator variable taking on a value of -1 for half the level-two 

units and 1 for the remaining level-two units, and βijk is a level-two predictor that 

acts as the specified effect size.  The generating model in Equation 51 allows all 

the level-two means to take on non-zero values while maintaining the grand 

mean, γ000, at zero when testing the power of the procedures.  Consequently, the 
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data are generated as grand mean centered.  The effect size values and the 

rationale for the choice of those values are discussed in more detail below.  The 

distributions of the error term for each level were simulated using the RNORM 

function, which generates random numbers from the normal distribution. The 

RNORM function requires the user to specify the mean and the standard deviation 

for each error term.  The mean for each error term was set to zero.  The values 

chosen for the standard deviations of the error terms are described in more detail 

below.  Each combination of conditions was simulated 500 times.  To ensure 

replicability the simulation seed was set to 1987 which initialized the random 

number generator. 

 Factors 

  Procedures. 

 As stated in the previous chapter, six methods for controlling for Type I 

error inflation are considered:  Hochberg’s procedure (HOCH), Tukey’s HSD 

(HSD), Bayesian one-way ANOVA (B1), Bayesian one-way ANOVA with semi-

informed variance priors (B1V), Bayesian one-way ANOVA with a mean 

difference parameter (B1D), and Bayesian one-way ANOVA with a mean 

difference parameter and semi-informed variance priors (B1DV).  The two 

traditional MCPs were implemented using pre-existing functions in R.  These 

functions correspond to the procedures outlined in Chapter Two and are available 

in R’s base package. 

 The remaining four methods were modeled in OpenBugs via the R 

package R2OpenBugs (Sturtz, Ligges, & Gelman, 2005).  R2OpenBugs translates 
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the R programming language to the syntax used in OpenBugs.  Each model is then 

run in OpenBugs and the results are transferred to the R console.  This allows for 

the post processing of the results in the R environment.   

  Level-two sample size. 

 The number of level-two units was manipulated to act as a proxy for 

increasing the number of hypotheses that were to be tested.  Recall that the 

number of level-two units is analogous to the number of groups under 

consideration in the fixed effects approach.  A larger number of level-two units 

correspond to a larger number of testable hypotheses.  Manipulating the number 

of level-two units allows for the investigation of the performance of these six 

procedures when testing families of hypotheses of differing sizes. 

The number of level-two units was chosen to correspond with 

recommendations for the minimum number of level-two units needed to 

accurately estimate MLMs. Previous research has suggested that the minimum 

level-two sample size necessary to provide accurate estimates all parameters in a 

frequentist MLM ranges between 20 and 50 (Kreft, 1996; McNeish & Stapleton, 

2016; Maas & Hox, 2005; Snijders & Bosker, 2012).  If the researcher is 

primarily concerned with accurate estimates of the fixed effects, level-two sample 

sizes as small as 15 units may produce unbiased results (Baldwin & Fellingham, 

2013; McNeish & Stapleton, 2016; Stegmueller, 2013).  Bayesian models, which 

do not carry the frequentist requirement of large sample sizes to obtain 

asymptotically unbiased estimates, may produce accurate parameter estimates 

with smaller level-two sample sizes than their frequentist counterparts (Hox, van 
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de Schoot, & Matthijsse, 2012; McNeish & Stapleton, 2016, Raudenbush & Bryk, 

2002; Stegmueller, 2013).  Studies have demonstrated that Bayesian MLMs may 

produce unbiased parameter estimates with level-two sample sizes as small as ten 

(Austin, 2010; Stegmueller, 2013). 

Following these guidelines, level-two sample sizes of 20, and 40 were 

chosen.  An additional level-two sample size of ten was chosen to specifically 

investigate the performance of Bayesian MLMs when the level-two sample size is 

small and to provide a condition that corresponds to scenarios in which traditional 

MCPs have been evaluated in the literature (Donoghue, 1998; Olejnik et al., 1997; 

Ramsey, 2002).  The specific values of the number of level-two units were chosen 

to allow the remaining factors to be divided equally among the level-two units.   

  Level-one/within unit variance heterogeneity. 

 Two conditions were considered for the level-one variance, 𝜎𝑖𝑗𝑘
2 . In the 

first condition, all within group variances were set equal to one.  In the second 

condition, half of the level-one variances were set to .5 and the remaining level-

one were set to 1.5.  These values were chosen so that the average level-one 

variance across all level-two units was equal to one for both conditions.  

Additionally, the values chosen in the heterogeneous condition correspond to 

moderate variance heterogeneity conditions used in previous research (Kromrey 

& La Rocca, 1995). 

  Effect size. 

Effect size was defined as the value chosen for the level-two predictor, βijk.  

Three levels of effect size were simulated.  The first corresponded to the scenario 
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in which the level-two means did not differ from the grand mean.  In this 

situation, βijk was set equal to zero.  The remaining levels corresponded to the 

scenario in which the means of the level-two units differed from the criterion of 

zero.  Values of .2 and .5 were chosen for the non-zero values of βijk.  These 

values were chosen in accordance with Cohen’s (1988) recommendations for 

small and medium effects.  Cohen’s recommendations are not without criticism.  

Some have argued that the lack of scale associated with Cohen’s effect size 

recommendations make them inappropriate for some fields.  However, because 

the unadjusted method for testing several means with a criterion corresponds with 

conducting multiple single, sample t-tests Cohen’s measure of effect sizes were 

deemed appropriate.  

  Level-two ICC. 

 The amount of variation in the dependent variable due to variance at level-

two was manipulated via the ICC2.  Three levels were chosen.  An ICC2 of zero 

was chosen to simulate the condition in which there is no level-two variance.  The 

remaining two levels were set to .15 and .25, which correspond to values of the 

ICC2 seen in the educational research literature (Hedges & Hedberg, 2007a; 

Hedges & Hedberg, 2007b).   

  Level-three ICC. 

 The ICC3 was manipulated to simulate the condition in which unexplained 

covariance is present among the level-two units due to variation in the third level.  

Two levels were chosen.  The first level corresponds to the scenario in which 

there is no unexplained covariance among the level-two units.  This corresponds 
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to an ICC3 of zero.  Because research has suggested that the ICC3 is typically less 

than the ICC2 (Siddiqui et. al, 1996), a value of .1 was chosen for the remaining 

level.  This value was consistent with values of the ICC3 reported by Siddiqui et 

al. (1996).  This level was only simulated in the condition in which the ICC2 was 

non-zero. This is because when the ICC2 is zero there is no covariance among the 

level-two units and, as a result, the ICC3 is necessarily zero as well. 

 Constants  

  Level-one sample size. 

 The number of level-one units per level-two unit was fixed in this study.  

A level-one sample size of 30 was chosen because, by convention, this is the 

minimum sample size to conduct t-tests with adequate power to correctly reject 

the null hypothesis (Gravetter & Wallnau, 2017). 

  Level-three sample size. 

 There is no consensus on the acceptable level-three sample size in the 

literature.  Gelman and Hill (2007) note that, at the bare minimum, two units at 

the highest level are needed to conduct multilevel analysis with multiple lower 

level units per higher-level unit.  In practice, the number of higher-level units tend 

to be small due to lack of resources or logistical concerns (Murray, 1998; Donner 

& Klar, 2000).  Fazzari, Kim, and Heo (2014) found, that for certain combinations 

of ICCs and sample sizes of lower level units, level-three sample sizes as small as 

three may be useable.  Applied researchers have analyzed data with as few as ten 

level-three units (Cunningham, 2010; Grandes, Sanchez, Sanchez-Pinilla, Torcal, 

Montoya, Lizarraga, & Serra, 2009).  As with the level-two sample size, larger 
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level-three sample sizes are most important when estimating variance components 

and parameters at the third level, i.e., V00k (Snijders, 2005).  Because the focus of 

this study is on estimating level-two means, the precise estimate of V00k for each 

replication is not of import.  Further, the choice of the level-three sample size is 

limited by the level-two sample size; for the smallest level-two sample size 

condition, ten, the largest possible level-three sample size is fixed at five.   

Research has found that the level-two sample size per level-three unit has 

a negligible effect on parameter estimation (Cunningham, 2010; Snijders, 2005).  

Consequently, the level-three sample size was held constant across all conditions 

of the level-two sample size.  Moreover, since the level-three sample size is 

limited to five by the smallest level-two condition, a level-three sample size of 

five was chosen for this study. 

  Level-two variance. 

The level-two error variance, 𝜏𝑈0
2 , is dependent on the values of the ICC2 

and ICC3.  When the ICC2 was equal to zero, 𝜏𝑈0
2 was zero for all levels of ICC3, 

reflecting the lack of variation at level-two.  For ICC2 values of .15 and. 25 and 

when the ICC3 was set to zero, 𝜏𝑈0
2 is equal to.177, and .333.  When the ICC3 was 

set to .1, 𝜏𝑈0
2 is equal to.159 and .3 for the ICC2 levels of .15 and .25, respectively.  

These values are summarized in Table 4.  

Table 4. Values of 𝜏𝑈0
2  

 
  ICC2 

IC
C

3
   0 0.15 0.25 

0 0 0.17647 0.33333 

0.1 x  0.15885 0.29997 
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  Level-three variance. 

As with the level-two error variance, the level-three error variance, 𝜏𝑉00
2 , 

depends on the values of the ICC2 and ICC3.  When the ICC3 was set to zero, 

𝜏𝑉00
2 was zero for all levels of the ICC2.  When the ICC3 was set to .1, 𝜏𝑉00

2 was 

equal to .0175 when the ICC2 was set to .15, and was equal to .0333 when the 

ICC2 was set to .25.  These values are summarized in Table 5. 
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Table 5. Values of  𝜏𝑉00
2  

  
ICC2 

IC
C

3
 

 
0 0.15 0.25 

0 0 0 0 

0.1 x 0.01765 0.03333 

 

  Bayesian specifications.  

 Before conducting Bayesian analysis, the researcher must specify several 

conditions under which the analysis will be run.  Specifically, a decision must be 

made on which MCMC algorithm to use, the number of chains used in the 

MCMC walk, the method or methods by which convergence will be monitored, 

the number of iterations drawn from the MCMC, the burn in period, and the 

extent to which the MCMC chain(s) will be thinned.   

The first decision to be made is which MCMC algorithm to use.  For this 

study, the Gibbs sampler will be used due to its desirable properties when 

sampling from hierarchical distributions (Lynch, 2007) and because it is the 

default algorithm used in the R2OpenBugs package in R and in OpenBugs (Sturtz 

et al., 2005).  Additionally, the Gibbs sampler has been used in several articles 

that model or simulate from a Bayesian hierarchical structure (Li & Shang, 2015; 

Nashimoto & Wright, 2008; Shang, 2011; Shang et al., 2008)   

Second, a decision must be made on how many chains to use in the 

MCMC process.  Recall, that using multiple chains can speed the process of 

convergence.  However, each chain requires its own starting values and increases 

the amount of time necessary to run a simulation.  A pilot study demonstrated that 

two MCMC chains were sufficient to result in acceptable convergence while 

completing a simulation in a reasonable amount of time.   
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Third, a decision must be made on how many draws or iterations are to be 

taken from a parameter’s posterior distribution using the MCMC sampling 

algorithm. The choice of the number of iterations should ensure that the MCMC 

algorithm converged to a tractable solution and, as a result, a method for 

convergence must be selected as well.  As stated in Chapter Two, there are several 

methods for assessing convergence; two of which are through inspecting trace 

plots and the use of the R̂  test statistic.  However, because it is not feasible to 

visually inspect every replication, the R̂  statistic will be used to assess 

convergence in this study.  For m number of chains, each with a length of d, it is 

possible to calculate the mean of a given parameter for each chain (
_

j ), the 

aggregate mean of the parameter over all chains (
_

 ), the within chain (Vwc) and 

the between chain variance (Vbc).  Vwc is calculated as: 

2

1 1
[(1/ ( (d 1)) ( ) ]

m d

iji j i
m  

 
   ,       (52) 

and Vbc is calculated as: 

_ _
2

1
[d/ (m 1) ( ) ]

m

i
i

 


  .       (53) 

The total variance of a parameter, Vtot, can then be calculated as: 

( 1) / (1/ )wc bcd dV d V  .       (54) 

R̂  is calculated as Vtot/Vwc.  Values less than 1.1 provide evidence that the 

MCMC procedure has reached convergence while values of �̂� greater than 1.5 

provide the researcher with considerable doubt about the validity of the estimates 

drawn from the posterior distribution (Gelman et al., 2012).  For the B1 and B1V 

procedures, pilot testing demonstrated that 3000 iterations were sufficient to hold 
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R̂ below 1.1 for all parameters in a model for the vast majority of replications.  

Unfortunately, pilot testing also demonstrated evidence that the B1D and B1DV 

models rarely produced R̂ values less than 1.1.  As a result, a more lenient 

convergence criterion of 1.5 was applied to the B1D and B1DV models.  

Replications that did not keep R̂ below 1.1, for the B1 and B1V procedures, or 

1.5, for the B1D and B1DV procedures, were discarded and the model was rerun 

with a larger number of replications until the criterion was met. 

 The default number of initial draws that were discarded (the burn-in 

period) used in R2OpenBugs was chosen for this study.  The length of the burn-in 

period is determined in R2OpenBugs by dividing the number of iterations by two.  

The R2OpenBug’s default thinning process was also used.  R2OpenBugs 

determines this by dividing the difference between the number of iterations and 

the length of the burn in period by 1000 and then multiplying that ratio by the 

number of chains.   

  Prior distributions. 

 Bayesian procedures necessitate that a prior distribution be chosen for 

each variable in the model.  All parameters were given uninformative prior 

distributions.  Recalling that the four procedures assume a two level hierarchical 

structure, all four models share the random variable γ00.  The aggregate level-two 

mean is assigned its own normal, prior distribution with hyperparameters μα and 

τ00, which are the mean and variance, respectively, of the normal prior 

distribution.  By drawing each level-two mean from a common prior distribution, 
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the likelihood of each level-two mean has an influence on the posterior 

distribution of every other level-two mean.   

Because MLMs assume a hierarchical structure, the hyperparameters for 

γ00 
are also assigned either fixed values or prior distributions.  The 

hyperparameter μα is fixed to zero for the B1D and B1DV models.  This is a 

reasonable decision, because it corresponds to the scenario in which academic 

achievement has been grand mean centered.  The hyperparameter μα is assigned 

the prior distribution, N(0,100), for the B1 and B1V models.  This prior again is 

reasonable in light of the running scenario.  The prior distribution for μα was 

assigned a large variance to make it extremely non-informative.  τ00 is assigned 

the prior distribution U[.0001 ,100] for all four models.  The rationale for this 

specific prior distribution for τ00 will be discussed in the next paragraph.  

The four of the Bayesian models also share that random variable σ2.  As 

with τ00, the parameter σ2 as assigned the prior distribution U[.0001, 100].  The 

uniform distribution was chosen based on work by Gelman (2006) who 

recommended the use of a uniform prior distribution for both τ00 and σ2 when one 

is first beginning an iterative process of fitting a MLM or the researcher is not 

particularly interested in selecting a conjugate prior.  Because we have elected to 

select prior distributions that are as non-informative as possible, the second 

recommendation seems to apply.  The two hyperparameters of the uniform 

distribution represent the lower limit, Α, and upper limit, Β, respectively.  To 

justify the selected values of Α and Β, recall that variance parameters are bounded 

by zero and infinity.  Focusing on B, a value need be selected that is large enough 
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to encapsulate all plausible values of the sample variance.  Beyond this threshold, 

which is unknown, the choice of the hyperparameter B becomes arbitrary.  

Because the only requirement to ensure the prior distributions for σ2 and τ00 are 

uninformative is that B is sufficiently large, a value of 100 was chosen based on 

an applied example given by Gelman (2006).  The value of Α was chosen so that 

neither variance component would be estimated as having a negative value.  

However, OpenBugs requires the specification of the precision of the normal 

distribution rather than the variance.  The precision is simply the inverse of the 

variance.  As a result, a value of zero could not be used as a lower bound for the 

variance parameters, and it was necessary to add a small constant to the lower 

bound of the prior distribution. 

 The B1V and B1DV models allow 𝜎𝑗
2 to vary across level-two units.  This 

parameter is still assigned a uniform distribution.  However, now it is distributed 

as U[.0001, Βj], where Βj is chosen so that the mean of the prior distribution is 

equal to the sample variance of each level-two mean. The mean of a uniform 

distribution can be found by 
2

  
.  Substituting the level-two sample variance,

2

js , for the mean of the uniform distribution and rearranging terms, we can solve 

for each Βj by: 

22j js A   .         (55) 

 The B1D and B1DV models contain three additional parameters that 

necessitate prior distributions.  The difference parameter, δq, is assigned a prior 
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distribution that is a mixture of a point mass distribution with its entire mass at 

zero and a normal distribution (Li & Shang, 2015).  The distribution is written as: 

[ | , ]q q q q B Ap p I I     ,       (56) 

and 

2
1

exp{ }
22

q

A

qq

I



   .       (57) 

Following the suggestion by Li and Shang (2016) the hyperparameters for δq, pq 

and ηq, are assigned the prior distributions BETA(1, 2) and IG(2.1, .0005). 

Outcomes 

  Type I error. 

 The Type I error rate is calculated only in the condition in which the effect 

size, βijk, was simulated to be to zero.  When evaluating the Type I error of these 

procedures, the null hypothesis tested whether each level-two mean was different 

from the criterion, which was also zero. A Type I error is identified as occurring 

when a p-value less than or equal to .05 is observed for the Tukey or Hochberg 

procedures or, for the Bayesian procedures, when the 95% credible intervals for 

any level-two mean excludes zero.  The Type I error rate was defined as the 

proportion of replications for a given set of conditions in which at least one Type 

I error was identified. 

The B1V and The B1VD models allow an alternative method for assessing 

whether a Type I error occurred.  Recall that the parameter δq, a parameter 

representing the difference between a level-two mean and the aggregate mean, 

can take on a value of either zero or any other non-zero number.  One may declare 

a level-two mean to be significantly different from the criterion by inspecting the 
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posterior distribution of δq and determining whether more than half the values in 

the posterior distribution take on a value other than zero.  If this proportion is 

greater than .5 evidence exists that the two level-two mean under consideration is 

different from the criterion (Li & Shang, 2015; Nashimoto & Wright, 2008; 

Shang et al., 2008;).  A type I error would occur when more than half the values 

of the posterior distribution of δq take on a non-zero value under any of the 

conditions in which βijk equals zero.  The average Type I error rate can be defined 

as the number of replications in which the posterior probability of δq was greater 

than .5 divided by the total number of replications for a given set of conditions, 

when all level-two means are set equal.  

Table 6. Type I Error Criteria 

  

HSD & 

HOCH 
Bayesian Models B1D & B1DV 

Type I 

Error 
p <= .05 

95% credible intervals 

excludes 0 

> 50% of the posterior distribution 

for δq is non-zero 

 

Power. 

 The all-pair definition of power to reject all false null hypotheses in a 

family of tests was used in this study.  The power of these procedures is evaluated 

in the conditions in which βijk was set to either .2 or .5.  The power of each 

procedure was measured by identifying those hypotheses in which a difference 

between two means was correctly detected.  A correct decision occurred when a 

p-value less than or equal to .05 is observed for the Tukey or Hochberg 

procedures or, for the Bayesian procedures, when the credible intervals for any 

two means exclude one another.  The power per replication was defined as the 

proportion of correct decisions among all hypotheses.  The average power was 
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defined as the mean power for each procedure across all replications for a given 

set of conditions. 

 As with the Type I error rate, the power of the B1V and B1VD models can 

be defined with respect to the posterior distribution of δq.  Specifically, the power 

for a family of hypotheses can be defined as the proportion of hypotheses in 

which more than half the values of the posterior mean of δq take on a value 

greater than 0 for any level-two mean.  As is the case above, the power per 

replication was defined as the proportion of correct decisions among all 

hypotheses for a given set of conditions with average power defined as the mean 

power for each procedure across all replications for a given set of conditions. 

Table 7. Power Criteria 

  
HSD & 

HOCH 
Bayesian Models B1D & B1DV 

Pow

er 
p <= .05 

95% credible interval 

excludes zero 

> 50% of the posterior distribution 

for δq is non-zero 
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CHAPTER IV.  RESULTS 

 A Monte Carlo simulation was conducted to evaluate the performance of the six 

procedures across the data generation settings described in Chapter Three.  The data 

generation settings are summarized in Table 8.  When the ICC3 was specified to be non-

zero, these methods were only evaluated under the condition in which 𝜏𝑈0
2  was also non-

zero.  This decision was made due to the following reasons.   

First, the presence of level-three variance would be equivalent to adding a 

constant to the level-two mean.  Analyzing various values of the level-two mean is a 

condition that is already investigated in this study.  To demonstrate this, consider the 

situation in which one wished to estimate the mean of the first level-two unit, nested 

within the first level-three unit, �̅�.11.  Further, suppose γ000 is specified to be zero, βi11 is 

specified to be .2, eijk is expected to sum to zero, the level-three random effect, V00k, is 

taken from Table 5 and distributed as N(0, .01765), and no level-two random effect is 

present.  Using the above parameters and the generating Equation 51, �̅�.11 becomes equal 

to 𝛽𝑖11 + 𝑉001.  Second, it is not possible to generate the data to have a pre-specified 

ICC3 if the level-two variance is zero.  By inspecting Equation 33, it can be seen that in 

such a scenario the ICC3 will always be equal to 1.  Finally, a data structure with 

variance at level-three and no variance at level-two lacks real world plausibility. If such a 

structure was found, it is likely that the data would be analyzed using a two level MLM 

with the level-three units treated as the second level grouping factor.  As a result of this 

decision, 90 generation conditions were simulated.   
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Table 8. Data Generation Conditions 

𝜎𝑖𝑗𝑘
2  = 1 𝜎𝑖1:𝑁/2𝑘

2 = 0.5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

βijk ICC3 ICC2 N βijk ICC3 ICC2 N 

 

 

 

0 

0 

0 

10 

 

 

 

0 

0 

0 

10 

20 20 

40 40 

0.15 

10 

0.15 

10 

20 20 

40 40 

0.25 

10 

0.25 

10 

20 20 

40 40 

0.1 

0.15 

10 

0.1 

0.15 

10 

20 20 

40 40 

0.25 

10 

0.25 

10 

20 20 

40 40 

 

 

 

0.2 

0 

0 

10 

 

 

 

0.2 

0 

0 

10 

20 20 

40 40 

0.15 

10 

0.15 

10 

20 20 

40 40 

0.25 

10 

0.25 

10 

20 20 

40 40 

0.1 

0.15 

10 

0.1 

0.15 

10 

20 20 

40 40 

0.25 

10 

0.25 

10 

20 20 

40 40 

 

 

 

 

0.5 

0 

0 

10 

 

 

 

 

0.5 

0 

0 

10 

20 20 

40 40 

0.15 

10 

0.15 

10 

20 20 

40 40 

0.25 

10 

0.25 

10 

20 20 

40 40 

0.1 

0.15 

10 

0.1 

0.15 

10 

20 20 

40 40 

0.25 

10 

0.25 

10 

20 20 

40 40 
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Chapter Four is structured as follows.  First, a summary of the data simulation 

process is presented in the data generation section.  In the nonconvergence section, the 

process of ensuring model convergence for the Bayesian methods is discussed.  The Type 

I error control and power of the six methods across all simulation conditions are 

presented in the primary analysis section along with a comparison of the six methods 

under consideration. 

Data Generation Summary 

 The data were generated using R from the three level multilevel model specified 

in Equation 51.  The model was manipulated to generate the data under the specified 

simulation conditions.  For each combination of simulation settings, 500 replications 

were drawn.  The simulation settings are the expected values of the parameters for the 

three level MLM for a given combination of simulation settings.  To assess whether the 

data were generated as specified, four indices were considered: the mean value of the 

parameter across replications, the parameter bias, the standard deviation (SD) of the 

parameter estimate, and root mean squared error (RMSE) of the parameter estimate.   

The mean value of the parameter across replications was found by summing each 

parameter estimate in a given combination of simulation conditions and dividing by the 

number of replications.  The bias was found by: 

𝑏𝑖𝑎𝑠 =  ∑
�̂�

1000

1000
𝑟=1 − 𝜃,        (58) 

where θ is the simulation parameter, 𝜃 is the generated parameter estimate, and r indexes 

the simulation replication.  The SD of the parameter estimate was found by: 

𝑆𝐷 =  √(�̂�−∑
�̂�

1000
1000
𝑟=1 )2

1000
 .        (59) 
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The RMSE of the parameter, which can be conceptualized as an index of the precision of 

the estimated parameter as compared to its generating parameter, was found through the 

equation: 

𝑅𝑀𝑆𝐸 = √𝑏𝑖𝑎𝑠2 + 𝑆𝐷2,         (60) 

where the bias and SD of the parameter are defined in Equations 58 and 59.  To facilitate 

discussion of the parameters, the results were divided between the estimates of the mean 

parameters (γ000 and βijk), variance parameters (𝜎𝑖𝑗𝑘
2 , 𝜏𝑢0𝑘

2 , and 𝜏𝑉00
2 ), and the ICC (ICC2 

and ICC3). 

Mean estimates. 

 The mean estimates of the data generation model consisted of the grand intercept, 

γ000, and the level-two effect, βijk.  To obtain a clear view of the accuracy of the data 

generation process, these values are presented under the conditions in which the level-

two and three variance components, and consequently the ICC2 and ICC3, were specified 

to be zero.  Table 9 contains the data generation results for the mean parameters when all 

level-one variances were set equal to one and Table 10 contains the data generation 

results for the mean parameters when half the level-two within group variances were 

specified to be .5 and the remaining half were specified to be 1.5.  A full table of the 

mean data generation results for all simulation conditions can be found in Appendix C. 
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Table 9. Mean Parameter Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1 

 

βijk 0 0.2 0.5 

 

N 10 20 40 10 20 40 10 20 40 

𝛾000̂  

Mean 0.002 0.001 0.001 0 0.002 0 0 0 0.001 

Bias 0.002 0.001 0.001 0 0.002 0 0 0 0.001 

SD 0.058 0.039 0.029 0.059 0.041 0.029 0.058 0.04 0.029 

RMSE 0.058 0.039 0.029 0.059 0.041 0.029 0.058 0.04 0.029 

𝛽𝑖𝑗�̂� 

Mean 0.002 0.001 0.001 0.196 0.199 0.199 0.499 0.5 0.499 

Bias 0.002 0.001 0.001 -0.004 -0.001 -0.001 -0.001 0 -0.001 

SD 0.058 0.039 0.029 0.057 0.042 0.029 0.058 0.04 0.029 

RMSE 0.058 0.039 0.029 0.059 0.041 0.029 0.058 0.04 0.029 

 

Table 10. Mean Parameter Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5 

  βijk 0 0.2 0.5 

  N 10 20 40 10 20 40 10 20 40  

𝛾000̂  

Mean 0 -0.001 -0.001 0 0 0 -0.001 0.001 -0.001 

Bias 0 -0.001 -0.001 0 0 0 -0.001 0.001 -0.001 

SD 0.057 0.04 0.028 0.06 0.041 0.029 0.057 0.042 0.029 

RMSE 0.057 0.04 0.029 0.06 0.041 0.029 0.057 0.042 0.029 

𝛽𝑖𝑗�̂� 

Mean 0 -0.001 -0.001 0.2 0.199 0.2 0.498 0.502 0.5 

Bias 0 -0.001 -0.001 0 -0.001 0 -0.002 0.002 0 

SD 0.057 0.04 0.028 0.061 0.04 0.029 0.057 0.041 0.028 

RMSE 0.057 0.04 0.029 0.06 0.041 0.029 0.057 0.042 0.029 

  

As can be seen in Tables 9 and 10, the estimated parameters were close in value 

to the expected parameters.  The precision of the estimated parameters varied as a 

function of the level-two sample size, N.  As the level-two sample size increased, the 

simulated mean parameters became more similar to the expected values specified in the 

simulation model.  Because the level-one sample size was set to 30 for each level to unit, 

this indicates that the simulated mean values became more accurate as the total sample 

size increased (given that the total sample size can be found by the product of N and 30).   
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Variance estimates. 

 The variance estimates of the data generation model consisted of the level-one 

variance, 𝜎𝑖𝑗𝑘
2 , level-two variance, 𝜏𝑢0𝑘

2 , and the level-three variance, 𝜏𝑉00
2 .  To obtain an 

unadulterated view of the accuracy of the data generation process, these values are 

presented in the simulation condition in which the level-two mean, βijk, is specified to be 

zero.  When βijk is non-zero, the variance components are influenced by the added effect 

and no longer correspond to their generating parameters.  A full table of the variance data 

generation results for all simulation conditions can be found in Appendix C.  Tables 11-

14 present the data generation results for the variance estimates.   

Table 11. Variance Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1 and 𝐼𝐶𝐶3 = 0 

 

𝜏𝑢0𝑘
2  0 0.176 0.333 

 

N 10 20 40 10 20 40 10 20 40 

𝜎𝑖𝑗𝑘
2̂  

Mean 0.996 0.994 0.996 0.996 1.004 1.001 1 1 0.999 

Bias -0.004 -0.006 -0.004 -0.004 0.004 0.001 0 0 -0.001 

SD 0.085 0.058 0.04 0.081 0.06 0.042 0.082 0.059 0.041 

RMSE 0.085 0.058 0.04 0.081 0.06 0.042 0.082 0.059 0.041 

𝜏𝑢0𝑘
2̂  

Mean 0.004 0.004 0.003 0.141 0.163 0.17 0.268 0.307 0.328 

Bias 0.004 0.004 0.003 -0.036 -0.014 -0.007 -0.065 -0.026 -0.005 

SD 0.008 0.007 0.004 0.099 0.071 0.047 0.171 0.122 0.079 

RMSE 0.009 0.008 0.005 0.105 0.072 0.047 0.183 0.125 0.08 

𝜏𝑉00
2̂  

Mean 0.003 0.002 0.001 0.036 0.015 0.008 0.064 0.027 0.013 

Bias 0.003 0.002 0.001 0.036 0.015 0.008 0.064 0.027 0.013 

SD 0.008 0.004 0.002 0.059 0.028 0.015 0.106 0.049 0.023 

RMSE 0.009 0.004 0.002 0.069 0.032 0.017 0.124 0.056 0.027 
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Table 12. Variance Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1 and ICC3= .1 

  𝜏𝑢0𝑘
2  0 0.159 0.3 

  N 10 20 40 10 20 40 10 20 40 

𝜎𝑖𝑗𝑘
2̂  

Mean x x x 0.997 1.003 1 1.001 0.999 1.002 

Bias x x x -0.003 0.003 0 0.001 -0.001 0.002 

SD x x x 0.086 0.056 0.041 0.085 0.057 0.041 

RMSE x x x 0.086 0.057 0.041 0.085 0.057 0.041 

𝜏𝑢0𝑘
2̂  

Mean x x x 0.132 0.149 0.158 0.252 0.279 0.295 

Bias x x x -0.027 -0.01 -0.001 -0.048 -0.021 -0.005 

SD x x x 0.125 0.144 0.155 0.15 0.145 0.145 

RMSE x x x 0.128 0.145 0.155 0.157 0.146 0.145 

𝜏𝑉00
2̂  

Mean x x x 0.047 0.028 0.021 0.085 0.051 0.036 

Bias x x x 0.029 0.011 0.003 0.052 0.018 0.003 

SD x x x 0.094 0.106 0.11 0.078 0.046 0.031 

RMSE x x x 0.098 0.106 0.11 0.094 0.049 0.031 

 

Table 13. Variance Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5 and 

𝐼𝐶𝐶3 = 0 

 

𝜏𝑢0𝑘
2  0 0.176 0.333 

 

N 10 20 40 10 20 40 10 20 40 

𝜎𝑖1:𝑁/2𝑘
2̂  

Mean 0.501 0.501 0.501 0.499 0.5 0.5 0.502 0.501 0.499 

Bias 0.001 0.001 0.001 -0.001 0 0 0.002 0.001 -0.001 

SD 0 0 0 0 0 0 0 0 0 

RMSE 0.001 0.001 0.001 0.001 0 0 0.002 0.001 0.001 

𝜎
𝑖(

𝑁
2

)+1:𝑁𝑘

2 ̂  

Mean 1.497 1.505 1.502 1.502 1.504 1.502 1.496 1.495 1.502 

Bias -0.003 0.005 0.002 0.002 0.004 0.002 -0.004 -0.005 0.002 

SD 0 0 0 0 0 0 0 0 0 

RMSE 0.003 0.005 0.002 0.002 0.004 0.002 0.004 0.005 0.002 

𝜏𝑢0𝑘
2̂  

Mean 0.004 0.004 0.003 0.142 0.163 0.17 0.27 0.317 0.316 

Bias 0.004 0.004 0.003 -0.034 -0.013 -0.007 -0.063 -0.016 -0.018 

SD 0.01 0.007 0.005 0.094 0.067 0.048 0.172 0.12 0.081 

RMSE 0.011 0.008 0.006 0.101 0.068 0.049 0.183 0.121 0.083 

𝜏𝑉00
2̂  

Mean 0.004 0.002 0.001 0.037 0.015 0.008 0.064 0.027 0.014 

Bias 0.004 0.002 0.001 0.037 0.015 0.008 0.064 0.027 0.014 

SD 0.009 0.004 0.002 0.064 0.028 0.015 0.105 0.048 0.025 

RMSE 0.01 0.005 0.003 0.074 0.032 0.017 0.123 0.055 0.028 
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Table 14. Variance Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5 and 

𝐼𝐶𝐶3 = .1 

 
𝜏𝑢0𝑘

2  0 0.176 0.333 

 
N 10 20 40 10 20 40 10 20 40 

𝜎𝑖1:𝑁/2𝑘
2̂  

Mean x x x 0.498 0.501 0.498 0.502 0.5 0.501 

Bias x x x -0.002 0.001 -0.002 0.002 0 0.001 

SD x x x 0 0 0 0 0 0 

RMSE x x x 0.002 0.001 0.002 0.002 0 0.001 

𝜎
𝑖(

𝑁
2

)+1:𝑁𝑘

2 ̂  

Mean x x x 1.49 1.504 1.498 1.505 1.497 1.499 

Bias x x x -0.01 0.004 -0.002 0.005 -0.003 -0.001 

SD x x x 0 0 0 0 0 0 

RMSE x x x 0.01 0.004 0.002 0.005 0.003 0.001 

𝜏𝑢0𝑘
2̂  

Mean x x x 0.138 0.152 0.155 0.26 0.286 0.298 

Bias x x x -0.021 -0.007 -0.004 -0.04 -0.014 -0.002 

SD x x x 0.13 0.147 0.152 0.154 0.149 0.149 

RMSE x x x 0.132 0.148 0.152 0.159 0.15 0.149 

𝜏𝑉00
2̂  

Mean x x x 0.044 0.028 0.022 0.082 0.052 0.04 

Bias x x x 0.027 0.01 0.004 0.049 0.019 0.007 

SD x x x 0.099 0.109 0.104 0.081 0.048 0.032 

RMSE x x x 0.103 0.11 0.104 0.095 0.051 0.033 

 

The level-one variance estimates closely approximated their generation 

parameters for all combinations of sample size, ICC2, and ICC3.  These close 

approximations held when half the level-one variances were specified to take on values 

of .5 and the remaining half were specified to take on values of 1.5. 

The precision of 𝜏𝑢0𝑘
2 , on the other hand, varied as a function of the sample size, 

the ICC2, and the ICC3.  Unequal level-one variances has a negligible impact on the 

estimates of 𝜏𝑢0𝑘
2  as compared to the condition in which all level-one variance were 

specified to be equal to one.  With two exceptions, the estimates of the level-two variance 

became more precise as N increased.  These exceptions occurred when the ICC2 was 

specified to be .15 and the ICC3 was specified to be 0.1 for both the equal and unequal 

level-one variance conditions.  In this scenario, the precision of the simulated 𝜏𝑢0𝑘
2  
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actually decreased as N increased.  However, this was due to the standard deviation of the 

parameter estimate increasing with sample size; the bias of 𝜏𝑢0𝑘
2  decreased as the sample 

size increased.   

Across all conditions, the precision of 𝜏𝑢0𝑘
2  decreased as the expected value of 

𝜏𝑢0𝑘
2  increased.  The effect of the expected value of 𝜏𝑢0𝑘

2  on the generated values of 𝜏𝑢0𝑘
2  

interacted with the sample size.  Increasing the level-two sample size mitigated the 

effects of simulating larger values of 𝜏𝑢0𝑘
2  to some extent.  This is consistent with the 

literature discussed in Chapter Three, where evidence was provided that the higher-level 

variance components become more precise as the corresponding higher-level sample size 

increases.   

The generated values of 𝜏𝑢0𝑘
2  tended to become less precise as the level-three 

variance, and consequently the ICC3, increased.  This is likely due to covariance in the 

level-three unit adding additional covariance at level-two.  Increasing the sample size did 

not have a consistent effect on the precision of 𝜏𝑢0𝑘
2  as 𝜏𝑉00

2  was increased. 

The precision of the level-three variance, 𝜏𝑉00
2 , was primarily influenced by the 

total sample size.  Unequal level-one variances has a negligible impact on the estimates 

of 𝜏𝑉00
2  as compared to the condition in which all level-one variance were specified to be 

equal to one.  Compared to the simulated values of  𝜏𝑢0𝑘
2 , the simulated values of 𝜏𝑉00

2  

were much poorer estimates of their generating parameter.  This is likely due to the level-

three sample size being held constant at five for all simulation conditions.  The literature 

cited in Chapter Three noted that level-three variance estimates tend to be imprecise 

when the level-three sample size is small.  Increasing the expected value of 𝜏𝑢0𝑘
2  or 𝜏𝑉00

2 , 

via the ICC3, did not have a consistent linear effect on the precision of 𝜏𝑉00
2 . 
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With two exceptions, the estimates of the level-three variance became more 

precise as the total sample size increased.  These exceptions occurred when the ICC2 was 

specified to be .15 and the ICC3 was specified to be 0.1 for both the equal and unequal 

level-one variance conditions.  In this scenario, the precision of the simulated 𝜏𝑉00
2  

actually decreased as the sample size increased.  However, this was due to the standard 

deviation of the parameter estimate differing in a non-monotonic fashion with sample 

size; the bias of 𝜏𝑉00
2  decreased as the sample size increased.   

ICC estimates. 

The ICC estimates of the data generation model consisted of the parameters for 

the ICC2 and ICC3.  The estimated values of the ICC2 and ICC3 were found by applying 

Equations 32 and 33 to the relevant variance estimates.  To obtain an unbiased view of 

the accuracy of the data generation process, these values are presented in the simulation 

condition in which βijk is specified to be zero.  When βijk is non-zero, the variance 

components are influenced by the added effect mean effect and no longer correspond to 

their generating parameters.  Consequently, the ICC estimates will no longer correspond 

to their generating parameters.  A full table of the ICC data generation results for all 

simulation conditions can be found in Appendix C.  Tables 15-18 present the data 

generation results for the variance estimates.   
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Table 15. ICC Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1 and 𝐼𝐶𝐶3 = 0 

 
ICC2 0 0.15 0.25 

 
N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

Mean 0.007 0.006 0.004 0.145 0.148 0.15 0.238 0.245 0.252 

Bias 0.007 0.006 0.004 -0.005 -0.002 0 -0.012 -0.005 0.002 

SD 0 0 0 0.002 0.002 0.001 0.003 0.002 0.001 

RMSE 0.007 0.006 0.004 0.005 0.002 0.001 0.012 0.006 0.003 

𝐼𝐶𝐶3̂ 

Mean 0.336 0.334 0.33 0.206 0.087 0.047 0.194 0.079 0.039 

Bias 0.336 0.334 0.33 0.206 0.087 0.047 0.194 0.079 0.039 

SD 0.453 0.443 0.44 0.292 0.145 0.078 0.273 0.133 0.065 

RMSE 0.564 0.555 0.551 0.357 0.169 0.091 0.334 0.155 0.076 

 

Table 16. ICC Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1 and 𝐼𝐶𝐶3 = .1 

 
ICC2 0 0.15 0.25 

 
N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

Mean x x x 0.148 0.148 0.15 0.24 0.243 0.246 

Bias x x x -0.002 -0.002 0 -0.01 -0.007 -0.004 

SD x x x 0.003 0.003 0.003 0.004 0.003 0.003 

RMSE x x x 0.004 0.004 0.003 0.01 0.008 0.005 

𝐼𝐶𝐶3̂ 

Mean x x x 0.254 0.148 0.109 0.239 0.139 0.103 

Bias x x x 0.154 0.048 0.009 0.139 0.039 0.003 

SD x x x 0.663 0.791 0.846 0.311 0.19 0.127 

RMSE x x x 0.681 0.792 0.846 0.341 0.194 0.127 

 

Table 17. ICC Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5 and 𝐼𝐶𝐶3 = 0 

 
ICC2 0 0.15 0.25 

 
N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

Mean 0.008 0.006 0.004 0.147 0.149 0.149 0.24 0.251 0.245 

Bias 0.008 0.006 0.004 -0.003 -0.001 -0.001 -0.01 0.001 -0.005 

SD 0 0 0 0.002 0.002 0.001 0.003 0.002 0.001 

RMSE 0.008 0.006 0.004 0.004 0.002 0.001 0.011 0.002 0.005 

𝐼𝐶𝐶3̂ 

Mean 0.349 0.319 0.313 0.203 0.085 0.042 0.19 0.077 0.041 

Bias 0.349 0.319 0.313 0.203 0.085 0.042 0.19 0.077 0.041 

SD 0.459 0.441 0.434 0.29 0.144 0.077 0.266 0.128 0.07 

RMSE 0.576 0.544 0.536 0.354 0.167 0.088 0.328 0.149 0.081 
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Table 18. ICC Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5 and 𝐼𝐶𝐶3 = .1 

 
ICC2 0 0.15 0.25 

 
N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

Mean x x x 0.15 0.149 0.149 0.243 0.247 0.249 

Bias x x x 0 -0.001 -0.001 -0.007 -0.003 -0.001 

SD x x x 0.003 0.003 0.003 0.004 0.003 0.003 

RMSE x x x 0.003 0.003 0.003 0.008 0.004 0.003 

𝐼𝐶𝐶3̂ 

Mean x x x 0.232 0.142 0.116 0.235 0.14 0.109 

Bias x x x 0.132 0.042 0.016 0.135 0.04 0.009 

SD x x x 0.68 0.797 0.839 0.301 0.181 0.126 

RMSE x x x 0.693 0.798 0.839 0.33 0.186 0.127 

 

 The estimates of the simulated values of the ICC2 were more robust to variations 

in the generating factors than were the variance estimates.  The generated values of the 

ICC2 were influenced by the total sample size and the expected ICC2.  Unequal level-one 

variances had a negligible impact on the estimates of the ICC2 as compared to the 

condition in which all level-one variance were specified to be equal to one.  Additionally, 

increasing the expected value of the ICC3 had a negligible impact on the precision of the 

simulated ICC2.  

 Across all simulation conditions, the estimates of the ICC2 became more precise 

as the total sample size increased.  This was expected due to the relationship between the 

variance components and the ICC2.  When the ICC3 was specified to be .1, the precision 

of the ICC2 became worse as the expected value of the ICC2 increased.  This relationship 

did not hold when the ICC3 was specified to be zero. 

 The estimates of the ICC3 were less precise that the estimates of the ICC2.  This 

was expected due to the greater influence of the level-three variance in calculating the 

ICC2 along with the effect of the small level-three sample size on the precision of the 

level-three variance.  The estimates of the ICC3 were influenced by the sample size, the 
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expected value of the ICC2 and the expected value of the ICC3.  Unequal level-one 

variances had a negligible impact on the estimates of the ICC3 as compared to the 

condition in which all level-one variance were specified to be equal to one.  

In general, the precision of the simulated ICC3 increased as the total sample size 

increased.  A notable exception to this pattern was when the expected value of the ICC3 

was .1 and the expected value of the ICC2 was .15.  In these generating scenarios, the 

standard error of the simulated ICC3 increased with the total sample size. 

  As the expected value of the ICC2 increased, the precision of the simulated ICC3 

decreased across all conditions.  The precision of the ICC3 was worse when the expected 

value of the ICC3 was .1 as compared to when it was specified to be zero.  This 

relationship held across all conditions.   

Data generation summary. 

In general, the simulated parameters provided an adequate approximation of their 

generating parameters.  The estimated mean parameters, estimated level-one variance, 

and estimated ICC2 produced a low RMSE across simulation conditions.   

The exceptions to this trend were the higher-level variance parameters and the 

ICC3.  The simulated value of 𝜏𝑢0𝑘
2  was generally a precise estimate of its generating 

parameter when no level-three variance was specified.  When the level-three variance 

was specified to be non-zero, the precision of the simulated 𝜏𝑢0𝑘
2  became noticeably 

worse.  The generated values of 𝜏𝑉00
2  and the ICC3 lacked precision particularly when the 

total sample size was small and when the expected ICC2 was small.  However, the poor 

precision of 𝜏𝑉00
2  and the ICC3 was expected due to the small level-three sample size.  

Additionally, the multilevel methods for controlling Type I error inflation are all two 
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level models, so the precision of the level-three estimates did not have a meaningful 

effect on the results.    

Nonconvergence 

 As discussed in Chapter Three, it is essential to ensure that the posterior 

distributions of the parameters converged to an admissible solution.  In order to evaluate 

whether the Bayesian models achieved convergence, the �̂� estimates were investigated 

for each replication.  Values of �̂� less than 1.1 indicate that the researcher may have 

confidence that that the posterior distribution of the model converged correctly (Gelman 

el al., 2012).  Values of �̂� greater than 1.5 provide the researcher with considerable doubt 

about the validity of the estimates drawn from the posterior distribution (Gelman el al., 

2012).  Values of �̂� less than 1.1 were obtained for the B1 and B1V models for the 

majority of replications under the Bayesian settings specified in Chapter Three.  

Replications that produced a �̂� value greater than 1.1 for any parameter from the B1 and 

B1V models were discarded.  Additional replications, with a larger number of draws 

taken from the posterior distribution, were generated to ensure that all simulation settings 

were composed of 500 replications that met the convergence criterion.  All parameters 

from all replications of the B1 and B1V model met the convergence criterion of 1.1 when 

5,000 draws were taken from the relevant posterior distribution. 

The parameters of the B1D and B1DV models, on the other hand, were much 

more likely to produce a �̂� greater than 1.1 than the B1 and B1V models.  Increasing the 

number of draws from the posterior distribution of these models substantially would 

likely have ameliorated the situation.  The majority of parameters from the B1D and 

B1DV models produced corresponding �̂� values that were less than 1.5.  Replications 
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that produced a �̂� value greater than 1.5 for any parameter from the B1D and B1DV 

models were discarded.  Additional replications, with a larger number of draws taken 

from the posterior distribution of each parameter, were generated to ensure that all 

simulation settings were composed of 500 replications that met the convergence criterion.  

All parameters from all replications of the B1 and B1V model met the convergence 

criterion of 1.5 when 12,000 draws were taken from the relevant posterior distribution. 

Primary Analysis 

 The primary analysis of this paper consisted of evaluating the Type I error control 

and power of six methods for controlling for multiplicity:  Hochberg’s procedure 

(HOCH), Tukey’s HSD (HSD), Bayesian one-way ANOVA (B1), Bayesian one-way 

ANOVA with semi-informed variance priors (B1V), Bayesian one-way ANOVA with a 

mean difference parameter (B1D), and Bayesian one-way ANOVA with a mean difference 

parameter and semi-informed variance priors (B1DV).  The Type I error rate and power 

of these procedures were evaluated under each of the 90 simulation conditions.  Relevant 

tables and figures are provided when appropriate. 

Type I error rate. 

The Type I error rate of the six procedures was evaluated in the condition in 

which βijk was specified to be zero.  A Type I error was identified as occurring when a p-

value less than or equal to .05 was observed for the HSD or HOCH procedures or, for the 

Bayesian procedures, when the 95% credible intervals for any level-two mean excluded 

zero – this will be referred to as the traditional Type I error rate.  For the B1D and B1DV 

procedures, a Type I error was additionally defined as occurring when more than half the 

values of the posterior distribution of δq take on a non-zero value – this will be referred to 
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as the alternative Type I error rate.  Both definitions of a Type I error were used when 

evaluating the B1D and B1DV models.  Additionally, the unadjusted Type I error rate 

was found by conducting single sample t-tests on each of the level-two means and 

comparing the p-values obtained from those tests to α.  The Type I error rate was defined 

as the proportion of replications for a given set of conditions in which at least one Type I 

error was identified – this corresponds to the definition of the familywise Type I error 

rate.  The section on the Type I error rate of the six procedures under the various 

simulation conditions is organized as follows.  First, the main effects of varying the level-

two sample size are discussed.  The remaining factors are then discussed it terms of their 

effect on the Type I error rate across the three levels of N.  The unadjusted Type I error 

rate is found in Table 19 and the Type I error rate of the six procedures are found in 

Tables 20.  

Table 19. Unadjusted Type I Error Rates 

  

all 𝜎𝑖𝑗𝑘
2 = 1 𝜎𝑖1:𝑁/2𝑘

2 = .5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

ICC3 ICC2 N = 10 N = 20 N = 40 N = 10 N = 20 N = 40 

0 

0 .387 .665 .866 .419 .67 .859 

0.15 .992 1 1 1 1 1 

0.25 .999 1 1 1 1 1 

0.1 
0.15 .997 1 1 .996 1 1 

0.25 .999 1 1 1 1 1 
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Table 20. Adjusted Type I Error Rates 

   

all 𝜎𝑖𝑗𝑘
2 = 1 𝜎𝑖1:𝑁/2𝑘

2 = .5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

Method ICC3 ICC2 N = 10 N = 20 N = 40 N = 10 N = 10 N = 40 

HOCH 

0 0 

.05 .063 .047 .053 .048 .043 

HSD .008 .003 .002 .015 .01 .005 

B1 .084 .062 .034 .12 .104 .076 

B1V .074 .05 .018 .08 .072 .032 

B1D 0(0) 0(.016) .002(.014) 0(.01) .006(.06) .006(.088) 

B1DV 0(.002) 0(.028) 0(.028) 0(.004) 0 (.012) 0(.014) 

HOCH 

0 0.15 

.91 .989 .999 .969 996 1 

HSD .675 .83 .937 .6 .739 .893 

B1 .976 .998 1 .986 1 1 

B1V .952 .998 1 1 1 1 

B1D .498(.756) .738(.912) .962(1) .514(.77) .764(.954) .97(1) 

B1DV .378(.684) .696(.934) .91(.994) .582(.814) .818(.964) .988(1) 

HOCH 

0 0.25 

.983 .999 1 .995 1 1 

HSD .836 .948 .993 .781 .944 .992 

B1 .994 1 1 1 1 1 

B1V .984 1 1 1 1 1 

B1D .786(.912) .962(1) 1(1) .8(948) .978(.996) 1(1) 

B1DV .73(.918) .928(1) 1(1) .84(.95) .97(.998) 1(1) 

HOCH 

0.1 0.15 

.933 .985 999 .961 .999 .999 

HSD .67 .799 .901 .614 .748 .879 

B1 .976 1 1 .97 1 1 

B1V .968 .994 1 .984 1 1 

B1D .514(.764) .772(.954) .94(.982) .46(.752) .756(.948) .972(.998) 

B1DV .39(.692) .676(.952) .876(.996) .538(.792) .836(.97) .974(1) 

HOCH 

0.1 0.25 

.999 1 1 .997 1 1 

HSD .828 .951 .987 .799 .928 .986 

B1 .996 1 1 1 1 1 

B1V .996 1 1 .998 1 1 

B1D .798(.926) .97(1) .994(.998) .814(.96) .978(.996) .998(1) 

B1DV .732(.908) .934(.986) 1(1) .842(.956) .986(1) 1(1) 

Note:  Values in parentheses indicate the alternative Type I error rate. 
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Level-two sample size. 

In order to obtain the sharpest view of the effect of varying the level-two sample 

size, the Type I error rate of the procedures is first discussed under the condition in which 

all level-one variances were equal to one and the ICC2 and ICC3 were specified to be 

zero.  The unadjusted Type I error increased from 0.387 when N was equal to 10, to 

0.665 when N was equal to 20 and to 0.866 when N was equal to 40.  These Type I error 

rates approximately correspond to the expected familywise Type I error rate defined in 

Equation 3.  

Increasing the level-two sample size generally decreased the Type I error rate of 

the six procedures, resulting in more conservative procedures.  Among the traditional 

MCPs, the HSD procedure was able to maintain strong control of the Type I error rate for 

the three levels of level-two sample size.  The Type I error rate of the HOCH procedure 

exceeded α when N was equal to 20 but otherwise maintained control of the Type I error 

rate at or below α.   

This result warranted further investigation.  By applying Equation 3 to 

Hochberg’s procedure, the expected Type I error rate for 20 hypothesis tests is .0488.  To 

determine if the observed Type I error rate of .063 was a reasonable simulation result, a 

Wald confidence interval was constructed using Equation 61: 

𝐶𝐼 = �̂� ± 𝑧𝛼/2√
�̂�(1−�̂�)

𝑟
,        (61) 

where �̂� is the observed Type I error rate and r is the number of replications.  The 

resulting 95% confidence interval (.0417, .0843) provided evidence that the observed 

Type I error rate was a realistic value drawn from a sampling distribution with an 

expected Type I error rate of .0488.  Further, changing the simulation seed ameliorated 
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this issue, leading to the expected pattern of the Type I error rate of the HOCH 

decreasing as N increased.   

The Type I error rate of the B1 procedure exceeded α when N was equal to 10 and 

20 but was held below α when N was equal to 40.  The Type I error rate of the B1V 

procedure exceeded α when N was equal to 10 and was maintained at or below α when N 

was equal to 20 and 40.  Both the B1D and B1DV procedures maintained control of the 

Type I error below α under both definitions of the Type I error rate.   

Figure 2. Type I Error Rate by N (Homogenous Level-One Variances; ICC2 & ICC3 = 

0) 

 

Level-one variance heterogeneity. 

The effect of variance heterogeneity among the level-one units was explored in 

the conditions in which the ICC2 and ICC3 were specified to be zero.  The presence of 
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variance heterogeneity among the level-one units slightly increased the unadjusted Type I 

error rates across all levels of the level-two sample size.   

Among the traditional MCPs, the presence of level-one variance heterogeneity 

increased the Type I error rate of the HSD procedure and had an inconclusive effect on 

the Type I error rate of the HOCH procedure.  In the heterogeneous level-one variance 

condition, the HSD procedure was able to maintain the Type I error rate below α for all 

conditions of N while the HOCH procedure was able to maintain the Type I error rate 

below α when N was equal to 20 and 40 but failed to do so when N was equal to 10.  The 

Bayesian procedures were more adversely affected by heterogeneous level-one variances.  

The Type I error rate of the B1 and B1V procedures increased when the level-one 

variance were heterogeneous.  The B1 was not able to maintain the Type I error rate at α 

for any level of N when the level-one variances were unequal while the B1V procedure 

was only able to maintain the Type one error rate below α when N was equal to 40 under 

the heterogeneous level-one variance condition.  Because the Type I error rates of the 

B1D and B1DV procedures were so close to zero, for both definitions of the Type I error 

rate, it was difficult to tease out the effect of heterogeneous level-one variances on the 

Type I error rate of these procedures.  The B1D and B1DV procedures maintained the 

Type I error rate well below α for both the homogenous and heterogeneous variance 

conditions. 
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Figure 3. Type I Error Rate by Level-One Variance Condition (ICC2 & ICC3 = 0) 
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ICC2. 

The effect of the interaction of varying non-zero ICC2 and N on the Type I error 

control of the procedures was analyzed under the condition in which the ICC3 was 

specified to be zero.  At least one Type I error was recorded for the unadjusted p-values 

across all replications when the ICC2 was non-zero.  The presence of level-two 

variability, through specifying the ICC2 to be non-zero, resulted in a Type I error in the 

majority of replications for all procedures.  This is expected however, because, like 

adding level-three variability to the model as discussed above, the addition of level-two 

variability is equivalent to adding a mean effect at level-two.   

All procedures failed to maintain the Type I error rate at α for every condition in 

which the ICC2 was non-zero.  As N increased, the probability of committing a Type I 

error increased for all procedures across all non-zero ICC2 conditions.  The probability 

that a procedure committed a Type I error was greater in the heterogeneous level-one 

variance condition than in the heterogeneous level-one variance condition for both non-

zero values of the ICC2. 
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Figure 4. Type I Error Rate by ICC2 (Homogenous Level-One Variances and ICC3 = 0) 

 
 

ICC3.  

To contextualize the effect of the varying the ICC3 on the Type I error rate of the 

six procedures, the results need be discussed across different levels of the ICC2.  

However, non-zero values of the ICC2 resulted in Type I error rates that greatly exceeded 

α, regardless of whether the ICC3 was zero or not.  As a result, it is difficult to parse out 

the effect of varying the ICC3.  In any case, all of the procedures failed to maintain the 

Type I error rate below α when the ICC3 was non-zero.  As N increased the probability of 

committing a Type I error increased.  The probability of committing a Type I error was 

greater in the heterogeneous variance condition than in the homogenous variance 

condition. 
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Figure 5. Type I Error Rate by ICC3 (Homogenous Level-One Variances; ICC2 = .15) 
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Figure 6. Type I Error Rate by ICC3 (Homogenous Level-One Variances; ICC2 = .25) 

 

Comparison of the procedures. 

None of the six procedures was able to maintain strong control of the Type I error 

rate at α.  Recall, a procedure is said to maintain strong control of the Type I error rate if 

it produces a Type I error rate at or below α for all simulation conditions.  The procedures 

that were able to maintain strong control of the Type I error rate in the “ideal” simulation 

condition (homogenous level-one variances and ICC2 and ICC3 specified to be zero) 

were the HSD procedure, B1D and B1DV methods.  In particular, the B1 and B1V 

procedures displayed difficulty maintaining the Type I error rate below α for the smaller 

level-two sample size conditions and when level-one variance heterogeneity was present.  

When N was large, all procedures were able to maintain control of the Type I error rate 

below α given that there was no variance at level-two or three and that all level-one 

variances were equal to one another.   Non-zero values of the ICC2 and ICC3, on the 
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other hand, had a massive and negative effect on the Type I error control of the six 

procedures.  The presences of any non-zero level-two and three variances rendered these 

procedures useless as a control for maintaining the Type I error at α.  Generally, for a 

given simulation condition, the B1 procedure was the most likely procedure to commit a 

Type I error followed by the B1V, Hoch, HSD, B1D, and B1DV procedures.   

Power. 

The power of the six procedures was evaluated in the simulation conditions in 

which βijk was specified to be non-zero.  The power of a procedure is defined as the 

proportion of sample means that were determined to be significantly different than the 

aggregate mean, which was grand mean centered at zero, averaged over the number of 

replications for a given simulation condition.  A sample mean is said to be significantly 

different from zero if its adjusted p-value was less than or equal to .05 for the HSD or 

HOCH procedures or, for the Bayesian procedures, when the 95% credible intervals for 

any level-two mean excludes zero – this will be referred to as the traditional power.  For 

the B1D and B1DV procedures, a Type I error was alternatively defined as occurring 

when more than half the values of the posterior distribution of δq take on a value of zero – 

this will be referred to as the alternative power.  Both definitions of a Type I error were 

used when evaluating the B1D and B1DV models.  Additionally, the unadjusted power 

was found by conducting single sample t-tests on each of the level-two means.  The 

section on the power of the six procedures under the various simulation conditions is 

organized as follows.  First, the effect of varying the level-two sample size is discussed.  

This discussion takes place under the context of different levels of the effect size.  The 

remaining factors are then discussed it terms of their effect across the three levels of the 
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level-two sample size.  The unadjusted power rate are found in Tables 21 and 22.  The 

power of the six procedures are found in Tables 23 and 24.   

Table 21. Unadjusted Power when βijk = .2 

  

all 𝜎𝑖𝑗𝑘
2 = 1 𝜎𝑖1:𝑁/2𝑘

2 = .5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

ICC3 ICC2 N = 10 N = 20 N = 40 N = 10 N = 20 N = 40 

0 

0 .184 .186 .183 .233 .233 .232 

0.15 .458 .463 .47 .487 .483 .49 

0.25 .566 .563 .563 .585 .582 .581 

0.1 
0.15 .466 .465 .459 .495 .493 .489 

0.25 .567 .565 .563 .587 .586 .583 

 

Table 22. Unadjusted Power when βijk = .5 

  

 

all 𝜎𝑖𝑗𝑘
2 = 1 𝜎𝑖1:𝑁/2𝑘

2 = .5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

ICC3 ICC2 N = 10 N = 20 N = 40 N = 10 N = 20 N = 40 

0 

0 .748 .754 .752 .771 .773 .77 

0.15 .64 .634 .641 .654 .655 .657 

0.25 .658 .662 .659 .671 .672 .672 

0.1 
0.15 .641 .643 .648 .654 .656 .653 

0.25 .653 .655 .66 .673 .681 .675 
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Table 23. Power of the Six Procedures when βijk = .2 

  

  

all 𝜎𝑖𝑗𝑘
2 = 1 𝜎𝑖1:𝑁/2𝑘

2 = .5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

Method ICC3 ICC2 N = 10 N = 20 N = 40 N = 10 N = 20 N = 40 

HOCH 

0 0 

.039 .023 .012 .059 .036 .023 

HSD .008 .005 .002 .017 .009 .004 

B1 .092 .078 .064 .096 .067 .064 

B1V .076 .057 .047 .142 .111 .115 

B1D <.001(.006) <.001(.011) .001(.009) .001(.009) . 002 (.015) .002 (.013) 

B1DV .001(.007) <.001(.007) .001(.007) .001(.012) .001(.01) .001(.013) 

HOCH 

0 0.15 

.296 .255 .216 .332 .295 .257 

HSD .121 .096 .078 .108 .089 .071 

B1 .434 .443 .45 .435 .44 .439 

B1V .403 .414 .421 .435 .442 .445 

B1D .09(.184) .098(.193) .111(.2) .091(.182) .108(.2) .111(.201) 

B1DV .069(.161) .083(.184) .088(.184) .108(.197) .116(.214) .116(.217) 

HOCH 

0 0.25 

.428 .379 .341 .458 .414 .37 

HSD .184 .157 .135 .16 .14 .121 

B1 .561 .565 .562 .55 .56 .56 

B1V .538 .539 .535 .555 .555 .555 

B1D .195(.307) .203(.308) .209(.312) .186(.291) .202(.306) .209(.312) 

B1DV .158(.283) .166 (.286) .175(.298) .19(.301) .199(.315) .206(.318) 

HOCH 

0.1 0.15 

.301 .259 .213 .344 .294 .256 

HSD .131 .101 .077 .112 .087 .074 

B1 .453 .451 .438 .44 .44 .449 

B1V .43 .424 .408 .447 .445 .445 

B1D .1(.188) .107(.198) .103(.194) .091(.184) .101(.188) .11(.204) 

B1DV .077(.165) .077(.177) .083(.181) .106(.206) .103(.201) .117(.212) 

HOCH 

0.1 0.25 

.431 .381 .334 .459 .419 .369 

HSD .178 .154 .133 .167 .147 .123 

B1 .557 .56 .556 .56 .564 .553 

B1V .534 .537 .532 .563 .562 .554 

B1D .177(.278) .201(.305) .202(.3) .193(.299) .198(.313) .203(.308) 

B1DV .155(.269) .166(.285) .169(.286) .196(.302) .2(.319) .199(.31) 

Note:  Values in parentheses indicate the alternative power definition. 
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Table 24. Power of the Six Procedures when βijk = .5 

  

  

all 𝜎𝑖𝑗𝑘
2 = 1 𝜎𝑖1:𝑁/2𝑘

2 = .5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

Method ICC3 ICC2 N = 10 N = 20 N = 40 N = 10 N = 20 N = 40 

HOCH 

0 0 

.511 .372 .265 .617 .524 .423 

HSD .162 .102 .062 .143 .106 .068 

B1 .74 .741 .737 .753 .762 .758 

B1V .688 .683 .68 .716 .714 .713 

B1D .036(.176) .04(.195) .039(.195) .039(.17) .041(.177) .043(.184) 

B1DV .036(.182) .038(.198) .037(.201) .088(.292) .092(.309) .09(.305) 

HOCH 

0 0.15 

.517 .46 .417 .543 .493 .45 

HSD .217 .185 .164 .205 .177 .152 

B1 .631 .635 .642 .634 .644 .641 

B1V .61 .61 .618 .635 .633 .639 

B1D .24(.377) .251(.387) .257(.393) .252(.39) .25(.388) .257(.388) 

B1DV .204(.359) .212(.354) .212(.36) .254(.392) .247(.39) .251(.397) 

HOCH 

0 0.25 

.553 .511 .466 .575 .531 .492 

HSD .242 .218 .191 .223 .2 .182 

B1 .656 .663 .663 .66 .659 .662 

B1V .637 .645 .644 .656 .655 .658 

B1D .317(.428) .314(.43) .33(.444) .304(.421) .313(.428) .322(.44) 

B1DV .269(.408) .274(.412) .282(.421) .301(.432) .304(.433) .313(.44) 

HOCH 

0.1 0.15 

.522 .462 .422 .54 .496 .447 

HSD .22 .186 .165 .2 .175 .152 

B1 .637 .637 .639 .635 .637 .63 

B1V .617 .618 .618 .625 .63 .626 

B1D .25(.384) .25(.379) .264(.392) .251(.388) .247(.381) .253(.385) 

B1DV .208(.356) .211(.365) .211(.362) .251(.391) .25(.392) .244(.388) 

HOCH 

0.1 0.25 

.547 .506 .465 .575 .542 .499 

HSD .238 .216 .193 .225 .206 .184 

B1 .65 .652 .662 .663 .662 .665 

B1V .63 .632 .641 .661 .658 .662 

B1D .287(.398) .322(.43) .315(.43) .322(.434) .319(.436) .326(.434) 

B1DV .26(.395) .269(.409) .278(.418) .317(.436) .313(.442) .314(.446) 

Note:  Values in parentheses indicate the alternative power. 
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Level-two sample size. 

The influence of the level-two sample size on the power of the six procedures was 

evaluated under the conditions in which the level-one variances were homogenous and 

the ICC2 and ICC3 were specified to be zero.  The level-two sample size had no effect on 

the unadjusted power when βijk was .2 and slightly increased the unadjusted power when 

βijk was .5.   

The effect of increasing N on the six procedures was mixed as well.  The power of 

both the HOCH and HSD procedures decreased as N increased.  When βijk was .2, the 

power of the B1 and B1V procedures decreased as N increased.  There is evidence that 

this pattern held for the B1 procedure when βijk was .5; however, the decrease was less 

noticeable.  The power of the B1V procedure remained relatively unchanged for different 

values of N when βijk was .5.  The traditional power of the B1D and B1DV procedures 

were close to zero in these two conditions and as a result it was difficult to discern any 

effect of varying the level-two sample size.  The same was true of the alternative power 

of these two procedures when βijk was .2.  When βijk was .5, the alternative power of the 

B1D procedure tended to increase with the level-two sample size.  This pattern did not 

hold for the B1DV procedure.  
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Figure 7. Power by Effect Size & N (Homogenous Level-One Variances; ICC2=0; 

ICC3=0) 

 
 

Effect size.  

The influence of the effect size on the power of the six procedures was evaluated 

under the conditions in which the level-one variances were homogenous and the ICC2 

and ICC3 were specified to be zero.  Unsurprisingly, increasing the effect size resulted in 

an increase in the unadjusted power and the power of the six procedures.  The largest 

increase in power occurred for the B1 procedure while the HSD, B1D, and B1DV 

procedures demonstrated the smallest increase in power.  The increase in power due to 

effect size was relatively constant across N for all procedures. 
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ICC2. 

Increasing the ICC2, resulted in increased power for each of the procedures.  In 

fact, the largest power across all simulation conditions was observed in this scenario for 

the B1 procedure.  As stated above, the effect of setting the ICC2 to a non-zero value was 

expected due to the presence of variance at level-two being equivalent to adding a non-

zero value to the level-two mean.  The effect of varying the ICC2 was constant over all 

values of N and effect sizes.   

Figure 8. Power by ICC2 (Homogenous Level-One Variances; Effect = .2; ICC3 = 0) 
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Figure 9. Power by ICC2 (Homogenous Level-One Variances; Effect = .5; ICC3 = 0) 

 
 

ICC3. 

 The effect of varying the ICC3 was dependent on the value of the ICC2.  When 

the ICC2 was specified to be .15, increasing the ICC3 from zero to .1 resulted in an 

increase in power for all procedures and across all levels of the effect size an N.  

However, the increase in power was more modest when βijk was equal to .5 than when βijk 

was equal to .2. When the ICC2 was specified to be .25, increasing the ICC3 from zero to 

.1 did not noticeably increase the power of the procedures.  Again, this pattern held for all 

levels of the effect size and N. 
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Figure 10. Power by ICC3 (Homogenous Level-One Variances; Effect = .2; ICC2 = .15) 
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Figure 11. Power by ICC3 (Homogenous Level-One Variances; Effect = .2; ICC2 = .25) 
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Figure 12. Power by ICC3 (Homogenous Level-One Variances; Effect = .5; ICC2 = .15) 
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Figure 13. Power by ICC3 (Homogenous Level-One Variances; Effect = .5; ICC2 = .25) 

 

Level-one variance heterogeneity. 

When there was no higher-level variance present, that is, the conditions in which 

the ICC2 and ICC3 were specified to be zero, the presence of heterogeneous level-one 

variances generally resulted in greater power for each of the procedures as compared to 

the condition in which the level-one variances were homogenous.  This pattern tended to 

hold over all levels of the effect size and N. 

When the ICC2 was specified to be non-zero, but the ICC3 was held at zero, the 

HOCH, B1D and B1DV procedure were more powerful in the heterogeneous level-one 

variance condition than in the homogenous level-one variance condition.  The power of 

the B1 and B1V procedures was generally unchanged across the two conditions.  The 



133 
 

HSD procedure was actually less powerful in the heterogeneous level-one variance 

condition than in the homogenous level-one variance condition. 

When the ICC3 was specified to be non-zero, the power of the HOCH procedure 

increased in the heterogeneous level-one variance condition than in the homogenous 

level-one variance condition.  The power of the remaining procedures was generally 

unchanged or it was not possible to determine a consistent effect of varying the level-one 

variance homogeneity.   

Figure 14. Power by Level-One Variance Condition (Effect = .2; ICC2 = 0; ICC3 = 0) 
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Figure 15. Power by Level-One Variance Condition (Effect = .5; ICC2 = 0; ICC3 = 0) 

 

Comparison of the procedures. 

 As expected, each of the procedures produced a lower average power, across all 

conditions, when compared to the unadjusted power rates.  Across all procedures, the B1 

method was the most powerful followed by the B1V and HOCH procedures.  The HSD, 

B1D, and B1DV procedures reported noticeably lower power values as compared to the 

other three methods.  In fact, when βijk was .2 and no higher-level variance was present, 

these three procedures had average power values close to zero.  The semi informed 

variance procedures exhibited slightly lower power than did their uninformed 

counterparts (i.e. the B1V procedure had consistently less power than did the B1 

procedure).  For the B1D and B1DV procedures, the alternative definition of power 

produced larger values than did the traditional definition of power.  
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CHAPTER V.  DISCUSSION 

 The purpose of this study was to compare the performance of four Bayesian 

models to traditional MCPs in situations where Type I error inflation occurs.  

Performance was defined as the ability to maintain the Type I error rate below α and as 

the power to correctly reject the null hypothesis.  The study aimed to answer two 

research questions: 

1. When a large number of hypotheses are tested simultaneously, are the 

Bayesian MLMs able to control the Type I error rate below α while 

demonstrating greater power than the traditional MCPs? 

2. When level-one variance heterogeneity is present, are the Bayesian MLMs 

able to control the Type I error rate below α while demonstrating greater 

power than the traditional MCPs? 

A Monte Carlo simulation study was performed to provide answers to these 

research questions.  Chapter Five is ordered as follows.  First, the conclusions of the 

simulation study in regards to the above research questions are presented.  A general 

recommendation about the performance of the six procedures – Hochberg’s (HOCH), 

Tukey’s HSD (HSD), Bayesian one-way ANOVA (B1), Bayesian one-way ANOVA with 

semi-informed variance priors (B1V), Bayesian one-way ANOVA with a mean difference 

parameter (B1D), and Bayesian one-way ANOVA with a mean difference parameter and 

semi-informed variance priors (B1DV) - is then provided.  Following these sections, 

limitations and future directions of the study are discussed.  The chapter concludes with a 

general summary of the study.  
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Main Findings 

Research question 1.  

 Traditional MCPs are designed to ensure control of the Type I error rate at or 

below α particularly when a large number of hypotheses are tested simultaneously.  The 

tradeoff for such control of the Type I error rate is that traditional MCPs become more 

conservative as the number of tested hypotheses increase, resulting in less power to 

correctly detect false null hypotheses (Kromrey & La Rocca, 1995; Olejnik et al., 1997; 

Seaman et al., 1991). 

 Assuming that no higher-level variance is present, the results of the study indicate 

that the traditional procedures were generally able to maintain the Type I error rate below 

α for the larger values of N.  However, as expected, the power of the HOCH and HSD 

procedure decreased as the level-two sample size grew larger.  The HSD procedure’s 

power was always less than that of the HOCH procedure.  For example, when the effect 

size was medium and the level-one variances were specified to be equal to one another 

(the homogenous variances condition), the power of the HOCH procedure decreased 

from 51.1% to 26.5% as the level-two sample size increased from 10 to 40.  Likewise, the 

power of the HSD procedure decreased from 16.2% to 6.2% as the level-two sample size 

increased from 10 to 40. 

 The B1 and B1V did not exhibit this problem.  Not only was the power of the B1 

and B1V procedures larger than the traditional methods across all simulation conditions, 

but also increasing the level-two sample size did not have a noticeable impact on the 

power of these procedures in the medium effect size condition.  For example, in the 

medium effect condition and with homogenous level-one variances, the power of the B1 
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procedure was 74% when N was 10 and 73.7% when N was 40; the power of the B1V 

procedure was 68.8% when N was 10 and 68% wen N was 40. When the effect size was 

small, and particularly when the level-one variances were homogenous, the power of the 

B1 and B1V procedures decreased with N.  However, both procedures were still more 

powerful than the traditional methods.   

In exchange for achieving greater power compared to the traditional MCPs, these two 

methods generally sacrificed the ability to maintain the Type I error rate at α.  While the 

Type I error rate was far less than the unadjusted Type I error rate, the B1 and B1V 

procedures may not be appropriate for the applied researcher who wishes to maintain 

strict control of the Type I error rate at α. This sacrifice was pronounced for the B1 

procedure than for the B1V procedure; the B1 procedure only produced a Type I error 

rate less than .05 when N was 40 and the level-one variances were equal to one another.  

The B1V procedure was able to maintain the Type I error rate below α for N as low as 20 

when the level-one variances were homogenous and at N = 40 when the level-one 

variances were heterogeneous. 

Unfortunately, the B1D and B1DV were much too conservative to be of use as a 

method for controlling for multiplicity.  While these two procedures rarely committed a 

Type I error, they also displayed a correspondingly low ability to identify false null 

hypotheses.  When testing hypotheses by evaluating the posterior distributions of the 

level-two means, the B1D procedures produced power rates that were lower than the 

traditional MCPs.  When testing hypotheses by evaluating the posterior distribution of the 

mean difference parameter, δq, the B1D and B1DV procedures returned power rates that 

were comparable to the HSD procedure.  Most likely the reason for the low power of 
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these two procedures is tied to the prior distribution assigned to the hyperparameter pq.  

This hyperparameter determines the probability that δq is assigned a point mass prior 

distribution entirely at zero or a normal prior distribution.  When δq is assigned a point 

mass prior distribution entirely at zero the null hypothesis will be retained and when δq is 

assigned a normal distribution as a prior there is a non-zero probability that the null 

hypothesis will be rejected.  The prior distribution assigned to pq, drawn from a previous 

study by Li and Shang (2016), may have resulted in an overly conservative model that 

favored assigning δq the point mass prior distribution at zero.  

When testing a large number of hypotheses, the B1 procedure is recommended due to 

its superior power to the other methods and its improved control of the Type I error rate 

as the number of hypotheses increases.  If strict control of the Type I error rate is desired 

or a small number of hypotheses are being tested, the HOCH procedure is recommended.  

The above recommendation was formed in the conditions in which no level-two or three 

variance was present.  The above patterns of results hold for the simulation conditions in 

which the ICC2 and ICC3 were specified to be non-zero. 

 Research question 2.  

 Variance heterogeneity among the level-one units did not affect the traditional 

MCP’s ability to maintain the Type I error rate below α.  Although previous research 

(Games & Howell, 1976; Hsiung & Olejnik, 1994; Kromrey & La Rocca, 1995) had 

shown that the power of the traditional methods should have decreased in the presence of 

level-one variance heterogeneity that was not the case in this study.  In fact, both the 

HOCH and HSD procedures were more powerful when the level-one variances were 
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heterogeneous than when the level-one variances were specified to be equal to one 

another.  

This result was likely due to the research design used.  Previous studies that found 

evidence of decreased power due to level-one variance heterogeneity tested hypotheses 

evaluating pairwise differences between level-two means.  In these studies, variance 

heterogeneity increased the standard error of pairwise mean difference test statistics 

making it more difficult to reject a false null hypothesis.  On the other hand, the present 

study tested hypotheses regarding differences between the level-two means and a 

constant criterion of the grand centered aggregate mean.  Recall, that in the homogenous 

level-one variance condition, each variance was specified to be one.  In the 

heterogeneous level-one variance condition, half the level-one variances were specified 

to be .5 and the other half was specified to be 1.5.  Not only does variance heterogeneity 

not necessarily increase the standard error of the test statistic, but those level-two groups 

that are assigned the smaller variance it the heterogeneous condition are more likely to be 

correctly flagged as being significantly different than the criterion as compared to the 

level-two groups in the homogenous level-one variance condition.  

Likewise, the Bayesian methods were more powerful when the level-one variances 

were heterogeneous than when the level-one variances were homogenous.  Additionally, 

when the effect was small the Bayesian methods with adaptive prior distributions on the 

level-one variances (the B1V and B1DV methods) were more powerful than their non-

adaptive counterparts (the B1 and B1D methods) when level-one variance heterogeneity 

was present.  The B1DV method was more powerful than the B1D method in the medium 

effect condition under variance heterogeneity.   
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Unfortunately, the Type I error control of the B1 and B1V methods was adversely 

affected by the presence of level-one variance heterogeneity.  Both methods largely failed 

to maintain the Type I error rate below α when variance heterogeneity was present.  The 

only exception was the B1V method when N was equal to 40.  Because the B1D and 

B1DV methods are overly conservative procedures (as discussed above) they did not 

encounter this issue when variance heterogeneity was present.   

In conclusion, if the researcher is first concerned with maintaining the Type I error 

rate below α, with power being a secondary concern, then the HOCH procedure is 

recommended when level-one variance heterogeneity is present.  If the researcher is able 

to be less strict about maintaining the Type I error rate below α, than the B1V procedure 

is recommended when variance heterogeneity is present due to its ability to correctly 

detect small effects and increased power as a larger number of hypotheses are tested. The 

discussion thus far has focused on the conditions in which no level-two or three variance 

occurred.  The above patterns of results hold for the simulation conditions in which the 

ICC2 and ICC3 were specified to be non-zero. 

Overall performance. 

Assuming there was no variance present at level-two or three, the HOCH, HSD, 

B1D, and B1DV procedures were able to maintain the Type I error rate below α.  While a 

Type I error rate in excess of α was reported for some conditions of N for the HOCH 

procedure this was determined to be due to the result of random simulation error during 

the data generation process.  Data were generated by randomly sampling a normal 

distribution with a mean of zero.  For the simulation seed used in this study, a large 

enough number of replications contained values taken from the tails of the generating 
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distribution so that the Type I error rate was greater than alpha.  While the probability of 

this occurring was low, these were legitimate simulation results.  To confirm that these 

results were due to random error, the simulation seed was varied and none of the resulting 

simulated data sets reproduced a Type I error rate in excess of α for the HOCH 

procedure.  The B1 and B1V struggled to maintain the Type I error rate below α when the 

level-two sample size was small and when level-one variance heterogeneity was present. 

Across all simulation conditions, the B1 and B1V methods demonstrated the most 

power in correctly rejecting the null hypothesis.  Outside of those procedures, the HOCH 

procedure was the next most powerful followed by the HSD procedure and then the B1D 

and B1DV procedures.  Generally, the Bayesian methods with adaptive prior 

distributions on the level-one variances were less powerful than their non-adaptive 

counterparts.  This may be the case because the models with adaptive prior distributions 

over fit the data by providing separate estimates of the level-one variances when a single 

estimate would have sufficed.  The difference in power between these two models did 

shrink when variance heterogeneity was present.  The one exception to this pattern 

occurred when the level-one variances were heterogeneous and the effect size was small.  

In this scenario, the B1V model was more powerful than the B1 model.  Allowing 

separate parameter estimates for each level-one variance provided additional information 

about the grand mean, which, in turn, gave the B1V model more power to correctly reject 

the null hypothesis as compared to the B1 model.  

In conclusion, if the goal of the researcher is to maintain the Type I error rate below α 

while retaining the greatest power to correctly reject null hypotheses, the HOCH 

procedure would be preferred if the number of hypotheses being test is less than 40.  
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Provided the level-two and three variance was zero, the HOCH procedure generally 

maintained good control of the Type I error rate while being more powerful than the 

HSD, B1D and B1DV procedures.  If the number of hypotheses being tested is large (N ≥ 

40) then the B1 procedure will maintain control of the Type I error rate below α.  As a 

result, the B1 procedure should be selected over the HOCH procedure due to its greater 

power in this scenario. 

If the researcher is able to accept a liberal Type I error rate, then the B1 or B1V 

procedures should be chosen.  These procedures demonstrated greater power than the 

other four methods across all simulation conditions.  The preference of procedure should 

be given to the B1 method over the B1V method with the exception of the scenario in 

which a small number of hypotheses are being tested or the scenario in which the effect is 

presumed to be small  

Under the present simulation conditions, the HSD, B1D, and B1DV procedures 

cannot be recommended.  While these procedures always maintained the Type I error rate 

below α, these procedures lacked the ability to detect false null hypotheses.  A more 

powerful procedure exists for every condition in which strict control of the Type I error 

rate would be necessary. 

Limitations 

 The present study had several limitations – some resulting from the conditions in 

which the simulation took place and others resulting from a lack of resources.  Every 

study is limited by the settings that were not considered. These un-realized settings 

constrain the generalizability of the study.  
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 One limitation was the research scenario in which this study was set.  This study 

was conducted under the scenario of evaluating several level-two means against a single 

criterion.  An example of this might be evaluating the standardized test scores of all the 

high schools in a district against the average score for schools across the country.  This 

resulted in several limitations.  First, this limits the generalizability of the study to this 

specific scenario.  Additionally, and as explored above, this study design may have 

confounded the effects of level-one variance heterogeneity on the performance of the 

methods under consideration.  The reason for this is the test statistic that underlies the 

traditional MCPs in these scenarios.  When making pairwise comparisons, the 

independent samples t-test is used while the single samples t-test is used when evaluating 

several groups against a criterion.  There is ample evidence that variance heterogeneity 

negatively affects the power of the independent samples t-test (Games & Howell, 1976; 

Kromrey & La Rocca, 1995; Shaffer, 1995) but this is not necessarily true of the single 

sample t-test.  Consider the heterogeneous variance condition in which half the level-two 

units were to have within groups variances of .5 and the other half being assigned 

variances of 1.5.  It will be easier to correctly reject the null hypothesis for those level-

two units with variances of .5 than those with variances of 1.5. Consequently, the power 

of the traditional MCPs will be inflated when variance heterogeneity is present rather 

than being decreased as would be expected if one were testing pairwise comparisons.  

Finally, Tukey’s HSD procedure was designed for the research scenario in which every 

level-two mean is evaluated against one another.  In the present study, Tukey’s HSD was 

applied to the scenario in which every level-two mean is evaluated against zero.  

Practically, this means that, instead of comparing the q critical value to the t-values taken 
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from all possible independent samples t-tests, the q critical value was evaluated against t-

values taken from all possible single sample t-tests. This may have affected the power of 

that procedure.  

 A second limitation is the choice of definition for the Type I error rate and power.  

As discussed in Chapter One, there are different definitions of the Type I error rate and 

power and the decision of which definition to use in practice is largely influenced by the 

research design of the study.  In this study the familywise Type I error rate and the all-

pair power were the chosen definitions.  As a result, the generalizability of this study is 

again limited to only the situations in which the familywise and all-pair power definitions 

are used.   

 A further limitation is that this study only considered the scenario in which the 

level-two units were balanced with respect to the level-one sample size.  Consequently, 

the results of this study may only be generalized to the situations in which all level-one 

sample sizes are equal.  

The study is also limited by the values and distributions chosen as the prior 

distributions for the Bayesian models.  An infinite combination of prior distributions can 

be chosen for the parameter and hyperparameters for a given models and discussion of 

alternative prior distributions is generally outside the scope of this paper.  One exception 

to that is the prior distribution assigned to pq in the B1D and B1DV model.  This 

parameter determines the probability that the prior distribution on δq is either zero or a 

normal distribution.  Previous studies (Li & Shang, 2016) have assigned this parameter a 

BETA distribution with the suggestion that  for the 
0

0 0
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hyperparamters Α0 and Β0.  This suggestion resulted in overly conservative models and 

other values for this equality should be considered. 

Additonally, the posterior distributions of the parameters of B1D and B1DV 

models had difficulty meeting the convergence criterion of a �̂� value less than 1.1.  There 

are two main ways to assist a model in achieving convergence.  The first would be to 

assign the prior distributions in the model more informative prior distributions.  This was 

not done because the study was designed to evaluate the performance of these procedures 

using noninformative prior distributions.  The second method would be to use brute force 

to increase the likelihood of achieving model convergence by increasing the number of 

draws from the posterior distribution.  As a result, the B1D and B1DV models were 

evaluated when they met the more lenient criterion of producing a �̂� value less than 1.5.  

Future Directions 

Future research is needed to determine the generalizability of the use Bayesian 

models as MCPs outside the settings considered in the present study.  Much like the 

limitations of this study, there are a myriad of directions in which research on this topic 

could be extended.  In the discussion below, possibilities for incorporating a few of the 

more salient extensions into future research are presented.   

Future studies should investigate the extent to which different prior distributions of 

the parameters of the Bayesian models affect their ability to perform as MCPs.  

Specifically, researchers should focus on the prior distributions on the mean parameters 

and, for the B1D and B1DV models, on δq and its hyperparameters.  This could be done 

in two ways.  First, this could be accomplished by exploring the effect of different 

uninformative prior distributions.  For example, in the current study the mean parameters 
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were assigned normal prior distributions.  Future studies could investigate the 

performance of these models when the mean parameters are assigned a uniform prior 

distribution.  Second, researchers could investigate scenarios in which it may be 

appropriate to specify informative prior distributions.  For instance, if the rank order 

assumption is tenable, as discussed in Chapter One, it may be reasonable to specify prior 

distributions that take into account the expected ordering or the mean parameters. 

Along the same lines, future research could focus on the variables used to achieve 

convergence of the Bayesian models.  There are a variety of ways researchers could 

explore to speed up the process of convergence.  Researchers could increase the number 

of MCMC chains, differ the amount of thinning of the MCMC chains or increase the 

number of draws taken from the posterior distribution.  Additionally, other criterion for 

evaluating convergence outside the �̂� statistic could be considered.  One interesting 

extension would be to vary the software used to estimate the Bayesian models. 

Another avenue for research would be to expand the research scenarios in which the 

performance of these methods are evaluated.  Many traditional MCPs were developed for 

research scenarios not included in this study.  Specifically, Tukey’s HSD was developed 

for the scenario in which one wishes to make all pairwise comparisons among means 

(Toothaker, 1991; Tukey, 1953) and Dunnett’s test was developed for the scenario in 

which one wishes to evaluate every mean versus a single control mean (Dunnett, 1955).  

Future research could evaluate the performance of the Bayesian methods against 

traditional MCPs which were developed with these different research designs in mind.  

Of particular interest to future researchers might be the false discovery rate.  

Traditional MCPs that are designed to control for the familywise Type I error rate at α are 
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known to decrease in power as the number of tested hypotheses tested increase (Kromrey 

& La Rocca, 1995; Olejnik et al., 1997; Seaman et al., 1991) and more evidence of that 

phenomenon was shown in the present study.  Consequently, one of the motivations 

behind this study was to evaluate the power of the procedures in this setting. The false 

discovery rate has been more commonly used in scenarios in which a large number of 

hypotheses are tested simultaneously (cite) and MCPs that control for the false discovery 

rate have been found to be more powerful than procedures that control for the familywise 

error rate.  There is evidence that methods that control for the false discovery rate are 

able to better handle a larger number of tests than methods that control for the familywise 

error rate (Lu & Westfall, 2009; Westfall, 2010).  The Bayesian models investigated in 

this study could be evaluated in terms of false discovery rate controlling procedures. 

Conclusions 

 This study provides several contributions to the literature on multiple comparisons 

procedures.  First, it is the one of the first empirical evaluations of the ability of Bayesian 

models to act as a control for Type I error inflation, particularly in comparison to 

traditional MCPs.  Second, this study provided evidence of how these Bayesian models 

perform when a large number of hypotheses are tested simultaneously and when variance 

heterogeneity is present – two scenarios that have been shown to be detrimental to the 

performance of traditional MCPs.  Finally, this study gave evidence about how different 

conceptualizations of Bayesian models, through either adapting the prior distributions to 

account for variance heterogeneity or by reformulating how the models conceived mean 

differences, affected the Type I error control and power of these methods. 
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The results of this study have implications for the applied researcher.  This study 

provided evidence that, in the scenario, when over 40 hypotheses are being tested 

simultaneously the Bayesian one-way ANOVA should be preferred to traditional MCPs 

due to the model’s control of the Type I error rate and high power.  In scenarios in which 

a smaller number of hypotheses are tested, the Bayesian models cannot be recommended 

over the traditional MCP.  Finally, this study provided negligible evidence that allowing 

the prior distributions on the level-one variances to differ had any impact on the 

performance of these models.  Consequently, it is recommended that if researchers 

decided to utilize the Bayesian one-way ANOVA as a control for multiplicity that the 

simpler model with a single prior distribution on the level-one variance be chosen. 
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APPENDIX A: PROPERTIES OF MCPS FOR PAIRWISE COMPARISONS 

Many of the traditional MCPs were designed with the goal of making 

pairwise comparisons between means.  These procedures have properties 

associated with them that are not applicable for procedures that make multiple 

comparisons against a criterion.  Below is a discussion of several of these 

properties. 

Closure 

 A set of hypotheses are said to be closed if the set contains all original 

hypotheses along with all hypotheses that are formed by the interaction of the 

original hypotheses (Shaffer, 1995).  This is most easily explained in the situation 

in which one is making pairwise comparisons.  To demonstrate what constitutes a 

closed set of hypotheses, assume that three means are to be compared.  H12 

reflects the hypothesis that tests whether the population means for group 1 and 2 

are equal.  Likewise, H123 would test the hypothesis that µ1 = µ2 = µ3.  When 

testing all pairwise comparisons among three groups, the relevant set of 

hypotheses is H12, H13, and H23.  The intersection of a set of hypotheses is all 

hypotheses formed by the inclusion of the original hypothesis.  In the above 

pairwise comparison set of hypotheses, the intersection would be H123 or µ1 = µ2 = 

µ3.  H123 is also said to be above hypotheses H12, H13, and H23 in the hierarchy of 

hypotheses.  The hypotheses that form the intersection are referred to as proper 

components.  If the null hypothesis is rejected for a bivariate comparison of 

means, it is inappropriate to retain the null hypothesis for the intersection of those 

hypotheses.  
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 The closure of a set of hypotheses occurs if a hypothesis is rejected at α 

and every hypothesis that occurs above it in the hierarchy of hypotheses is 

rejected as well (Shaffer, 1995; Westfall & Wolfinger, 2000).  This principle, also 

known as coherence, consonance or the property of free combination (Holm, 

1979; Levin, 1996; Wright, 1992), is a characteristic of most MCPs (Einot & 

Gabriel, 1975).  Many MCPs are designed to be coherent by analyzing hypotheses 

sequentially (Einot & Gabriel, 1975).  Dissonance occurs when an intersection of 

hypotheses is rejected but none of the proper components of the intersection of 

hypotheses are rejected (Einot & Gabriel, 1975).  This is equivalent to declaring 

an omnibus statistic significant and then finding none of the pairwise, adjusted p-

values to be significant.  MCPs that are formed using closed hypotheses maintain 

the familywise error rate at α (Shaffer, 1995).  MCPs that assure coherence avoid 

logical contradictions in rejecting hypotheses.  In addition, MCPs that test a 

closed set of hypotheses are guaranteed to maintain strong control of the Type I 

error rate.  These procedures are more powerful than other MCPs that maintain 

strong control of the Type I error rate but that do not tests a closed set of 

hypotheses (Shaffer, 1995).  The majority of sequential procedures utilize the 

closure property of hypothesis testing (Westfall & Wolfinger, 2000).   

Variance Heterogeneity 

 The reasons for this power loss with the Tukey’s HSD and Scheffé‘s 

procedures can be seen by examining the denominator in Equations 14 and 15, 

which utilizes the MSE obtained from an omnibus ANOVA.  The presence of 

variance heterogeneity results in larger values of the MSE as compared to when 
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all level two units have equal variance.  This in turn decreases the Tukey’s HSD 

and Scheffé’s test statistic’s magnitude making it more difficult to declare any 

pairwise comparison significantly different.  Likewise, when making pairwise 

comparisons among level two means, the Bonferroni based MCPs take p-values 

from several independent samples t-tests: 

.       (62) 

If variance heterogeneity is present, the denominator in Equation 61 will increase, 

resulting in a smaller test statistic and a correspondingly higher p-value.  This 

corresponds with the well-known Behrens-Fisher problem (Kim & Cohen, 1998; 

Scheffé, 1970).  In practice, especially when employing quasi-experimental and 

correlational research designs, it may be impossible to ensure the variance 

homogeneity assumption is satisfied. 

Unequal Level One Sample Sizes 

 On the other hand, level two units with unequal level one sample sizes 

may affect Type I error control and the power of MCPs in the pairwise 

comparisons situation (Nashimoto & Wright, 2008).  Specifically, Tukey’s HSD's 

ability to control the Type I error rate has been shown to be adversely affected by 

unequal sample sizes (Games & Howell, 1976; Games, Keselman, & Rogan, 

1981).  In contrast, Scheffé’s procedure is more robust to unequal sample sizes.  

Bonferroni based procedures are slightly affected when unequal sample sizes are 

present because the underlying independent samples t-test is affected by unequal 

sample sizes.  However, this effect is negligible and if a researcher is truly 
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concerned with the effect of unequal sample sizes, p-values may be drawn from a 

more robust test such as the Satterthwaite correction to the t-test. 

Pattern of Mean Differences 

 In a study where making pairwise comparisons among means is of 

interest, the distance between means (referred to as the pattern of mean 

differences) will influence the Type I error control and power of any MCP.  For 

example, a study which has a pattern of mean differences in which each mean 

differs from one another by a large amount will demonstrate greater power than a 

study in which all but one of the means are equal to one another and the 

remaining mean is only slightly greater than the other means.  In a study 

comparing multiple means, a variety of mean configurations may be present 

(Ramsey et al., 2010). Below are several common patterns of mean differences:  

The equally spaced null pairs configuration: 

,       (63) 

The equally spaced null pair configuration: 

,        (64) 

And the single extreme mean configuration: 

.        (65) 

 When comparing statistics drawn from the F and studentized q 

distributions it is important to consider two other configurations (Ramsey, 1981):  

(1) The minimum range configuration and (2) the maximum range configuration.  

The minimum range configuration occurs for an even number of means when: 

12 23 34
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            (66) 

For an odd number of means the minimum range configuration occurs when: 

𝜇1 = ⋯ = 𝜇(𝑁+1)/2 = −[(𝑁 − 1)/(𝑁 + 1)]1/2𝜎𝑓, 

𝜇(𝑁+3)/2 = ⋯ = 𝜇𝑁 = −[(𝑁 − 1)/(𝑁 + 1)]1/2𝜎𝑓,      (67) 

and the maximum range configuration spaces the means such that: 

𝜇1 = −(𝑁/2)1/2𝜎𝑓, 

𝜇2 = ⋯ = 𝜇𝑁−1 = 0, 

𝜇3 = (𝑁/2)1/2𝜎𝑓,                (68) 

where N is equal to the number of level two units, σ is the homogeneous within 

group variance, and f is equal to the ratio of the between and within group 

variances (Ramsey, 1981).  Research has shown that as the number of non-null 

hypotheses increase, so does the familywise error rate and the power to detect true 

differences (Brown & Russell, 1997; Klockars & Hancock, 1992; Olejnik et al., 

1997).  Additionally, as the distance between means increases, the power of 

MCPs increases as well (Brown and Russell, 1997; Klockars and Hancock, 1992; 

Ramsey, 1981; Ramsey et al., 2010; Seaman et al., 1991). 
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APPENDIX B:  SYNTAX 

Data Generation 

library("plyr") 

set.seed(1987) 

 

setwd("File Path") 

options(scipen=999) 

 

#Factors 

l2n=c(10,20,40) 

b1=c(0,.2,.5) 

icc2=c(0,.15,.25) 

icc3=c(0,.1) 

 

numcond = length(l2n) * length(b1)  * length(icc2) * length(icc3) 

conditions = matrix(1:numcond,numcond,5) 

colnames(conditions) = c("Condition ID", "Level 2 N", "Effect", "icc2", "icc3") 

#Level 2 Sample Size 

conditions[,2] = rep(1:length(l2n), each = numcond/length(l2n)) 

#Effect Size 

conditions[,3] = rep(1:length(b1), numcond/length(b1)) 

conditions = conditions[order(conditions[,3]),] 

#ICC 2 

conditions[,4] = rep(1:length(icc2), numcond/length(icc2)) 

conditions = conditions[order(conditions[,4]),] 

#ICC 3 

conditions[,5] = rep(1:length(icc3), numcond/length(icc3)) 

conditions = conditions[order(conditions[,5]),] 

conditions = unique(conditions[,-1]) 

numcond = nrow(conditions) 

 

reps=500 

 

#Equal level one variance generation 

for(condrep in 1:numcond){ 

  l1n=30 

  l3n=5 

  gamma000=0 

  sigma2e=1 

  n2=l2n[conditions[condrep,1]] 

  beta=b1[conditions[condrep,2]] 

  ICC2=icc2[conditions[condrep,3]] 

  ICC3=icc3[conditions[condrep,4]] 

  var2=ifelse(ICC2==.25&ICC3==0,.3333, 

              ifelse(ICC2==.15&ICC3==0,.17647, 
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              ifelse(ICC2==.25&ICC3==.1,.29997, 

              ifelse(ICC2==.15&ICC3==.1,.15885,0)))) 

  var3=ifelse(ICC3==.1&ICC2==0,.1, 

              ifelse(ICC3==.1&ICC2==.15,.01765, 

              ifelse(ICC3==.1&ICC2==.25,.03333,0))) 

  samp.tot=n2*l1n 

   

    for(a in 1:reps){ 

      group2=rep(1:n2,each=l1n) 

      group3=rep(1:l3n,each=(n2/5)*l1n) 

      eijk=rnorm(samp.tot,0,sigma2e) 

      U0jk=rep(rnorm(n2,0,sqrt(var2)),each=l1n) 

      V00k=rep(rnorm(l3n,0, sqrt(var3)),each=l1n*(n2/l3n)) 

      x=rep(c(-1,1),each=samp.tot/2) 

      yijk=gamma000+(beta*x)+eijk+U0jk+V00k 

      dat=data.frame(yijk,group2,group3,x,eijk,U0jk,V00k) 

      names(dat)=c("y","level2","level3","x","eijk","U0jk","V00k") 

      dat$y=dat$y-mean(dat$y) 

       

      write.csv(dat,paste("eqvar.cond",condrep,".rep",a,".csv",sep="")) 

    } 

} 

 

###################################Unequal level one variance generation 

for(condrep in 1:numcond){ 

  l1n=30 

  l3n=5 

  gamma000=0 

  n2=l2n[conditions[condrep,1]] 

  beta=b1[conditions[condrep,2]] 

  ICC2=icc2[conditions[condrep,3]] 

  ICC3=icc3[conditions[condrep,4]] 

  var2=ifelse(ICC2==.25&ICC3==0,.3333, 

              ifelse(ICC2==.15&ICC3==0,.17647, 

              ifelse(ICC2==.25&ICC3==.1,.29997, 

              ifelse(ICC2==.15&ICC3==.1,.15885,0)))) 

  var3=ifelse(ICC3==.1&ICC2==0,.1, 

              ifelse(ICC3==.1&ICC2==.15,.01765, 

              ifelse(ICC3==.1&ICC2==.25,.03333,0))) 

   

  samp.tot=n2*l1n 

 

    for(a in 1:reps){ 

      group2=rep(1:n2,each=l1n) 

      group3=rep(1:l3n,each=(n2/5)*l1n) 

      eijk=c(rnorm(samp.tot/2,0,sqrt(.5)),rnorm(samp.tot/2,0,sqrt(1.5))) 
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      U0jk=rep(rnorm(n2,0,sqrt(var2)),each=l1n) 

      V00k=rep(rnorm(l3n,0, sqrt(var3)),each=l1n*(n2/l3n)) 

      x=rep(c(-1,1),each=samp.tot/2) 

      yijk=gamma000+(beta*x)+eijk+U0jk+V00k 

      dat=data.frame(yijk,group2,group3,x) 

      names(dat)=c("y","level2","level3","x") 

      dat$y=dat$y-mean(dat$y) 

 

      write.csv(dat,paste("uneqvar.cond",condrep,".rep",a,".csv",sep="")) 

    } 

} 

 

Traditional MCPS 

matsig.eq=matpow.eq=matsig.uneq=matpow.uneq=list() 

#################Equal Level One Variance Condition 

for(condrep in 1:numcond){ 

  l1n=30 

  l3n=5 

  alpha=.05 

 

  n2=l2n[conditions[condrep,1]] 

  beta=b1[conditions[condrep,2]] 

  ICC2=icc2[conditions[condrep,3]] 

  ICC3=icc3[conditions[condrep,4]] 

  var2=ifelse(ICC2==.25&ICC3==0,.3333, 

              ifelse(ICC2==.15&ICC3==0,.17647, 

              ifelse(ICC2==.25&ICC3==.1,.29997, 

              ifelse(ICC2==.15&ICC3==.1,.15885,0)))) 

  var3=ifelse(ICC3==.1&ICC2==0,.1, 

              ifelse(ICC3==.1&ICC2==.15,.01765, 

              ifelse(ICC3==.1&ICC2==.25,.03333,0))) 

  samp.tot=l1n*n2 

   

  mat.sig=matrix(nrow=reps,ncol=10) 

  mat.pow=matrix(nrow=reps,ncol=7) 

   

  for(a in 1:reps){ 

    dfw=(l1n*n2)-n2                                 

     

    dat=read.csv(paste(getwd(),"/eqvar.cond",condrep,".rep",a,".csv",sep=""),header=T) 

    dat=dat[,-1] 

    names(dat)=c("y","level2","level3","x") 

     

    t.raw=matrix(ncol=2,nrow=n2) 

    for(j in 1:n2){ 
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      t.raw[j,1]=t.test(dat$y[dat$level2==j])$statistic 

      t.raw[j,2]=t.test(dat$y[dat$level2==j])$p.value 

      colnames(t.raw)=c("t","unadj p") 

    } 

 

    p.hoch=as.matrix(p.adjust(t.raw[,2],method="hochberg")) 

    qcrit=qtukey(.95,nm=n2,df=dfw,lower.tail=T)/sqrt(2) 

     tapply(dat$y,dat$level2,mean)/sqrt(ms.w/l1n) 

     

    sig.raw=ifelse(sum(ifelse(t.raw[,2]<.05,1,0))>0,1,0) 

    sig.hoch=ifelse(sum(ifelse(p.hoch<.05,1,0))>0,1,0) 

    sig.tuk=ifelse(sum(ifelse(abs(t.raw[,1]>qcrit),1,0))>0,1,0) 

     

    tot.sig=sum(ifelse(t.raw[,2]<.05,1,0))/n2 

    tot.sig.hoch=sum(ifelse(p.hoch<.05,1,0))/n2 

    tot.sig.tuk=sum(ifelse(abs(t.raw[,1]>qcrit),1,0))/n2 

        sig=c(n2,beta,ICC2,ICC3,sig.raw,sig.hoch,sig.tuk, ,tot.sig,tot.sig.hoch,tot.sig.tuk) 

     

    pow.raw=sum(ifelse(t.raw[,2]<.05,1,0))/n2 

    pow.hoch=sum(ifelse(p.hoch<.05,1,0))/n2 

    pow.tuk=sum(ifelse(abs(t.raw[,1]>qcrit),1,0))/n2 

     

    pow=c(n2,beta,ICC2,ICC3,pow.raw,pow.hoch,pow.tuk) 

    mat.sig[a,]=sig 

    mat.pow[a,]=pow 

     

  } 

   

  matsig.eq[[condrep]]=mat.sig 

  matpow.eq[[condrep]]=mat.pow 

   

} 

 

mat.sig.eq=matrix(NA,ncol=10,nrow=numcond) 

mat.pow.eq=matrix(NA,ncol=7,nrow=numcond) 

for(b in 1:numcond){ 

  means=colMeans(as.data.frame(matsig.eq[[b]])) 

  power=colMeans(as.data.frame(matpow.eq[[b]])) 

  mat.sig.eq[b,]=means 

  mat.pow.eq[b,]=power 

  

colnames(mat.sig.eq)=c("L2n","Effect","ICC2","ICC3","Unadjusted","Hochberg","Tuke

y","Tot Sig","Tot Hoch","Tot Tuk") 

  

colnames(mat.pow.eq)=c("L2n","Effect","ICC2","ICC3","Unadjusted","Hochberg","Tuk

ey") 
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} 

 

B1 Procedure 

library("R2OpenBUGS") 

for(a in 1:numbcond){ 

  l1n=30  

  n2=l2n[conditions[a,1]] 

  mat=matrix(nrow=reps,ncol=2) 

  matrhat=matrix(nrow=reps,ncol=n2+2) 

   

  for(b in 1: reps){ 

  dat=read.csv(paste(getwd(),"/eqvar.cond",a,".rep",b,".csv",sep=""),header=T) 

   

  bayes1model=function() { 

    for (i in 1:N) { 

      y[i] ~ dnorm(y.hat[group[i]],tau.y) 

    } 

    for (j in 1:ngroup){ 

      y.hat[j] ~ dnorm(mu.a,tau.a) 

    } 

    mu.a ~ dnorm(0,.01) 

    sigma.y ~ dunif(.0001 ,100) 

    tau.y <- 1/sigma.y 

    sigma.a ~ dunif(.0001 ,100) 

    tau.a <-1 /sigma.a 

  } 

 

  bayes1data=list(y=dat$y,group=dat$level2,N=length(dat$y),ngroup=max(dat$level2)) 

 

  

bayes1out=bugs(data=bayes1data,inits=NULL,parameters.to.save=c("y.hat","mu.a","sig

ma.y"), 

                  model.file=bayes1model,n.chains=2,n.iter=2000,debug=F) 

 

  bayes.means=bayes1out$summary[1:max(dat$level2),] 

  sig.bm1=ifelse(bayes.means[,3]<0&bayes.means[,7]>0,0,1) 

  r.hat=bayes1out$summary[1:length(bayes1out$summary[,1])-1,8] 

  mat[b,]=c(ifelse(sum(sig.bm1)>=1,1,0),sum(sig.bm1/length(sig.bm1))) 

  matrhat[b,]=r.hat 

  } 

   

  list.eq[[a]]=mat 

  list.rhat.eq[[a]]=matrhat 

  con.check.eq[[a]]=apply(matrhat,2,max) 

  print(a) 
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} 

 

B1V Procedure 

bayes1model=function() { 

      for (i in 1:N) { 

        y[i] ~ dnorm(y.hat[group[i]],tau.y[group[i]]) 

      } 

      for (j in 1:ngroup){ 

        y.hat[j] ~ dnorm(mu.a,tau.a) 

        sigma.y[j] ~ dunif(.0001 ,UB[j]) 

        UB[j] <- 2*sig.samp[j] 

        tau.y[j] <- 1/sigma.y[j] 

      } 

      mu.a ~ dnorm(0,.01) 

      sigma.a ~ dunif(.0001 ,100) 

      tau.a <-1 /sigma.a 

    } 

        

bayes1data=list(y=dat$y,group=dat$level2,N=length(dat$y),ngroup=length(unique(dat$l

evel2)), 

                    sig.samp=c(tapply(dat$y,dat$level2,sd))) 

       

bayes1out=bugs(data=bayes1data,inits=NULL,parameters.to.save=c("y.hat","mu.a","sig

ma.y","sigma.a"), 

                   model.file=bayes1model,n.chains=2,n.iter=2000,debug=F) 

     

    bayes.means=bayes1out$summary[1:length(unique(dat$level2)),] 

    sig.bm1=ifelse(bayes.means[,3]<0&bayes.means[,7]>0,0,1) 

    mat[b,]=c(ifelse(sum(sig.bm1)>=1,1,0),sum(sig.bm1/length(sig.bm1))) 

    r.hat=bayes1out$summary[1:length(bayes1out$summary[,1])-1,8] 

    matrhat[b,]=r.hat 

 

B1D Procedure 

bm0=function() { 

      for (i in 1:N) { 

        y[i] ~ dnorm(y.hat[i],tau.y) 

        y.hat[i] <- gamma00 + delta[group[i]] 

      } 

       

      sigma.y ~ dunif(.0001 ,100) 

      tau.y <- 1/sigma.y 

       

      gamma00~dnorm(0,tau.a) 

      sigma.a ~ dunif(.0001,100) 
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      tau.a <- 1 / sigma.a 

       

      for (j in 1:ngroup){ 

        delta[j] <- 0 * equals( B[j], 1 ) + D[j] * equals( B[j], 0 ) 

        B[j] ~ dbern( rho[j] ) 

        rho[j] ~ dbeta( 1, 2 ) 

        D[j] ~ dnorm(0, inv_theta[j] ) 

        inv_theta[j] ~ dgamma( 2.1, inv_d0[j] )   

        inv_d0[j] <- 1 / 0.00005 

        theta[j] <- 1 / inv_theta[j] 

        deltazero[j] <- equals( delta[j], 0 ) 

      } 

    } 

     

    bm0data=list(y=dat$y,N=length(dat$y),ngroup=max(dat$level2),group=dat$level2, 

gamma00=mean(dat$y)) 

    bm0.inits=function(){ 

      list(y.hat=rnorm(max(dat$level2)),sigma.y=runif(1),delta=rnorm(dat$level2), 

delatzero=runif(dat$level2))} 

     

    bm0out=bugs(data=bm0data,inits=NULL, 

                parameters.to.save=c("sigma.y","delta","deltazero"), 

                model.file=bm0,n.chains=2,n.iter=2000,debug=F,n.thin = 3) 

     

    bayes.means=bm0out$summary[2:(max(dat$level2)+1),] 

    sig.bm1=ifelse(bayes.means[,3]<=0&bayes.means[,7]>=0,0,1) 

    sig.bm2=ifelse(bm0out$summary[(max(dat$level2)+2): 

(length(bm0out$summary[,1])-1),5]==1,0,1) 

    r.hat=bm0out$summary[1:length(bm0out$summary[,1])-1,8] 

    mat[(b),]=c(ifelse(sum(sig.bm1)>=1,1,0),sum(sig.bm1/length(sig.bm1)), 

ifelse(sum(sig.bm2)>=1,1,0),sum(sig.bm2/length(sig.bm2))) 

    matrhat[(b),]=r.hat 

 

B1DV Procedure 

bm0=function() { 

      for (i in 1:N) { 

        y[i] ~ dnorm(y.hat[i],tau.y[group[i]]) 

        y.hat[i] <- gamma00 + delta[group[i]] 

      } 

       

      gamma00~dnorm(0,tau.a) 

      sigma.a ~ dunif(.0001,100) 

      tau.a <- 1 / sigma.a 

       

      for (j in 1:ngroup){ 

        delta[j] <- 0 * equals( B[j], 1 ) + D[j] * equals( B[j], 0 ) 
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        B[j] ~ dbern( rho[j] ) 

        rho[j] ~ dbeta( 1, 2 ) 

        D[j] ~ dnorm(0, inv_theta[j] ) 

        inv_theta[j] ~ dgamma( 2.1, inv_d0[j] )   

        inv_d0[j] <- 1 / 0.00005 

        theta[j] <- 1 / inv_theta[j] 

        deltazero[j] <- equals( delta[j], 0 ) 

         

        sigma.y[j] ~ dunif(.0001 ,UB[j]) 

        UB[j] <- 2*sig.samp[j] 

        tau.y[j] <- 1/sigma.y[j] 

      } 

    } 

     

    bm0data=list(y=dat$y,N=length(dat$y),ngroup=max(dat$level2),group=dat$level2, 

gamma00=mean(dat$y), sig.samp=c(tapply(dat$y,dat$level2,sd))) 

     

    bm0out=bugs(data=bm0data,inits=NULL, 

                parameters.to.save=c("delta","deltazero","sigma.y"), 

                model.file=bm0,n.chains=2,n.iter=2000,debug=F,n.thin = 3) 

     

    bayes.means=bm0out$summary[1:max(dat$level2),] 

    sig.bm1=ifelse(bayes.means[,3]<=0&bayes.means[,7]>=0,0,1) 

    sig.bm2=ifelse(bm0out$summary[(max(dat$level2)+1): 

((max(dat$level2)+1)+(max(dat$level2)-1)),5]==1,0,1) 

    r.hat=bm0out$summary[1:length(bm0out$summary[,1])-1,8] 

    mat[(b),]=c(ifelse(sum(sig.bm1)>=1,1,0),sum(sig.bm1/length(sig.bm1)), 

ifelse(sum(sig.bm2)>=1,1,0), sum(sig.bm2/length(sig.bm2))) 

    matrhat[(b),]=r.hat 
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APPENDIX C: FULL DATA GENERATION TABLES 

Table 25. Mean Parameter Generation Results when ICC2 = .15, ICC3 = 0 for all 𝜎𝑖𝑗𝑘
2 =

1 
 βijk 0 0.2 0.5 

 N 10 20 40 10 20 40 10 20 40 

 Mean 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

𝛾000̂  Bias 0.001 -0.007 -0.001 -0.002 -0.001 0.001 -0.002 -0.005 0.002 

 SD 0.145 0.1 0.071 0.143 0.102 0.074 0.143 0.099 0.073 

 RMSE 0.145 0.1 0.071 0.143 0.102 0.074 0.143 0.1 0.073 

 Mean 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

𝛽𝑖𝑗�̂� Bias 0.001 -0.007 -0.001 0.021 0.002 0.003 -0.002 -0.002 0.002 

 SD 0.145 0.1 0.071 0.13 0.098 0.071 0.146 0.102 0.07 

 RMSE 0.145 0.1 0.071 0.145 0.102 0.074 0.143 0.099 0.073 

 

Table 26. Mean Parameter Generation Results when ICC2 = .25, ICC3 = 0 for all 𝜎𝑖𝑗𝑘
2 =

1 
 βijk 0 0.2 0.5 

 N 10 20 40 10 20 40 10 20 40 

 Mean -0.007 0.004 -0.004 0.004 -0.006 0 -0.006 0.002 -0.001 

𝛾000̂  Bias -0.007 0.004 -0.004 0.004 -0.006 0 -0.006 0.002 -0.001 

 SD 0.193 0.135 0.096 0.197 0.132 0.097 0.194 0.138 0.099 

 RMSE 0.193 0.135 0.096 0.197 0.133 0.097 0.194 0.138 0.099 

 Mean -0.007 0.004 -0.004 0.241 0.208 0.208 0.502 0.498 0.5 

𝛽𝑖𝑗�̂� Bias -0.007 0.004 -0.004 0.041 0.008 0.008 0.002 -0.002 0 

 SD 0.193 0.135 0.096 0.164 0.124 0.09 0.187 0.136 0.093 

 RMSE 0.193 0.135 0.096 0.201 0.133 0.097 0.194 0.138 0.099 
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Table 27. Mean Parameter Generation Results when ICC2 = .15, ICC3 = .1 for all 

𝜎𝑖𝑗𝑘
2 = 1 

 βijk 0 0.2 0.5 

 N 10 20 40 10 20 40 10 20 40 

 Mean -0.001 0.003 0.004 0.007 0.003 0.001 0.001 -0.005 -0.003 

𝛾000̂  Bias -0.001 0.003 0.004 0.007 0.003 0.001 0.001 -0.005 -0.003 

 SD 0.155 0.144 0.147 0.162 0.153 0.137 0.145 0.148 0.144 

 RMSE 0.155 0.144 0.147 0.162 0.153 0.137 0.145 0.148 0.144 

 Mean -0.001 0.003 0.004 0.213 0.209 0.204 0.507 0.5 0.508 

𝛽𝑖𝑗�̂� Bias -0.001 0.003 0.004 0.013 0.009 0.004 0.007 0 0.008 

 SD 0.155 0.144 0.147 0.132 0.118 0.122 0.14 0.132 0.133 

 RMSE 0.155 0.144 0.147 0.162 0.153 0.137 0.145 0.148 0.144 

 

Table 28. Mean Parameter Generation Results when ICC2 = .25, ICC3 = .1 for all 

𝜎𝑖𝑗𝑘
2 = 1 

 βijk 0 0.2 0.5 

 N 10 20 40 10 20 40 10 20 40 

 Mean 0.007 0 0.003 -0.007 0 0.002 0.007 0.007 0 

𝛾000̂  Bias 0.007 0 0.003 -0.007 0 0.002 0.007 0.007 0 

 SD 0.151 0.115 0.091 0.152 0.114 0.088 0.15 0.116 0.092 

 RMSE 0.151 0.115 0.091 0.152 0.114 0.088 0.15 0.117 0.092 

 Mean 0.007 0 0.003 0.235 0.215 0.212 0.499 0.493 0.502 

𝛽𝑖𝑗�̂� Bias 0.007 0 0.003 0.035 0.015 0.012 -0.001 -0.007 0.002 

 SD 0.151 0.115 0.091 0.136 0.106 0.084 0.144 0.113 0.087 

 RMSE 0.151 0.115 0.091 0.155 0.115 0.089 0.15 0.117 0.092 
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Table 29. Mean Parameter Generation Results when ICC2=.15, ICC3=0 for 𝜎𝑖1:𝑁/2𝑘
2 =

.5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

 βijk 0 0.2 0.5 

 N 10 20 40 10 20 40 10 20 40 

 Mean 0.001 -0.002 0.001 0.002 0.005 0 0.007 0.003 -0.004 

𝛾000̂  Bias 0.001 -0.002 0.001 0.002 0.005 0 0.007 0.003 -0.004 

 SD 0.149 0.101 0.076 0.133 0.101 0.075 0.148 0.102 0.071 

 RMSE 0.149 0.101 0.076 0.133 0.101 0.075 0.148 0.102 0.071 

 Mean 0.001 -0.002 0.001 0.215 0.208 0.2 0.5 0.498 0.501 

𝛽𝑖𝑗�̂� Bias 0.001 -0.002 0.001 0.015 0.008 0 0 -0.002 0.001 

 SD 0.149 0.101 0.076 0.134 0.098 0.069 0.145 0.105 0.074 

 RMSE 0.149 0.101 0.076 0.134 0.101 0.075 0.148 0.102 0.071 

 

Table 30. Mean Parameter Generation Results when ICC2 = .25, ICC3=0 for 𝜎𝑖1:𝑁/2𝑘
2 =

.5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

 βijk 0 0.2 0.5 

 N 10 20 40 10 20 40 10 20 40 

 Mean 0.001 -0.01 0.003 -0.009 -0.004 0.001 -0.007 0 0.006 

𝛾000̂  Bias 0.001 -0.01 0.003 -0.009 -0.004 0.001 -0.007 0 0.006 

 SD 0.194 0.134 0.095 0.196 0.135 0.099 0.194 0.129 0.095 

 RMSE 0.194 0.134 0.095 0.196 0.136 0.099 0.194 0.129 0.095 

 Mean 0.001 -0.01 0.003 0.229 0.214 0.205 0.504 0.495 0.498 

𝛽𝑖𝑗�̂� Bias 0.001 -0.01 0.003 0.029 0.014 0.005 0.004 -0.005 -0.002 

 SD 0.194 0.134 0.095 0.171 0.125 0.09 0.185 0.137 0.092 

 RMSE 0.194 0.134 0.095 0.198 0.136 0.099 0.194 0.129 0.095 
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Table 31. Mean Parameter Generation Results when ICC2=.15, ICC3=.1 for 𝜎𝑖1:𝑁/2𝑘
2 =

.5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

 βijk 0 0.2 0.5 

 N 10 20 40 10 20 40 10 20 40 

 Mean 0.002 0.004 0.005 -0.003 -0.001 0.007 -0.01 -0.003 0.003 

𝛾000̂  Bias 0.002 0.004 0.005 -0.003 -0.001 0.007 -0.01 -0.003 0.003 

 SD 0.152 0.148 0.149 0.15 0.151 0.145 0.149 0.15 0.143 

 RMSE 0.152 0.148 0.149 0.15 0.151 0.145 0.15 0.15 0.143 

 Mean 0.002 0.004 0.005 0.221 0.21 0.205 0.499 0.498 0.499 

𝛽𝑖𝑗�̂� Bias 0.002 0.004 0.005 0.021 0.01 0.005 -0.001 -0.002 -0.001 

 SD 0.152 0.148 0.149 0.13 0.121 0.124 0.137 0.134 0.132 

 RMSE 0.152 0.148 0.149 0.152 0.151 0.145 0.149 0.15 0.143 

 

Table 32. Mean Parameter Generation Results when ICC2=.25, ICC3=.1 for 𝜎𝑖1:𝑁/2𝑘
2 =

.5 and 𝜎
𝑖(

𝑁

2
)+1:𝑁𝑘

2 = 1.5 

 βijk 0 0.2 0.5 

 N 10 20 40 10 20 40 10 20 40 

 Mean -0.004 0.003 0.001 0.005 0.007 -0.001 0.002 -0.001 0.004 

𝛾000̂  Bias -0.004 0.003 0.001 0.005 0.007 -0.001 0.002 -0.001 0.004 

 SD 0.148 0.115 0.092 0.146 0.117 0.094 0.156 0.117 0.089 

 RMSE 0.148 0.115 0.092 0.146 0.117 0.094 0.156 0.117 0.09 

 Mean -0.004 0.003 0.001 0.245 0.231 0.21 0.513 0.505 0.501 

𝛽𝑖𝑗�̂� Bias -0.004 0.003 0.001 0.045 0.031 0.01 0.013 0.005 0.001 

 SD 0.148 0.115 0.092 0.14 0.107 0.084 0.148 0.112 0.086 

 RMSE 0.148 0.115 0.092 0.153 0.121 0.095 0.156 0.117 0.089 
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Table 33. Variance Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1  when βijk = .2 and ICC3=0 

  𝜏𝑢0𝑘
2  0 0.176 0.333 

  N 10 20 40 10 20 40 10 20 40 

𝜎𝑖𝑗𝑘
2̂  

Mean 0.997 0.997 0.999 1.002 0.997 0.999 0.999 1.001 1 

Bias -0.003 -0.003 -0.001 0.002 -0.003 -0.001 -0.001 0.001 0 

SD 0.08 0.058 0.04 0.086 0.056 0.042 0.082 0.058 0.042 

RMSE 0.08 0.058 0.04 0.086 0.056 0.042 0.082 0.058 0.042 

𝜏𝑢0𝑘
2̂  

Mean 0.019 0.012 0.01 0.16 0.183 0.187 0.293 0.335 0.337 

Bias 0.019 0.012 0.01 -0.016 0.006 0.01 -0.04 0.001 0.003 

SD 0.023 0.013 0.009 0.109 0.074 0.051 0.186 0.122 0.088 

RMSE 0.03 0.018 0.013 0.11 0.075 0.052 0.191 0.122 0.088 

𝜏𝑉00
2̂  

Mean 0.03 0.037 0.038 0.066 0.044 0.041 0.095 0.054 0.046 

Bias 0.03 0.037 0.038 0.066 0.044 0.041 0.095 0.054 0.046 

SD 0.027 0.019 0.013 0.087 0.055 0.037 0.139 0.077 0.049 

RMSE 0.04 0.041 0.04 0.109 0.071 0.056 0.168 0.094 0.067 

 

Table 34. Variance Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1 when βijk = .5 and ICC3=0 

  𝜏𝑢0𝑘
2  0 0.176 0.333 

  N 10 20 40 10 20 40 10 20 40 

𝜎𝑖𝑗𝑘
2̂  

Mean 1.004 0.999 0.999 1 1 0.998 1.001 0.998 0.999 

Bias 0.004 -0.001 -0.001 0 0 -0.002 0.001 -0.002 -0.001 

SD 0.083 0.06 0.042 0.084 0.059 0.042 0.084 0.058 0.041 

RMSE 0.083 0.06 0.042 0.084 0.059 0.042 0.084 0.058 0.041 

𝜏𝑢0𝑘
2̂  

Mean 0.098 0.068 0.057 0.263 0.24 0.23 0.396 0.39 0.385 

Bias 0.098 0.068 0.057 0.086 0.064 0.054 0.063 0.057 0.052 

SD 0.056 0.029 0.017 0.173 0.099 0.062 0.249 0.154 0.095 

RMSE 0.113 0.074 0.06 0.194 0.117 0.082 0.257 0.165 0.108 

𝜏𝑉00
2̂  

Mean 0.2 0.232 0.242 0.214 0.233 0.248 0.246 0.24 0.241 

Bias 0.2 0.232 0.242 0.214 0.233 0.248 0.246 0.24 0.241 

SD 0.071 0.045 0.033 0.178 0.123 0.082 0.258 0.164 0.106 

RMSE 0.213 0.236 0.244 0.278 0.264 0.261 0.356 0.29 0.264 
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Table 35. Variance Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1  when βijk = .2 and ICC3=.1 

  𝜏𝑢0𝑘
2  0 0.176 0.333 

  N 10 20 40 10 20 40 10 20 40 

𝜎𝑖𝑗𝑘
2̂  

Mean x x x 0.997 1.003 1 1.001 0.999 1.002 

Bias x x x 0.002 -0.003 -0.001 -0.001 0.001 0 

SD x x x 0.086 0.056 0.042 0.082 0.058 0.042 

RMSE x x x 0.086 0.056 0.042 0.082 0.058 0.042 

𝜏𝑢0𝑘
2̂  

Mean x x x 0.132 0.149 0.158 0.252 0.279 0.295 

Bias x x x -0.016 0.006 0.01 -0.04 0.001 0.003 

SD x x x 0.109 0.074 0.051 0.186 0.122 0.088 

RMSE x x x 0.11 0.075 0.052 0.191 0.122 0.088 

𝜏𝑉00
2̂  

Mean x x x 0.047 0.028 0.021 0.085 0.051 0.036 

Bias x x x 0.066 0.044 0.041 0.095 0.054 0.046 

SD x x x 0.087 0.055 0.037 0.139 0.077 0.049 

RMSE x x x 0.109 0.071 0.056 0.168 0.094 0.067 

 

Table 36. Variance Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1  when βijk = .5 and ICC3=.1 

  𝜏𝑢0𝑘
2  0 0.176 0.333 

  N 10 20 40 10 20 40 10 20 40 

𝜎𝑖𝑗𝑘
2̂  

Mean x x x 1 0.997 1.001 1 1.001 1.001 

Bias x x x 0 -0.003 0.001 0 0.001 0.001 

SD x x x 0.081 0.061 0.043 0.084 0.058 0.042 

RMSE x x x 0.081 0.061 0.043 0.084 0.058 0.042 

𝜏𝑢0𝑘
2̂  

Mean x x x 0.249 0.225 0.219 0.374 0.361 0.352 

Bias x x x 0.091 0.066 0.06 0.074 0.061 0.052 

SD x x x 0.162 0.161 0.162 0.202 0.165 0.146 

RMSE x x x 0.185 0.174 0.173 0.216 0.176 0.155 

𝜏𝑉00
2̂  

Mean x x x 0.232 0.248 0.269 0.256 0.261 0.281 

Bias x x x 0.214 0.231 0.251 0.223 0.228 0.247 

SD x x x 0.21 0.206 0.196 0.185 0.142 0.109 

RMSE x x x 0.3 0.309 0.319 0.29 0.269 0.27 
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Table 37. Variance Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5, βijk = .2 

and ICC3=0 

 𝜏𝑢0𝑘
2

 0 0.176 0.333 

 N 10 20 40 10 20 40 10 20 40 

𝜎𝑖1:𝑁/2𝑘
2̂  

Mean 0.499 0.501 0.497 0.501 0.501 0.499 0.499 0.499 0.501 

Bias -0.001 0.001 -0.003 0.001 0.001 -0.001 -0.001 -0.001 0.001 

SD 0 0 0 0 0 0 0 0 0 

RMSE 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 

𝜎
𝑖(

𝑁
2

)+1:𝑁𝑘

2 ̂
 

Mean 1.494 1.489 1.501 1.492 1.508 1.502 1.497 1.502 1.505 

Bias -0.006 -0.011 0.001 -0.008 0.008 0.002 -0.003 0.002 0.005 

SD 0 0 0 0 0 0 0 0 0 

RMSE 0.006 0.011 0.001 0.008 0.008 0.002 0.003 0.002 0.005 

𝜏𝑢0𝑘
2̂  

Mean 0.02 0.014 0.01 0.161 0.183 0.184 0.298 0.331 0.338 

Bias 0.02 0.014 0.01 -0.015 0.006 0.007 -0.035 -0.002 0.005 

SD 0.025 0.014 0.009 0.111 0.077 0.051 0.191 0.13 0.085 

RMSE 0.031 0.02 0.014 0.112 0.077 0.052 0.195 0.131 0.085 

𝜏𝑉00
2̂  

Mean 0.031 0.036 0.039 0.066 0.047 0.04 0.09 0.056 0.044 

Bias 0.031 0.036 0.039 0.066 0.047 0.04 0.09 0.056 0.044 

SD 0.029 0.019 0.014 0.091 0.059 0.034 0.136 0.076 0.047 

RMSE 0.042 0.041 0.041 0.112 0.075 0.052 0.163 0.095 0.064 
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Table 38. Variance Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5, βijk = .5 

and ICC3=0 

 𝜏𝑢0𝑘
2

 0 0.176 0.333 

 N 10 20 40 10 20 40 10 20 40 

𝜎𝑖1:𝑁/2𝑘
2̂  

Mean 0.499 0.498 0.499 0.5 0.5 0.499 0.502 0.501 0.5 

Bias -0.001 -0.002 -0.001 0 0 -0.001 0.002 0.001 0 

SD 0 0 0 0 0 0 0 0 0 

RMSE 0.001 0.002 0.001 0 0 0.001 0.002 0.001 0 

𝜎
𝑖(

𝑁
2

)+1:𝑁𝑘

2 ̂
 

Mean 1.499 1.504 1.498 1.5 1.506 1.499 1.495 1.504 1.499 

Bias -0.001 0.004 -0.002 0 0.006 -0.001 -0.005 0.004 -0.001 

SD 0 0 0 0 0 0 0 0 0 

RMSE 0.001 0.004 0.002 0 0.006 0.001 0.005 0.004 0.001 

𝜏𝑢0𝑘
2̂  

Mean 0.097 0.066 0.058 0.26 0.235 0.234 0.396 0.396 0.389 

Bias 0.097 0.066 0.058 0.083 0.059 0.058 0.062 0.062 0.056 

SD 0.056 0.028 0.018 0.165 0.096 0.06 0.256 0.156 0.1 

RMSE 0.112 0.072 0.061 0.185 0.113 0.083 0.263 0.168 0.115 

𝜏𝑉00
2̂  

Mean 0.201 0.238 0.242 0.214 0.239 0.244 0.24 0.233 0.239 

Bias 0.201 0.238 0.242 0.214 0.239 0.244 0.24 0.233 0.239 

SD 0.072 0.047 0.031 0.174 0.124 0.086 0.238 0.172 0.11 

RMSE 0.213 0.242 0.244 0.276 0.269 0.259 0.338 0.29 0.263 
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Table 39. Variance Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5, βijk = .2 

and ICC3=.1 

 𝜏𝑢0𝑘
2

 0 0.176 0.333 

 N 10 20 40 10 20 40 10 20 40 

𝜎𝑖1:𝑁/2𝑘
2̂  

Mean x x x 0.5 0.501 0.498 0.5 0.5 0.5 

Bias x x x 0 0.001 -0.002 0 0 0 

SD x x x 0 0 0 0 0 0 

RMSE x x x 0 0.001 0.002 0 0 0 

𝜎
𝑖(

𝑁
2

)+1:𝑁𝑘

2 ̂
 

Mean x x x 1.499 1.498 1.499 1.494 1.501 1.496 

Bias x x x -0.001 -0.002 -0.001 -0.006 0.001 -0.004 

SD x x x 0 0 0 0 0 0 

RMSE x x x 0.001 0.002 0.001 0.006 0.001 0.004 

𝜏𝑢0𝑘
2̂  

Mean x x x 0.162 0.163 0.167 0.275 0.302 0.306 

Bias x x x 0.003 0.004 0.008 -0.025 0.002 0.006 

SD x x x 0.145 0.151 0.157 0.159 0.155 0.147 

RMSE x x x 0.145 0.151 0.157 0.161 0.155 0.147 

𝜏𝑉00
2̂  

Mean x x x 0.071 0.062 0.059 0.12 0.087 0.074 

Bias x x x 0.053 0.044 0.042 0.087 0.053 0.041 

SD x x x 0.119 0.119 0.132 0.107 0.07 0.052 

RMSE x x x 0.13 0.127 0.139 0.138 0.088 0.066 
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Table 40. Variance Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5, βijk = .5 

and ICC3=.1 

 𝜏𝑢0𝑘
2

 0 0.176 0.333 

 N 10 20 40 10 20 40 10 20 40 

𝜎𝑖1:𝑁/2𝑘
2̂  

Mean x x x 0.498 0.498 0.501 0.497 0.499 0.499 

Bias x x x -0.002 -0.002 0.001 -0.003 -0.001 -0.001 

SD x x x 0 0 0 0 0 0 

RMSE x x x 0.002 0.002 0.001 0.003 0.001 0.001 

𝜎
𝑖(

𝑁
2

)+1:𝑁𝑘

2 ̂
 

Mean x x x 1.505 1.495 1.499 1.507 1.499 1.502 

Bias x x x 0.005 -0.005 -0.001 0.007 -0.001 0.002 

SD x x x 0 0 0 0 0 0 

RMSE x x x 0.005 0.005 0.001 0.007 0.001 0.002 

𝜏𝑢0𝑘
2̂  

Mean x x x 0.253 0.229 0.216 0.376 0.369 0.355 

Bias x x x 0.094 0.07 0.057 0.076 0.069 0.055 

SD x x x 0.161 0.165 0.16 0.203 0.169 0.151 

RMSE x x x 0.187 0.179 0.17 0.217 0.182 0.161 

𝜏𝑉00
2̂  

Mean x x x 0.225 0.249 0.257 0.264 0.275 0.279 

Bias x x x 0.207 0.231 0.239 0.231 0.241 0.246 

SD x x x 0.209 0.206 0.201 0.199 0.138 0.105 

RMSE x x x 0.294 0.31 0.312 0.305 0.278 0.267 
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Table 41. ICC Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1, βijk = .2 and 𝐼𝐶𝐶3 = 0 

  ICC2 0 0.15 0.25 

 N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

 Mean 0.046 0.047 0.046 0.178 0.182 0.184 0.267 0.274 0.273 

 Bias 0.046 0.047 0.046 0.028 0.032 0.034 0.017 0.024 0.023 

 SD 0.001 0.001 0 0.002 0.002 0.001 0.003 0.002 0.002 

 RMSE 0.046 0.047 0.046 0.028 0.032 0.034 0.017 0.024 0.024 

𝐼𝐶𝐶3̂ 

 Mean 0.602 0.759 0.809 0.279 0.181 0.172 0.232 0.129 0.114 

 Bias 0.602 0.759 0.809 0.279 0.181 0.172 0.232 0.129 0.114 

 SD 0.384 0.239 0.161 0.31 0.193 0.138 0.282 0.163 0.111 

 RMSE 0.714 0.796 0.825 0.417 0.264 0.221 0.365 0.208 0.16 

 

Table 42. ICC Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1, βijk = .5 and 𝐼𝐶𝐶3 = 0 

  ICC2 0 0.15 0.25 

 N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

 Mean 0.228 0.23 0.23 0.311 0.316 0.321 0.373 0.379 0.381 

 Bias 0.228 0.23 0.23 0.161 0.166 0.171 0.123 0.129 0.131 

 SD 0.001 0.001 0.001 0.003 0.002 0.001 0.003 0.002 0.002 

 RMSE 0.228 0.23 0.23 0.161 0.166 0.171 0.123 0.129 0.131 

𝐼𝐶𝐶3̂ 

 Mean 0.67 0.775 0.809 0.436 0.481 0.513 0.362 0.364 0.377 

 Bias 0.67 0.775 0.809 0.436 0.481 0.513 0.362 0.364 0.377 

 SD 0.172 0.085 0.053 0.288 0.182 0.11 0.303 0.201 0.125 

 RMSE 0.692 0.779 0.811 0.522 0.514 0.525 0.472 0.416 0.397 

 

Table 43. ICC Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1, βijk = .2 and 𝐼𝐶𝐶3 = .1 

  ICC2 0 0.15 0.25 

 N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

 Mean x x x 0.178 0.183 0.18 0.264 0.274 0.271 

 Bias x x x 0.028 0.033 0.03 0.014 0.024 0.021 

 SD x x x 0.003 0.003 0.003 0.004 0.003 0.003 

 RMSE x x x 0.028 0.033 0.03 0.014 0.024 0.021 

𝐼𝐶𝐶3̂ 

 Mean x x x 0.314 0.251 0.232 0.256 0.195 0.179 

 Bias x x x 0.214 0.151 0.132 0.156 0.095 0.079 

 SD x x x 0.567 0.649 0.677 0.337 0.231 0.175 

 RMSE x x x 0.606 0.666 0.69 0.371 0.249 0.192 
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Table 44. ICC Generation Results for all 𝜎𝑖𝑗𝑘
2 = 1, βijk = .5 and 𝐼𝐶𝐶3 = .1 

  ICC2 0 0.15 0.25 

 N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

 Mean x x x 0.314 0.315 0.324 0.369 0.374 0.381 

 Bias x x x 0.164 0.165 0.174 0.119 0.124 0.131 

 SD x x x 0.003 0.003 0.003 0.003 0.003 0.002 

 RMSE x x x 0.164 0.165 0.174 0.119 0.124 0.131 

𝐼𝐶𝐶3̂ 

 Mean x x x 0.458 0.502 0.538 0.378 0.392 0.422 

 Bias x x x 0.358 0.402 0.438 0.278 0.292 0.322 

 SD x x x 0.33 0.326 0.306 0.301 0.221 0.169 

 RMSE x x x 0.487 0.517 0.534 0.41 0.366 0.364 

 

Table 45. ICC Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5, βijk = .2 and 

𝐼𝐶𝐶3 = 0 

  ICC2 0 0.15 0.25 

 N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

 Mean 0.048 0.048 0.047 0.18 0.182 0.181 0.267 0.273 0.273 

 Bias 0.048 0.048 0.047 0.03 0.032 0.031 0.017 0.023 0.023 

 SD 0.001 0.001 0 0.002 0.002 0.001 0.003 0.002 0.002 

 RMSE 0.048 0.048 0.047 0.03 0.033 0.031 0.017 0.023 0.023 

𝐼𝐶𝐶3̂ 

 Mean 0.609 0.739 0.806 0.283 0.186 0.173 0.222 0.137 0.11 

 Bias 0.609 0.739 0.806 0.283 0.186 0.173 0.222 0.137 0.11 

 SD 0.387 0.253 0.166 0.317 0.197 0.138 0.285 0.166 0.108 

 RMSE 0.722 0.781 0.823 0.425 0.271 0.221 0.361 0.216 0.155 

 

Table 46. ICC Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5, βijk = .5 and 

𝐼𝐶𝐶3 = 0 

  ICC2 0 0.15 0.25 

 N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

 Mean 0.228 0.232 0.231 0.311 0.316 0.321 0.371 0.377 0.382 

 Bias 0.228 0.232 0.231 0.161 0.166 0.171 0.121 0.127 0.132 

 SD 0.001 0.001 0.001 0.003 0.002 0.001 0.003 0.002 0.002 

 RMSE 0.228 0.232 0.231 0.161 0.166 0.171 0.121 0.127 0.132 

𝐼𝐶𝐶3̂ 

 Mean 0.674 0.783 0.806 0.438 0.491 0.503 0.363 0.352 0.372 

 Bias 0.674 0.783 0.806 0.438 0.491 0.503 0.363 0.352 0.372 

 SD 0.177 0.083 0.054 0.29 0.18 0.115 0.3 0.202 0.131 

 RMSE 0.697 0.788 0.808 0.525 0.523 0.516 0.471 0.406 0.395 
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Table 47. ICC Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5, βijk = .2 and 

𝐼𝐶𝐶3 = .1 

  ICC2 0 0.15 0.25 

 N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

 Mean x x x 0.182 0.18 0.183 0.271 0.273 0.272 

 Bias x x x 0.032 0.03 0.033 0.021 0.023 0.022 

 SD x x x 0.003 0.003 0.003 0.004 0.003 0.003 

 RMSE x x x 0.032 0.03 0.033 0.021 0.024 0.022 

𝐼𝐶𝐶3̂ 

 Mean x x x 0.285 0.249 0.243 0.274 0.202 0.178 

 Bias x x x 0.185 0.149 0.143 0.174 0.102 0.078 

 SD x x x 0.591 0.65 0.663 0.317 0.222 0.178 

 RMSE x x x 0.619 0.667 0.678 0.361 0.244 0.195 

 

Table 48. ICC Generation Results for 𝜎𝑖1:𝑁/2𝑘
2 = .5 and 𝜎

𝑖(
𝑁

2
)+1:𝑁𝑘

2 = 1.5, βijk = .5 and 

𝐼𝐶𝐶3 = .1 

  ICC2 0 0.15 0.25 

 N 10 20 40 10 20 40 10 20 40 

𝐼𝐶𝐶2̂ 

 Mean x x x 0.312 0.318 0.317 0.372 0.381 0.382 

 Bias x x x 0.162 0.168 0.167 0.122 0.131 0.132 

 SD x x x 0.003 0.003 0.003 0.003 0.003 0.003 

 RMSE x x x 0.162 0.168 0.167 0.122 0.131 0.132 

𝐼𝐶𝐶3̂ 

 Mean x x x 0.442 0.502 0.53 0.388 0.399 0.42 

 Bias x x x 0.342 0.402 0.43 0.288 0.299 0.32 

 SD x x x 0.33 0.323 0.315 0.304 0.216 0.168 

 RMSE x x x 0.476 0.516 0.533 0.419 0.369 0.361 
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