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The request latency is an important performance metric of a distributed database, such

as the popular Apache Cassandra, because of its direct impact on the user experience.

Specifically, the latency of a read or write request is defined as the total time interval

from the instant when a user makes the request to the instant when the user receives

the request, and it involves not only the actual read or write time at a specific database

node, but also various types of latency introduced by the distributed mechanism of

the database. Most of the current work focuses only on reducing the average request

latency, but not on reducing the tail request latency that has a significant and severe

impact on some of database users. In this thesis, we investigate the important factors

on the tail request latency of Apache Cassandra, then propose two novel methods to

greatly reduce the tail request latency. First, we find that the background activities may

considerably increase the local latency of a replica and then the overall request latency of

the whole database, and thus we propose a novel method to select the optimal replica by

considering the impact of background activities. Second, we find that the asynchronous

read and write architecture handles the local and remote requests in the same way, which

is simple to implement but at a cost of possibly longer latency, and thus we propose a

synchronous method to handle local and remote request differently to greatly reduce the

latency. Finally, our experiments on Amazon EC2 public cloud platform demonstrate that

our proposed methods can greatly reduce the tail latency of read and write requests of

Apache Cassandra.
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Chapter 1

Introduction

1.1 Motivation

Relational database management systems (RDBMS) [20] have been traditionally used for

organizing data. A RDBMS allows users to create, query, update, and delete databases.

Hence, users can manage databases with the four corresponding basic operations: create,

read, update and delete (known as CRUD) [38]. However, in the new ear of the Internet,

challenges arise for the RDBMS with the need to manage very large data sets, which we

call big data [44]. Because RDBMS were originally designed to work on a single machine

as a server, the performance comes to a bottleneck to handle large data sets [26]. Hence,

NoSQL (Not-only-SQL, also called non SQL) databases [45] are designed to solve this

problem, while providing great performance.

As of today, NoSQL databases have been widely used for storing large data. These

databases include Apache Cassandra [1], Apache HBase [3], MongoDB [11] etc. Compared

with traditional RDBMS, like MySQL [12], Oracle [13], NoSQL systems are more powerful.

Firstly, NoSQL systems are normally not centralized and distributed applications [33].

They are designed in a masterless fashion and there are no master-slave concepts proposed
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in RDBMS. This property makes NoSQL systems easier to scale up horizontally [54].

Basically, we only need to add more machines/nodes to the systems and they can spread

data automatically across multiple nodes. This could linearly improve the system capacity.

Secondly, compared with RDBMS, the NoSQL systems support not only the structured

data, but also the semi-structured and unstructured data. Hence, the NoSQL systems can

support various types of data, like video, email, texts etc, while RDBMS can only handle

clearly defined data [57]. Meanwhile, for RDBMS, the schema should be predefined

before any operation, while NoSQL system can deal with dynamic schema. This provides

more convenience to our current daily usage. Finally, for RDBMS, they are prone to server

failures, because if the master node fails, the whole system will fail. However, NoSQL

systems spread data among multiple nodes, even if one or more nodes go down, they

still could provide continuous availability to the users [58].

Among these NoSQL systems, Apache Cassandra is one of the most representative

ones. It’s free and open-sourced [62]. Currently, it is in use at eBay, Instagram, Netflix

and many other companies [2]. In Cassandra, there is no master-slave concept and every

node in the cluster is identical. Normally, data is stored in multiple nodes, working as

replicas for fault-tolerance. Meanwhile, replication [59] across multiple data centers is

also supported to geographically distribute data. Even an entire data center goes down,

Cassandra is still able to provide service to users. So there is no single point of failure for

the whole system [33]. Also, its elastic characteristic makes it easy to scale the system,

by adding more new nodes. This could linearly improve the read and write throughput,

without interruption to the existing applications [23].

The performance of Cassandra has a great impact on the user experience, especially

the performance of the basic operations, such as write, read and delete. Among the

performance metrics, the response time [32] is the most intuitive one for the users.

Formally, it’s defined as the request latency or end-to-end latency, which is normally
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the time duration from the time when an user sends out a request to the time when the

user gets the operation results. Google [29] suggests that the request latency should be

no more than 100 ms to provide satisfactory user experience. Otherwise, the degraded

performance could directly impact revenues for the companies [22].

Therefore, in this thesis, we focus on analyzing the request latency problem [39] in

Cassandra.

1.2 Problem studied in this thesis

There are two types of request latency. One is the average latency or the mean latency,

and the other is the percentile latency, such as the 99th percentile latency or even 99.9th

percentile latency [65]. A recent measurement study [36] shows that the 95th (99th)

percentile latency of over 30% of examined services could be three times or even five

times of the median latency. Another measurement results of a Google service [29] show

that the 99th percentile latency is 10 ms for a single random request.

However, the 99th percentile latency for all the requests to finish is 140 ms, while for

95% of the requests, that latency is only 70 ms. This means for the latency, 95% of the

requests are doubled, due to waiting for the remaining 5% of the requests. These results

clearly show the importance of the percentile latency, which normally is called the tail

latency [69]. Thus, in this thesis, we study how to reduce the tail latency. However, this

could be quite challenging because of various reasons.

Firstly of all, Cassandra is a multi-tiered, distributed system, where a read request

experiences more complex processes/stages than a write request. For example, a read

request may experience the READ stage, READ RESPONSE stage, READ REPAIR stage in

the whole read process [61]. Generally, reading data from the cluster may involve multiple

nodes. For example, it may have connections among coordinator node, non-coordinator
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node and the client machine. Nearly every node could potentially impact the tail latency

performance.

Meanwhile, on each server, multiple applications are competing for the limited system

resources, like CPU cores, memory and disk [42]. Even for a single application, these

resources are shared among multiple stages. At the same time, as a distributed system,

the nodes in Cassandra also need to compete for the network resources, such as the

shared file system and the bandwidth of the network. This also adds unpredictable

factors to the system [63].

Furthermore, for each server, background activities happen irregularly, which may

also have unpredictable influence on the performance of the servers. Internally, this

includes periodic garbage collection [43] activities in garbage-collective programming

languages, such as Java. In the full Garbage Collection, applications may experience

stop-the-world phenomenon. This could stop any other applications which are running

on the Java Virtual Machine (JVM) platform [56]. Only after the completion of the full

Garbage Collection, other processes could resume to normal status. Also, background

data compaction could also happen during user’s requests. Data compaction is utilized

to compact multiple SSTables to single one, which could incur a large number of disk

I/O operations [40].

Finally, the hardware power of each server is limited [29]. Such limitations make it

impossible to provide consistent high performance for Cassandra.

In summary, the complex design of Cassandra makes latency appear in multiple

stages. The unpredictable background activities in each node make it hard to select the

best replica. Meanwhile, limited hardware and network resources lead to the bottleneck

for the system performance. All these factors contribute to the high latency in Cassandra

cluster, especially the tail latency. The ultimate goal of this thesis is to study the impact

of these factors on the tail latency and propose techniques to reduce the tail latency of
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the whole cluster.

1.3 Contributions

This thesis makes the following contributions.

Firstly, we conduct a comprehensive measurement study to understand the reasons

for the long tail latency. Specifically, we measure the queue size in the READ stage,

the service time for each read request, the corresponding response time back to the

coordinator node, and the waiting time in the queue that plays a very important part in

the latency when the dataset size is large. For the queue size and service time, they’re

measured both locally and remotely at their coordinator nodes. For the local read in

coordinator nodes, these metrics are measured locally, while for the remote read for

non-coordinator nodes, these metrics are measured in the non-coordinator nodes and

piggy-backed to the coordinator node through the response packet.

Second, we find that the selection of the replica to read data has a big impact on the

tail latency, because a better replica could reduce not only the local latency at the replica,

but also the overall latency of the whole database, because of the better load balance

among the nodes in the database [49]. Therefore, we propose a novel replica selection

algorithm to select the best replica to read data from. This new algorithm considers

the current status of each node and does not select the replica with busy background

activities, such as Garbage Collection and data compaction. Chapter 4 provides more

details for this algorithm.

Lastly, we modified the process for the case when local read and remote read exist,

which helps reduce latency. In Cassandra, it uses Staged Event Driven Architecture

(SEDA) [67], operations like read or write are put into multiple stages. Specifically for

the read request, it includes the READ stage, RequestResponse stage, and ReadRepair
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stage. These stages are modeled as a thread pool and the requests are executed by

threads concurrently. Because of the multi-threading mechanism, Cassandra provides

very powerful service in case of a large number of requests. For a read request, it could

be served locally by its coordinator node or remotely by a non-coordinator node. For the

local service, it’s still using the READ stage to execute the local read asynchronously. In

this case, when there are multiple requests waiting for available threads, this could lead

to a large amount of waiting time for the request. Meanwhile, the switch time of different

stages could also add unnecessary latency. Based on this observation, we can reduce this

part of waiting and queuing latency, by modifying the local read process, and letting the

local read to be executed synchronously in the request thread.
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Chapter 2

Background

In this chapter, the basic but important concepts in Cassandra are introduced firstly. Then,

we present the flow for both the write path and read path. Finally, we introduce the

architecture that Cassandra is built on.

2.1 Key concepts and architecture in Cassandra

Apache Cassandra was originally designed at Facebook. Afterwards, it combines the

features from Amazon’s DynamoDB [30] and Google’s BigTable data model [25]. Since

then, it becomes a top-tier project. Essentially, Cassandra is a key-value based database

[53], which means that it has a primary key connecting with a set of data. This key is

used for data retrieval. According to the famous CAP (Consistency, Availability, Partition

tolerance) theorem proposed by Eric Brewer [5], Cassandra typically falls into the AP

system. That means Cassandra makes sure that every operation receives a response, no

matter whether it’s successful or not. Meanwhile, it can continue working, even if part of

the system goes down.

However, that does not mean that Consistency is not important in Cassandra. In
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contrast, the Consistency level could be tuned by a replication factor and consistency

level in Cassandra [18].

In Cassandra, nodes are the basic components to store data. When a client connects to

one of the nodes to operate a read or write request, that node is served as the coordinator

for the operation. A cluster is a group of nodes, which could be a single node, a single

data center or multiple data centers [51].

To share each node’s information, Cassandra uses the peer-to-peer communication

protocol called Gossip [19]. To assure no single point of failure [46], data is distributed

among multiple nodes in the cluster. These nodes are called replica. A replication factor

could be set up with various needs. For example, a replication factor of 1 means there

is only one copy of each row in one node. A replication factor of 3 means three copies

of each row and each copy is in a different node. We can set up the replica replacement

strategy to be either SimpleStrategy or NetworkTopologysTrategy [52]. The former is used

for single data center, while the latter is used for multiple data centers. A consistency

level could also be configured with multiple choices, like ONE, TWO, THREE, etc [66]. It

should be less than the number of nodes. Further, it could be set up to ANY, QUORUM.

The default consistency level for both read and write requests is 1. For a write operation,

that means a write must be written to the CommitLog and MemTable of at least one

replica. For a read request, it means the client should get one response from the closest

replica.

2.2 Write path in Cassandra

Figure 2.1 shows the operation for the write request in a single data center cluster. The

cluster consists of 6 nodes and the replication factor is set to 3. When a client wants to

write data to the cluster, it contacts node 1 firstly, which serves as Coordinator node.
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Then, three copies of the data are written to nodes 3, 4 and 5. If the consistency level is

set to the default value of 1, then only one node will send a write-success response back

to the Coordinator. Finally, the Coordinator sends back a write acknowledge to the client,

telling it the whole write request is done.

Client

6 5

4

2

1

3

Coordinator node

Replica node

R1

R3

R2

Write request/response

Figure 2.1: Write request in a single data center cluster (adapted from [16])

For a write path in Cassandra, the write request goes through multiple stages. Figure

2.2 shows the full stage. For each column family, it may go to three different layers for

storage: MemTable, CommitLog and SSTable (Sorted String Table). MemTable is a special

structure in memory. It works similarly to a write-back cache of data, which can be looked

up by the primary key. Commit log is a log structure in disk to store data. When new

data needs to be written, it will be appended to Commit log, which is for durability. Even

if the data in MemTable gets lost, it can still be recovered from the Commit log. Because

the size of memory is limited, when the size of the MemTable reaches to its limit, data

will be flushed to SSTable. Data in Commit log will be purged after the corresponding
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data in MemTable is flushed to an SSTable. SSTable is immutable, which means after

writing, it can’t be changed. For each SSTable, it maintains a partition index, a partition

summary and a Bloom filter. All these structures are used for quicker read. A partition

index is a list of partition keys and positions of data on disk. Partition summary is a

sample of partition index [10].

SSTable
CommitLog

MemTableWrite request

Figure 2.2: Internal write path (adapted from [10])

Meanwhile, as SSTables are immutable, the size of SSTables increases drastically.

To save the space and assure updated data, Cassandra provides a mechanism called

compaction to compact the SSTable periodically. Essentially, Cassandra compares the

timestamps of the data and marks the outdated data that will be deleted later. Then

updated data are accumulated into a new SSTalble during compaction.
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2.3 Read path in Cassandra

The read path is more complex than the write path. In a single datacenter cluster

illustrated in Figure 2.3, the replication factor is 3 and consistency level is one. The

closest replica is selected for full reading. Meanwhile, a read repair may happen in the

background, based on the read repair chance parameter.

Client

6 5

4

2

1

3

Coordinator node

Replica node

R1

R3

R2

Read request/response

Figure 2.3: Read request in a single data center cluster (adapted from [16])

Figure 2.4 shows the internal read process. When a read request comes in, a node

checks the Bloom filter, which is a space-efficient probabilistic data structure designed

to check whether an element is not inside a data set [4]. When the Bloom filter shows

that data is not in the corresponding SSTable, it skips the scan for this SSTable. Then

Cassandra checks the partition key cache and if the entry is found in the cache, it goes to

the compression offset map and finds the position that has the data. If it’s not found in

the cache, Cassandra goes to the partition summary to check the approximate location of
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the entry. If the entry is still not found, then it goes to the partition index for full scan and

finds the position for the data [9]. After finding the position of the data, then it fetches

the data from the disk and returns the result back to the client.

Partition index

Bloom filter

Partition  
summary

Partition key cache

Compression offset

DataReturn 
data 

Read request

Figure 2.4: Internal read path (adapted from [9])

2.4 Staged Event Driven Architecture (SEDA)

Cassandra is based on a Staged Event Driven Architecture (SEDA) [67]. This architecture

is designed for highly concurrent Internet services and is intended to support massive

concurrency demands. In SEDA, applications are composed by multiple event-driven

stages, which are collected by message queues. This design provides high performance

and is robust to dynamic load.
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In Cassandra, different events correspond to different stages. For example, for a write

request, it goes to Mutation Stage, while for a read request, Read Stage is allocated to

handle it. Meanwhile, multiple other stages are included, such as the Request Response

Stage, Internal Stage and Gossip Stage, etc [15]. Each stage has a thread pool and an event

queue. The thread pool is to execute the current requests while the incoming request are

queued in the event queue. When one of the threads is available, a request is removed

from the event queue and moved to the available thread to be executed [14].

To demonstrate the process, take a read request as an example. For instance, node

A wants to send out a read request to node B. The whole process may go through the

process illustrated in Figure 2.5.

Thread Thread ThreadNodeA 
Read requests 

NodeB 
ReadStage 

NodeA 
RequestResponse 

NodeA 
ReadRepairStage 

queue queuequeue

Figure 2.5: A read request stage flow (adapted from [15])

Basically, these are the working flow: (1) Node A sends out a read request to node

B. The request is queued in the event queue of node B. (2). If one of the threads in the

ReadStage of node B is available, the request from node A is dequeued from the event
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queue and executed. (3). When the request has been executed, the result rows are fetched

and sent out to the Request Response Stage of node A. (4). Similarly, the thread pool of

node A executes the request response from node B and returns the result to the client. (5).

Meanwhile, the read repair operation is optional to be processed in node A. Note that in

the figure above, the thread pool size for the Read Stage is set to 32, while the size for

Request Response Stage and the Read Repair Stage is 4. Actually, these are the default

setting for Cassandra and are configurable according to different system requirements [9].
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Chapter 3

Related Work

3.1 Research related to tail latency reduction

There has been years of research on the tail latency reduction, especially in the cloud

platform. Jeffrey Dean and Luiz Andre Barroso in Google introduced multiple techniques

to reduce the latency [29]. They mentioned that there are multiple reasons for latency.

High tail latency in individual components of a service could be caused by global resource

sharing, maintenance activities, queueing and background activities. They provided high-

level solutions based on both the short-term and long-term adaptions. Real time status of

the servers are monitored. Then the client avoids the slowest server.

[36] is another paper to analyze the tail latency and provide solutions to the latency

reduction. This paper analyzed the latency distribution in each stage of the web service

of Bing. It found that the reasons for high latency includes slow servers, network

anomalies, complex queries, congestion due to improper load balance, and software

artifacts like buffering. Three techniques are developed to resolve the latency issue:

reissues, incompleteness, and catch-up. The adaptive reissue is to get the time information

from the past queries, and then start a second copy of the request at the optimized time
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calculated using the statistics collected. The incompleteness method is to trade off

completeness with latency. The catch-up technique allocates more threads to process the

slow requests and uses high priority network packets for lagging requests to protect them

from burst losses.

A. Vulimiri et al. in [64] argued that with the use of redundancy, latency especially the

tail latency could be reduced. The paper proposed a very powerful technique through

redundancy technique: initiate an operation multiple times, and use the first result which

completes. It also introduced a queuing model of the query replication, and analyzed the

expected response time as a function of the system utilization and server-side service time

distribution. This technique showed great performance improvement on both the mean

and tail latency reduction in several systems, such as DNS queries, database servers.

[68] focused on another aspect of tail latency reduction in the cloud platform. It

verified with experiments, showing that the poor response times in Amazon EC2 are

a property of nodes. The root cause for the long response time on each node is the co-

scheduling of CPU-bound and latency-sensitive tasks. Then it implemented a framework

called Bobtail to detect the instances of which the sharing processor does not cause extra

long tail latency. Then users could use Bobtail to decide on which instance to run their

latency-sensitive tasks. The final results showed that with the usage of Bobtail, the 99.9th

percentile response time could be reduced by 40 %.

[70] focused on scheduling requests to meet the service level objectives (SLO) for tail

latency. It automatically configured workload priorities and rate limits among shared

network stages. Through measurements, high priorities were used to provide less latency

to the workloads which required low latency. If a workload can meet it’s SLO with a given

low priority, then this lowest priority is removed from the search. Otherwise, it would

iterate on the remaining workloads at the next lowest priority. Through this method, it

assured each task is finished within the SLO constraint. Meanwhile, to prevent starvation,
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multiple rate limiters were utilized for each workload at each stage.

Sh. Khan and ASML Hoque in [37] indicated that in data center applications, pre-

dictability in service time and controlled latency, especially tail latency, were quite

important to build high performance applications. It analyzed three data center applica-

tions: Memcached, OpenFlow and Web search, to measure the effect of 1) kernel socket

handling, NIC interaction, and the network stack, 2) application locks in kernel, and 3)

application queuing due to requests queued in the thread pool. It proposed a framework

called Chronos to deliver low-latency service in data center applications. Chronos utilized

user-level networking APIs to reduce lock contention and perform efficient load balancing.

The experiments results showed that, the tail latency of the new Memcached with the

Chronos could be reduced by a factor of 20, compared with existing Memcached.

J. Li et al. in [41] explored the hardware, OS, and application-level sources of high tail

latency in high throughput servers in multi-core machines. It modeled these network

services as a queuing system, to establish the best latency distribution. Using fine-

grained measurements, it showed that the underlying causes for the high latency include

interference from background tasks, request re-submit due to poor scheduling, sub-

optimal interrupt routing, etc. To fix those problems, it implemented several mechanisms.

For example, it either used real-time scheduling priorities or isolated threads on dedicated

cores, to isolate the server from background tasks. The final experiments showed that it

reduced the 99.9th percentile latency of Memcached from 5ms to 32us at 75% utilization.

M. Haque et al. in [34] proposed a mechanism called Few-to-Many(FM) incremental

parallelization, which dynamically increases parallelism to reduce tail latency. It used

request service demand profiles and hardware parallelism in an offline phase to compute

a policy. This policy is to specify when and how much software parallelism to add. Then

during running time, FM adds parallelism. If a request executes for a long time, then FM

adds more parallelism. The result showed that FM reduces the 99th percentile response
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time up to 26% in Bing and 32% in Lucene.

3.2 Performance research related to Cassandra

Because Cassandra has been popularly used only in recent years, there is very little

research on the performance research.

Paper [24] described the architecture of a QoS infrastructure for achieving controlled

application performance over Cassandra. It tried to fix the storage configuration problem.

Meanwhile, it could also address the dynamic adaption problem, by monitoring service

performance at run time and adjusting the short term variations. The core of the

architecture is the QoS controller. This controller collected response time and throughput

metrics periodically. Then it performed admission control, by estimating overall resource

and level of sanctification of requirements.

In Cassandra, mixed query types existed, such as a single query to obtain just a value.

Then in this case, a single query needed to wait for the completion of the range query,

which took longer time than a single query. This caused the increase of theresponse time.

Then S. Fukuda et al. in [31] proposed a query scheduling algorithm. It gave the higher

priority to a single query and made the query be executed before a range query. For

range queries, this algorithm also gave higher priority to queries which require fewer

search results. The priority assignments were dynamically changed with the progress of

query execution.

In [50], Sh. Nakamura and K.Shudo developed a modular cloud storage called

MyCassandra, based on Cassandra. To optimize the read the write performance, it

built a storage engine interface, based on different types of storage engines, such as

MySQL, Redis. When a query came in, the interface guided the query to different storage

engines, based on whether the query is read-optimized or write-optimized. Through this
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re-direction, the read and write latency could be reduced by leading the query to the

nodes which process faster. The final results showed that MyCassandra could reduce the

read latency by 90% and improve the throughput up to 11 times in specific workload.

P. Suresh et al. in [60] aimed to cut the tail latency in Cassandra through adaptive

replica selection. They proposed a new algorithm called C3. It focused more on the

read path and improved the read performance. Two mechanisms were proposed: replica

ranking and distributed rate control. For the replica ranking, it modified the existing

dynamic snitch algorithm, which only considered the history latency to decide the best

replica to read data from. Additionally, C3 measured the queue size, the response time

and the service time for each server. Then it piggy-backed these information to the client,

to let the client selects the best replica. Meanwhile, it measured the request served in a

fixed time interval, then sent it back to the client. Then the client dynamically adjusted

the request sending rate. The final result showed improvement on mean, median and tail

latency. Specially, for the 99.9% latency, there is a 3 times improvement.

In [35], the authors formalized the write process model of Cassandra and explored two

queuing systems: the sending task queue and mutation queue. The sending queue was

defined as the queue in the coordinator node and the mutation queue was the queue to

wait for mutation in both the coordinator and non-coordinator node. This paper modeled

the sending queue as a G/G/1 system and mutation queue as a G/G/S system. Then it

measured the inconsistency between two replicas via the departure time difference from

the mutation queue. Furthermore, metrics like Request Per Second(RPS) were measured.

Then through the measurement of the RPS, the Mutation Threads Number(MTN) was

adjusted dynamically. Meanwhile, it also proposed a metric called inherent inconsistency

time window(IITW), to measure the replica consistency.

W. Chow and N. Tan in [27] investigated the usage of redundant requests to reduce

the read latency in Cassandra. It tested the system via a dynamical threshold when
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sending duplicate requests. It also tried to change sending duplicate replies with a small

portion. The results showed that these mechanisms performed similar to the average case

and performed better in the long tails. Meanwhile, in order to dynamically determine

the optimal retry threshold, the paper applied a graphical model to predict the network

latency in the system. By exploring the correlation between nodes and time, the model

was more accurate from the results.

J. Polo et al. in [55] explored the effects which additional consistency guarantees

and isolation capabilities may have on the store state of Cassandra. It proposed a new

multi-versioned isolation level which provided stronger guarantees. This isolation was

implemented in the form of readable snapshots, which included changes in both the data

store and the read path of Cassandra. Meanwhile, it implemented a new compaction

strategy which compacted the SSTables only within certain boundaries. With this new

compaction strategy, only specific SSTables were considered for compaction. The final

results showed that it not only improved the throughput, but also the average read

latency.
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Chapter 4

Problems and Methods

4.1 Problem statements

In Apache Cassandra, data is stored among multiple replicas. To read data from the

cluster, the client needs to contact one of the nodes, which works as the coordinator node.

The coordinator node is the proxy between the client and the whole cluster. Through

the coordinator, the client gets the information of the whole cluster. The client sends

a request to the coordinator node and then the coordinator node gets the result or the

acknowledge packet back to the client.

During this process, the coordinator node needs to select one or more replicas out

of multiple replicas to serve a request. This is based on the consistency level (CL),

determined by the users. The CL shows how up-to-date and synchronized of the data

on all of the replicas and it could be any number between one and the total number of

nodes. Cassandra extends the concept of eventual consistency by providing the tunable

consistency level. For example, if we set the CL to be one, then one out of the replicas

needs to send an acknowledge packet back to the coordinator node. If it’s two, then two

out of the replicas need to reply back to the coordinator node. If the CL is large, then the
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users could get more reliable data.

However, this could lead to long transmission latency, as the users need to wait for the

acknowledge packets from a large number of replicas. On the contrary, if the CL is small,

the performance for the latency could be guaranteed. Then the reliability of the data may

vary. So the users should trade-off the settings with their own realistic requirement.

In this thesis, we consider the situation where CL is set to be one, which means the

coordinator node needs to select one out of multiple replicas. One of the reasons for

this choice is that we care more about the performance of latency in this thesis, not the

data reliability. So having less replica to select from could reduce the latency greatly. In

addition, setting the CL to be one is also a very popular tuning policy, which provides

the data to the users in less time. So, to keep the design simple, the CL is set to be one in

this thesis and the tunable consistency setting could be left for future work.

While the status of each replica is unknown, then how to select the best replica is

a problem. For example, a potential replica may experience an unknown problem and

could not serve the request. Or the replica itself may experience some background

activities and could only provide very slow service. So this uncertainty of each replica

makes the replica selection much more challenging. In this thesis, we care more about

the performance of the latency, then the best replica means the one, which could provide

the fastest service. In the later section, it shows that the replica selection has great impact

on the latency distribution, especially the tail latency. As a distributed system, Cassandra

is popularly deployed in cloud environments, such as Amazon AWS or Google Cloud,

which experience much more resource contention and other uncertainties. This could

further aggravate the performance fluctuation.

Meanwhile, each replica exhibits performance fluctuations over time. This makes

the replica selection a challenging problem. At the same time, the coordinator could

not always choose the fastest replica to service the requests and this could lead to the



23

herd behavior problem [48]. Herd behavior means multiple clients send requests to the

fastest/best replica, which could cause the load imbalanced and further degrade the

server’s performance. This could happen subsequently and cause the clients to choose

other different nodes and repeat the same process.

In Cassandra, a snitch determines which data center nodes belong to and inform

the Cassandra nodes about the network topology. Then the requests could be routed

efficiently. Multiple snitches could be chosen according to user’s requirements. Among

these snitches, one is called Dynamical Snitching, which is designed to make replica

selection decisions. Dynamical snitch is wrapped on other snitches by default and

working for the read side only. It monitors the read latency for each node and provides

this information to the coordinator node. Then the coordinator node attempts to avoid

the poorly-performing nodes.

Taking a 6-node Cassandra cluster as an example, as shown in the Figure 4.1, when

the client sends a request to the cluster, node1 is selected as the Coordinator node. Node3,

node 4, node5 are the three replicas which store the data.

Client Cluster 

6 5

4

2

1

3

Coordinator node

Replica node

Selected replica node

R1

R3

R2

Read request/response

Figure 4.1: Remote read path
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Since node1 has the latency information of each replica node, node3 is selected to read

data from if it has the lowest latency. We call this process as a remote read.

Also, it could be possible that the coordinator node is one of the replicas. Then

definitely we’ll choose this node to read data from. This process is called a local read, as

shown in the Figure 4.2.

Client Cluster 

6 5

4

2

1

3

Coordinator node

Replica node

Selected replica node

R1

R3

R2

Read request/response

Figure 4.2: Local read path

However, the performance is poor when making replica selection decisions based only

on the latency information of each node. In our experiments, we’ve measured the requests

served in a 6-node cluster, which is deployed in the cloud platform of Amazon EC2 (the

settings are the same as those used in the experiment result chapter). In particular, we

tracked the number of read requests served in each 100ms interval.

The figure below shows that the default Dynamical Snitch is not working well and as

a result the load varies a lot. The y-axes shows the number of read requests processed

every 100 ms for one node. It ranges from 1 up to 28 requests per 100 ms. Especially
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sometimes the number of read requests processed in 100 ms is only 1, which means the

node is very busy at that time.
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Figure 4.3: Requests received per 100ms

In addition to the vast load variance, other performance also experiences fluctuations,

such as the latency, especially the tail latency, like 99th, 99.9th, 99.99th percentile latency.

Dean [29] lists various sources for these latency fluctuation on Google cloud service.

The phenomenon of long tail latency also happens in Apache Cassandra, because of the

reasons mentioned in previous chapters and demonstrated below.

To demonstrate the long tail latency phenomenon in Apache Cassandra, a tool called

YSCB (Yahoo! Cloud Serving Benchmark) [28] is used. YCSB is one of the most popular

tools to evaluate and benchmark various databases, including both traditional databases

and NoSQL databases. In YCSB, multiple workload patterns could be used to generate
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customized workloads with different requirements. In our thesis, we care more about the

read performance, so we use three workloads: update heavy, read heavy and read only.

The operations in update heavy workload include 50% of read and 50% of update. The

operations in read heavy workload include 95% of read and 5% of update. The operations

in read only workload are all read. These three workloads are generated with the Zipfian

or Uniform distribution.

Workloads Operations Distributions

A - Update heavy Read: 50% Update: 50% Zipfian/Uniform
B - Read heavy Read: 95% Update: 5% Zipfian/Uniform
C - Read only Read: 100% Zipfian/Uniform

Table 4.1: Workloads in YCSB [28]

With the same settings, we conduct experiments to get the tail latency information

through YCSB. In these experiments, 6 nodes form a cluster. SimpleStrategy is used for

the replication strategy and the replication factor is set to 3. Zipfian distribution is used

for the workloads with 4 Gb data. Table 4.2 shows the latency performance regarding

the previous three workloads, including average, min, max, 95th, 99th, 99.9th, 99.99th

percentile latency. The unit for latency in the table is milliseconds.

Workloads vs Latency average min max 95th 99th 99.9th 99.99th

A - Update heavy 3.09 0.54 91.19 5.76 8.44 15.56 32.30

B - Read heavy 2.37 0.48 215.30 4.46 5.86 11.62 22.59

C - Read only 2.59 0.44 235.14 4.40 7.54 12.22 33.37

Table 4.2: Latency information for different workload patterns

From Table 4.2, we can see the vast gap between the average latency and the tail

latency. Taking the result of read-only workload as an example, minimum latency is

0.44 ms, and the maximum latency goes up to 235.14 ms, which must experience long

service time. Meanwhile, the average latency is only 2.59 ms, while the 99.99th percentile
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latency is 33.37 ms, which is nearly 10X times of the average latency. Also, the difference

between the 95th, 99th, 99.9th values are also large. This long tail latency happens in all

three different workloads, which could further influence the end-user delay. Below we

investigate the reasons for the long tail latency and seek solutions to effectively reduce

the tail latency.

4.2 Problem analysis

In read request processing, the read latency could be divided into several components.

Taking a remote read request as an example, when the Coordinator node decides the

replica and sends out a read request, there’s a request time, which is basically the network

latency between the two nodes. Since the request time is relatively small, it can be

ignored.

Our experiment showed that the RTT(round-trip time) time between two nodes in

the same rack is 0.75 ms in average, with the packet size 64 bytes. The max RTT time is

about 1.59 ms, which is still relatively small compared with the whole latency. Actually

in our experiments, this part is ignored when it’s a local read, since there’s no cross

node connection. When the request comes to the replica and the replica needs to process

the request and retrieve data from its memory or disk, this part is called the request

process time. Based on the status of each replica, this process time could vary a lot and

contributes majority to the whole latency. Specifically, the process time includes both the

waiting time in the queue and the real service time for each request. Figure 4.4 shows the

latency components for the remote read operation. We’ll analyze each component in the

part below.

Finally, after finishing the read process, the replica needs to send the data back to the

Coordinator if it’s a remote read process. The response time is also one of the important
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parts in the latency, since the data we read could be quite large, like in Gigabyte unit.

Request processing time 

Request Response

Network
latency

Latency

Coordinator

Replica

Network
latency

Waiting time Service time 

Figure 4.4: Latency components in remote read

To dig deeper into the internal components of the latency issue, we conduct experi-

ments with different settings: small data set and large data set. Here small means the size

of the data set (750 MB) is less than the RAM memory (1 GB) of the server. In this case,

reading data only needs to access the memory for most situations. Only in very few cases,

it needs to read data from disk. Large data set means the data set size (4 GB) is larger

than the memory size (1 GB). In this case, it needs to access disk for every read request.

4.2.1 Small data set analysis

First of all, we start our experiments with a small data set, which consists of 0.75 million

data of records. The size of each record is 1 KB, and thus the total data size is 750 MB. The

total data size is less than the RAM memory of the experimental Amazon EC2 instance,

which is 1 GB. Figure 4.5 shows the latency record for each read request in the millisecond
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unit. From the figure, we can see the latency varies a lot, from minimum value of 0.26

ms to maximum value of 74.72 ms. The max value 74.72 ms is way out of the latency

range and is possible an anomalous value. With experiment going on, the latency for

each request could still go as high as 33 ms. Also, some of the requests could be served

in more than 10 ms, or even above 20 ms.

Figure 4.5: Latency for small data set

Furthermore, we plot the ECDF (Empirical cumulative distribution function) of the

latency for one of the nodes as in Figure 4.6. The x-axis is the latency value, while the

y-axis is the ECDF value. The figure shows that the average latency is about 0.88 ms,

while the median latency is 0.68 ms. The 95% percentile latency is about 1.72 ms, which

is about 2.5 times the median value. The 99% percentile latency is about 2.82 ms, which is

about 4.1 times the median value. The 99.9% percentile latency goes up to 5.39 ms, which
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is about 7.9 times the median latency. The statistic shows the big variance of the latency

metric, while the tail latency contributes a lot. Also, we found the difference between the

high percentile latency is large. For example, the 99.9% percentile latency almost doubles

the value of 99% percentile latency and triples the value of 95% percentile latency.
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Figure 4.6: Latency ECDF for small data set

Figure 4.7 shows the PMF (Probability mass function) of the latency for the same node

with small data set. To make the figure clearer, the zoomed plot has been added in the

middle of the figure. From the figure we can see that, most of the latency lies between

0.5 ms to 0.8 ms, with 0.58 ms is the most frequent latency value. This latency is the first

peak in the figure. The reason behind the first peak is the read access to the memory.

Since the data set size is less than the RAM memory. So for most of the read requests,
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they can be served through reading data from memory only. Only for few times, if the

data not in the memory, it will need to access the disk.

Figure 4.7: Latency PMF for small data set

However, for few times, if reading from the memory fails, it will read data from disk

as well. This comes to the second peak in the PMF figure. The latency for the second

peak lies between 0.96 ms to 1.24 ms. In this case, reading data needs to access the disk,

which causes a longer reading time.

After further experiments, we found that the latency consists of different components.

Figure 4.8 shows the latency components breakdown, which includes the waiting time in

the queue, response time via the network latency, and service time to serve the request.

The figure below shows the average ratio for each component with different workloads.

The experiments show the response time is the major component for the latency, which
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Figure 4.8: Latency components breakdown for small data set

takes more than half of the latency. Also the service time is the second important factor

and it takes about 30% of the latency. Meanwhile, the waiting time in the queue only

takes about 3% in average. This is because the data set is small, read requests only need

to read from memory, which won’t take too long to process. Consequently, the network

latency part dominates the whole latency.

Figure 4.9 is the service time for each request on one of the nodes in the cluster. From

the experiment result, we can see the service time varies a lot, ranging from the minimum

value of 0.03 ms to the maximum value of 16 ms, while the average service time is about

0.33 ms.

Figure 4.10 is the ECDF distribution plot for the service time in one of the nodes with

the small data set. From the figure, we can see that the average value of the service time
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Figure 4.9: Service time for small data set

is 0.33 ms and the median value is 0.22 ms.

However, when coming to the high percentile values, it shows the 95%, 99%, 99.9%

percentile values are 1.08 ms, 1.45 ms and 3.51 ms respectively, which is 4.9, 6.6 and 16

times of the median value.

Meanwhile, the big difference between the high percentile values also indicates the

fluctuation of the service. The 99.9% percentile value doubles the 99% percentile value,

and triples the 95% percentile value.

Figure 4.11 is the PMF for the service time with the small data set. From the statistic,

it shows that most of the service time is less than 2 ms. 74.6% of the service time is in

the range of 0.11 ms to 0.49 ms, which is the first peak in the figure. The reason for this

is because that the size of the data set is smaller than the memory size. So some of the
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Figure 4.10: Service time ECDF for small data set

read requests need only to access the memory. Another peak is in the range of 0.51 ms to

1.24 ms. Similarly, this peak is occurred because of reading data from disk, when reading

data from the memory failed. Accessing data in disk also may cause unpredictable issues.

From the figure we can see, the service time could go up to 16 ms. This significantly

increases the tail latency.

Because the response time takes the largest portion in the latency for the small data

set, we analyze it below.

Figure 4.12 and Figure 4.13 show the ECDF and the PMF plot for response time with

the small data set. Even though the response time varies, ranging from the minimum

value of 0.12 ms to the maximum value of 66.97 ms, the figure shows that the response

time concentrates a lot around the average response time, which is about 0.53 ms. This
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Figure 4.11: Service time PMF for small data set

value matches closely with our previous experiments on the RTT time experiments

between two nodes in the same rack.
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Figure 4.12: Response time ECDF for small data set

Figure 4.12 shows that the median response time is about 0.56 ms, which is very close

to the average response time. The 95%, 99%, 99.9% percentile values are 0.75 ms, 1.88 ms

and 4.2 ms respectively, which are 1.3, 3.4 and 7.5 times of the median value. Most of the

response time is less than 1 ms. Actually from the PMF plot, the response time is closely

subject to the discrete Gaussian distribution, with the mean value of 0.56 ms.
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Figure 4.13: Response time PMF for small data set

From the analysis above, we can see for the small data set, the latency distribution

mainly depends on service time.

4.2.2 Large data set analysis

We’ve worked on a large data set with the data size of 4 GB, which is greatly larger than

the RAM memory of 1 GB.

For the larger data set, since the data can not be fit into the memory any more, so

reading data from the node requires accessing the disk to read the full data set. Figure 4.14

shows the latency for each read request in a node with the millisecond unit. Compared

with the small data set results, its value range varies even larger, ranging from the
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minimum value of 0.22 ms to the maximum value of 165.18 ms. The figure shows that

the peak latency value could go up to hundreds of milliseconds, which is definitely not

tolerable in real time applications.

Figure 4.14: Latency for large data set

Figure 4.15 is the ECDF for the latency for one of the nodes with the large data set. It

shows that nearly 99% latency value is less than 10 ms, which means most of the requests

could be served within 10 ms. The average latency value is about 1.36 ms, while the

median latency value is 1.27 ms. The 95%, 99%, 99.9% percentile latency are 2.38 ms, 3.99

ms and 6.81 ms, which are 1.8, 3.2 and 5.4 times of the median latency value respectively.

The experiment results also show that the tail latency is pretty long, even the average

latency values are a few milliseconds. Meanwhile, the differences between the high
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percentile latency value is also very large. For example, the 99.9% percentile latency is

about 1.7 times of the 99% percentile latency, and 2.9 times of the 95% percentile latency.
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Figure 4.15: Latency ECDF for large data set

Figure 4.16 shows the PMF for the latency. The first peak value of the latency is

about 0.62 ms and the second, the third are around 1.18 ms and 1.62 ms respectively.

Similarly, the first peak value is the time to read data from the memory. If the data not

completely stored in the memory, it will access the disk to read extra data from the disk.

Reading data from disk is more time-consuming, which leads to the second peak in the

figure. During the reading process, back ground activities like garbage collection, data

compaction could happen. This further increases the time to read the whole data. When

the background activities happen, the service to the read request could be stopped fully.
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Figure 4.16: Latency PMF for large data set

Similarly, we break down the components for the latency and analyze each component

in it. Figure 4.17 shows the average ratio for each component with different distribution

workload. From the figure we can see the waiting time takes larger portion in the latency,

compared with the small data set experiments. The average ratio of the waiting time

over latency goes up to around 8%. Meanwhile, the figure also shows that the service

time takes the largest portion in the latency, with the value around 50%. This is because

the data size gets larger, then the chance of request congestion increases as well. Also,

more background activities happen under-ground, such as garbage collection, and data

compaction. These all could make the time to serve the request longer.

Among the latency, we conducted further experiments to measure the service time for

each read request and found that the service time also varies a lot with an even larger
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Figure 4.17: Latency components breakdown for large data set

range. Figure 4.18 below shows the measurement of the service time for each read request.

It ranges from the minimum value of 0.03ms to the maximum value of 164.41ms, which

shows that the peak value could go up to hundreds of milliseconds. Compared with the

average service time, it’s about 200 times. This high value could contribute greatly to the

tail latency.

Similarly, we analyzed the distribution of the service time for the large data set. Figure

4.19 shows the ECDF of service time for the large data set. The average and median values

for the service time are 0.79 ms and 0.72 ms respectively, which are very close. Statistic

also shows that the 95%, 99% and 99.9% percentile values for the service time are 1.72 ms,

3.04 ms and 4.80 ms respectively, which are 2.4, 4.2, 6.6 times of the median service time.

The differences between the high percentile values are also large. The 99.9% percentile
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Figure 4.18: Service time for large data set

value is 1.6 times of the 99% percentile value and 2.8 times of the 95% percentile value.

This further indicates the service time also contributes a lot to the tail latency, especially

the highest value.

Figure 4.20 shows the PMF for the service time with the large data set. Different from

the PMF of the small data set, there are three peaks in the figure, similar to the latency

distribution. This is because of the same reason as we analyzed before. The first peak is

because of the time to read data from the memory, while the second peak is because of

the time to access the disk. The reason for this is that the data set is larger than the RAM.

In order to read data from the cluster, it must access the disk to read the data in SSTables.

The last peak is because of the background activities. If the background activities are

active, it stops the node to serve the request completely. For example, the full garbage
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Figure 4.19: Service time ECDF for large data set

collection is a stop-the-world event. When it’s triggered, no other process could run at

the same time. This will definitely affect the reading process.

Similarly, we find that the distribution of the service time is similar to the distribution

of the latency. The figure for the latency breakdown also indicates that the service time

plays a very important part in the whole latency, which is more than 50%. As the network

latency takes another portion, it’s more related to the resource allocation of the network

bandwidth, which we cannot control it directly.

However, for the service time, we could choose the node with a less service time. So

basically, the service time is a very good metric for the latency performance.

At the same time, we also measured the response time to get the read result back to

the coordinator, which is the network transmission latency. In our experiments, if the
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Figure 4.20: Service time PMF for large data set

request is served in a local node, then this part is set to be zero, because in this case, no

cross-nodes transmission is needed.

Figure 4.21 and Figure 4.22 are the ECDF and PMF for the response time. The

minimum response time and the maximum value are 0.12 ms and 60.48 ms, respectively.

From the figures, we can see that the average response time is about 0.55 ms, while the

median value is about 0.49 ms. The figure also shows that the 95%, 99%, 99.9% percentile

latency are 0.72 ms, 1.65 ms and 4.16 ms, which are 1.5, 3.3 and 8.5 times of the median

response time, respectively.

However, the statistic shows that the response time concentrates around the average

response time, which is about 0.55 ms. This is very close to the RTT measured in our

previous experiments.
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Figure 4.21: Response time ECDF for large data set

Another important part which also contributes to the latency is the waiting time in the

queue, especially when the node is busy with handling multiple requests. This waiting

time could be a very powerful indicator to the latency performance.

However, in C3[60], it doesn’t provide information for this part. To show how the

waiting time impacts the latency, we also conduct experiments using the large data set

with similar settings above.

Figure 4.23 shows the PMF for the waiting time in the queue. From the experiment

results, we can see that the waiting time in the queue is 0.01 ms in most cases, this is

because of the powerful multi-threading design of Cassandra.

However, our results show that the waiting time could go up to 23.1 ms, which also

contributes a lot to the latency. Therefore, it is important to provide this information to
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Figure 4.22: Response time PMF for large data set

the coordinator node, so that it does not select a node with a long waiting time as the

replica.

4.3 Approach to reduce tail latency

Based on our experiment result and analysis, we propose two approaches to reduce the

tail latency: (1) Optimize replica ranking system with a smooth tail value adjustment

algorithm; (2) Execute the local read of the coordinator node synchronously, to avoid the

unnecessary waiting time.
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Figure 4.23: Waiting time PMF for large data set

4.3.1 Optimized replica ranking

When a read request comes in, the coordinator decides whether to read data from the

local node or a remote node, based on the collected latency information. When multiple

replicas exist, the coordinator chooses the node with the least latency for the past requests.

This latency information is measured every 100 ms as shown in Figure 4.24. That means

every 100 ms, each node calculates the score based on the last request.

However, as analyzed before, this estimation may not show the real accurate status of

each node. As the background activities like data compression and garbage collection

have a great impact on the latency performance. Similar to the algorithms in c3, we

also consider the parameters of network latency, service time and the queue size. These
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parameters play very important roles in the latency. Meanwhile, we also consider the

waiting time in the queue.

Here, the network latency is the time interval from the instant when the data is read

from the replica to the instant when the data is sent back to the coordinator node. If it’s a

local read in the coordinator node, then the network latency is 0. Otherwise, it’s the time

to send the data from the replica to the coordinator node. Queue size is the size of the

current request queue in each server. When the queue size is large, the node is very busy.

Service time is the time spent to process each request internally. For a read request, it

may experience multiple stages in memory, disk or both, which depends on the data set

size to read.

For each read request, the replica replies back with the corresponding queue size q and

the service time 1/u (the inverse of the service rate) to the coordinator node. Meanwhile,

it monitors the network latency between the coordinator node and the replica. The queue

size is calculated with Exponentially Weighted Moving Average (EWMA) [8], to smooth

the metric.

However, because of multiple servers and time-varying service time, a linear function

of q could not effectively reflect the real status of each replica. Similar to the idea in the
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paper [21], the replica with a longer queue is penalized. Here we adapt a cubic function

of the queue size, which makes a good trade-off between the preferred faster replicas and

robustness to time-varying service time.

Algorithm 1 Tail Value Adjustment Algorithm
1: procedure Tail-Value-Adjustment-Algorithm(current value, α)
2: adjusted value← current value . Initialize the adjusted value
3: for every 100 ms do
4: Get the 90%, 95%, 99%, 99.9% value based on previously collected data
5: if 99% percentile value ≥ α ∗ 90% percentile value then
6: adjusted value← 90% percentile value
7: else if 99.9% percentile value ≥ α ∗ 95% percentile value then
8: adjusted value← 95% percentile value
9: return adjusted value

Both the response time and service time fluctuate a lot, and their tail values are

calculated using Algorithms 1 and 2. Algorithm 1 describes how we calculate the tail

value of a performance metric, such as the response time or service time. Algorithm 2

describes how we find a specific percentile of a performance metric. In Algorithm 1, we

have a list to keep the past values. For every time window, we calculate the long tail

percentile value as described in Algorithm 2. We adjust the value based on the differences

between those tail percentile values. For example, if the 99% percentile value is larger

than α times of the 90% percentile value, this means the tail percentile value is very high

and it takes a very long time to process the request. So we set the adjusted value to the

90% percentile value, instead of the most recent value. We adjust the tail values similarly

for 99.9% percentile value and 95% percentile value. In our following experiments, if not

specified, the value of α is set to be 2.

Based on our previous measurement on the waiting time for the queue, we can see

that in most of the cases, the waiting time is relatively small with an average value of

0.02 ms. But for few times, this waiting time could go up to 23 ms. This indicates that
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Algorithm 2 Get Percentile Algorithm
1: procedure Get-percentile-algorithm(valuelist, percentile)
2: valuelist← sort(valuelist)
3: index ← (int)Math.ceil((percentile/100) ∗ valuelist.size)
4: return valuelist.get(index− 1)

many requests are waiting in the queue and the node is busy with the requests. To avoid

selecting a replica with a long waiting time, we add the waiting time to our score function

as well, but with a more sensitive weight β, which is set to 10. This is because in most

cases, the waiting time is small. A large weight makes the score more sensitive to the

waiting time. In our experiment, the 99.9% percentile waiting time is about 0.06 ms. Even

if we multiply the value with β, it’s about 0.6 ms, which is close to the average value

for the service time and response time. But in a few cases, when the waiting time goes

up to 1 ms or more, this value could go to 10 ms, which probably dominates the score

function. So based on this mechanism, we indirectly avoid the long waiting time and

further reduce the tail latency.

With the above information, the score for each replica is calculated and then ranked

accordingly. Below is the score calculation formula for each replica adapted from [60],

where Ns is the network latency, us is the service rate. These two parameters are calculated

using our tail value adjustment algorithm. qs is the queue size and Ωs is the waiting time

in the queue. These two parameters are calculated using the EWMA with the weighted

factor set to be 0.9. β is the weight for the waiting time, which is set to be 10 as we

mentioned before.

φs = Ñs + q̄s
3/ũs + β ∗ Ω̄s (4.1)

The above parameters are calculated for each request, and piggybacked to the client.
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Then the client chooses the best replica, based on the score calculated every 100 ms. Then

the read request could be forwarded to the replica with the lowest score. Figure 4.25

shows how the nodes share this information.

4.3.2 Local read improvement at coordinator node

As a large Java-based project, Apache Cassandra uses concurrent programming tech-

niques, to efficiently utilize the system resources, further improve the performance,

especially the latency performance.

For each request at the read/write stage, it is placed in the thread pool and executed

asynchronously. The default thread pool size for each Cassandra node is 32, which

means every time, the node could serve at most 32 concurrent read operations. The

multi-threading mechanism greatly improves the system performance of Cassandra. The
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thread pool size is adjustable.

However, the design of this parameter should be carefully considered, as a small pool

size could lead to poor performance, while a large pool size uses more resources which

could also be harmful to the system.

For a node in the cluster, it could be chosen by the client as the coordinator node.

If at the same time, this coordinator is also one of the replicas and is chosen for data-

reading, then the read requests are served locally and we call these requests local requests.

Meanwhile, this node could also receive requests from other chosen coordinator nodes,

and we call these requests as remote requests. As a result, both local requests and remote

requests co-exist in the thread pool.

As mentioned before, the SDEA design of Apache Cassandra puts different events

into different stages. This is true even for local read requests with consistency level one.
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Figure 4.26: Local/remote requests co-exist
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As shown in Figure 4.26, when a local read request reaches a coordinator node,

the coordinator node puts this local read request into the read stage for asynchronous

execution, together with other remote read requests. This local read request needs to be

enqueued into the read stage, together with other remote requests. To execute the local

request, it needs to wait for the finish of other remote requests queued in-front. This

process causes possible waiting time in the queue and potential context switches, which

adds unnecessary latency.
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Figure 4.27: Async/sync execution of read requests for Coordinator node

As illustrated in Figure 4.27, to avoid this unnecessary latency and improve throughput,

we can simply execute the local read requests at the coordinator node synchronously

in the request thread. Since a local request can be served in a very short time, if the
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coordinator is not busy when receiving the local request. Through synchronous execution,

this could reduce the waiting time in the queue for the local read requests, further improve

the overall throughput performance. Since the local read and remote read requests are

executed synchronously, this could save potential waiting time in the queue and reduce

the read latency further.

However, here we need to note that the distribution of local read and remote read

depends on the coordinator selection algorithm. This algorithm is defined in the driver

side for load-balancing of the coordinator, which is out of our scope for this thesis.
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Chapter 5

Evaluation and Results

5.1 Experiment set up

Our proposed methods are implemented in Apache Cassandra of development version

2.1. The Cassandra nodes are deployed on Amazon EC2 with an instance type of t2.micro

(Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory, EBS only). The

instances and nodes are tuned according to the recommended settings from Datastax [6].

We have a cluster of 6 nodes installed in the same zone of California in Amazon EC2.

Because nodes are within the same zone and nodes communicate through the private IPs,

we set up the replication strategy to be SimpleStrategy. The replication factor is set to 3.

Regarding the workloads, Yahoo Cloud Serving Benchmark(YCSB) [17] is used. YCSB

[28] is the most popular benchmark tool to evaluate cloud serving systems. The YCSB

version is 0.8 and it’s installed in a separate Amazon EC2 instance, with the same system

settings with the Cassandra nodes. We insert 400,000 1KB-size records generated by YCSB

to the cluster and they serve as the data set to operate on. The keyspace and table for

these records are set as name of ycsb and usertable. In each record, ten fields with names

ranging from field0 to field9 are modeled. The size for each field is 100 bytes. Meanwhile,
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an identified primary key is used, which is a string like user123456.

In the experiments, a read operation reads an entire record from the table, a update

operation updates a record by replacing the value of one field. The requests generated

by YCSB follow the Zipfian access pattern, which is typically used in photo tagging,

session-store and user-profile applications. Each measurement involves 1 million of

operations of the workload and is repeated three times. For the experiments below, if not

specified, the multiply factor in tail value adjustment is set to 2. The weight to get the

EMA value is set to 0.9. Table 5.1 shows the experiments setup and Table 5.2 shows the

settings for the Amazon EC2 instances.

Parameter Value

Amazon EC2 instance type t2.micro
Cluster size 6

Replication strategy SimpleStrategy
Replication factor 3

Table 5.1: Experiment parameters

Parameter Value

Model t2.micro
vCPU 1

Memory size 1 GB
Storage EBS-only

Table 5.2: Amazon EC2 instance settings

Two common workload patterns are used to evaluate our new algorithm: update-

heavy(50% reads and 50% updates), which is usually used in a session store to record

recent actions, read-heavy(95% reads and 5% update), which is typically used for photo

tagging and read-only(100% reads), which is commonly used in user profile cache

applications [17].
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5.2 Experiment Results

To evaluate the performance of the new algorithm, we compare it with the default setting

for Apache Cassandra, as well as the C3 algorithm [60]. We focus on the performance of

latency, especially the tail latency and the throughput as well. We want to make sure that

the new algorithm reduces the tail latency without sacrificing the mean/median latency,

and improve the throughput (number of requests per second).

5.2.1 Impact of data set size

In this group of experiments, we study the impact of a small data size (750 MB) with

different workloads. The operation distribution follows a Zipfian distribution.
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Figure 5.1: Read latency comparison with small data set in Zipfian distribution
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Throughput comparison
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Figure 5.2: Throughput characteristic comparison with small data set in Zipfian distribu-
tion

Firstly, we evaluate the read latency. Above are the experiment results for different

algorithms, of which ds (dynamic snatch) indicates the default algorithm deployed in

Cassandra, c3 is the algorithm developed in the paper [60] and new is the new algorithm

proposed in this thesis.

Figure 5.1 shows the read latency comparison with different workload patterns:

update-heavy, read-heavy and read-only, same as table 4.1. We can see that for all

workload used, the new algorithm reduces the read latency with all different metrics: the

average, the 95th, the 99th and the 99.9th percentile latency. Taking the 99th percentile

latency metric as an example, for the read only workload, the new algorithm reduces the

read latency from 4.5 ms to 3.4 ms, which is about 24% reduction. Even compared with

the C3 algorithm, the read latency is reduced by 16%.
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Because the data size in the experiments is small, the data might be cached in the

memory, and as a result, the performance improvement for the new algorithm is not that

significant.

Then we consider the throughput achieved by different algorithms. The throughput

indicates the number of requests processed in a second. The higher the throughput is, the

better the algorithm performs. The comparison is shown in Figure 5.2. The throughput

goes up to 940 ops per second in update heavy, which is nearly 14% improvement over

the ds algorithm and 6% improvement over the c3 algorithm. Overall, the throughput

performance has been improved, with the usage of the new algorithm.

5.2.2 Impact of request distribution

In this section, we compare the performance with different request distributions: Zipfian

and Uniform with a large data set size - 4 GB.
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Figure 5.3: Selection results of Uniform and Zipfian [28]
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With the Uniform distribution, a record is chosen uniformly at random. Thus, all

records in the database has an equal chance to be chosen.

For the Zipfian distribution, when choosing a record, some records have more chance

to be chosen. This distribution generates more unexpected situations. Figure 5.3 shows

the different results of these two distributions.

Firstly, we compare the read latency with the Zipfian distribution. Figure 5.4 shows

the read performance comparison. The figure shows that for the large data set, the read

performance varies greatly. That’s because the reading operations need to read data from

the disk.

However, with our new algorithm, the latency is reduced on all metrics.
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Figure 5.4: Read latency comparison with large data set in Zipfian distribution

For example, for the read-only operation, the 99.9% percentile latency for default
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dynamic snitch method goes up to 31.61 ms, which is nearly 10x compared with the

average latency. The c3 algorithm reduces the latency to be nearly half with 16.79 ms.

Our algorithm, further, reduces it to be 11.45 ms, which is another 32% percent reduction

for read latency.

By indicating the busy node and distributing the load among multiple replicas, the

new algorithm takes full advantage of available system resources, resulting in an increase

in throughput, for all workload patterns. Even in the experiment with mixed read/write

requests, it still improves the throughput. The reason lies in that the new algorithm

distributes the read requests among multiple replicas more evenly and avoids the busy

ones. Then this mechanism indirectly keeps the write requests balanced among multiple

replicas.
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Figure 5.5: Throughput characteristic comparison with large data set in Zipfian distribu-
tion
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Figure 5.5 shows the throughput performance comparison. From the figure we can

see that for the update heavy operation, c3 improves the throughput by 32%, while our

algorithm further improves another 7%. For the read heavy operation, c3 improves the

throughput by 18%, while our algorithm further improves it for another 16%.

Meanwhile, we compare the performance with the Uniform distribution requests.

Figure 5.6 shows the read latency comparison result for the Uniform distribution.
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Figure 5.6: Read latency comparison with large data set in Uniform distribution

From the figure we can see that the new algorithm improves the latency for all the

percentile metrics. For example, for the 99.9th percentile latency, with the update-heavy

workload, the latency for ds is around 17ms, while our new algorithm reduces it to 13

ms, which is nearly 23% improvement.
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At the same time, the throughput performance has been compared as well for Uniform

distribution requests. Figure 5.7 shows the throughput comparison result. With the more

efficient replica selection algorithm, the throughput is improved. Taking read only

workload as an example, the throughput is increased from 420 ops/s to nearly 500 ops/s,

which is about 19% improvement.
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Figure 5.7: Throughput comparison with large data set in Uniform distribution

Figure 5.8 shows the write latency comparison results for the update heavy and read

heavy operations with the Zipfian distribution requests.

From the results, we can see that our algorithm also improves the write latency

performance, especially the update heavy operation, which includes half write operations

and half read operations. For example, for the update heavy workload, the 99.9th

percentile latency is reduced from 15.7 ms to 10 ms, which is nearly 36% improvement.
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Figure 5.8: Write latency comparison with large data set in Zipfian distribution

Figure 5.9 shows the write latency comparison results for the update heavy and read

heavy operations with the Uniform distribution requests. The average latency and 95%

percentile latency have very similar results due to the uniform distribution.

However, for 99% percentile and 99.9% percentile latency, we can see that the write

latency performance is improved.

5.2.3 Impact of skewed record size

So far, we only consider the fixed-length records. In realistic, the data size could be

variables. Since we calculate the score based on per-request in our algorithm, we need to

make sure that the varied data size won’t affect the performance too much. In this group
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Figure 5.9: Write latency comparison with large data set in Uniform distribution

of experiments, we use YCSB to generate the same size of large dataset. In the dataset,

the field size follows Zipfian distribution, which favors the shorter values.

Figure 5.10 shows the read latency for the large data set with the Zipfian distribution

workload. The figure shows that even with the skewed dataset size, our new algorithm

could improve the latency performance with different percentile values, especially the

99.9% percentile latency. For the read only workload, the 99.9% percentile latency in the

traditional DS algorithm goes up to nearly 36 ms. Our new algorithm reduces the latency

to be about 15 ms, which is about 2.4 times improvement.

For the skewed dataset size, its uneven characteristic makes the latency more unstable,

which indirectly increases the chance of high tail latency. Since the new algorithm makes

the metrics more smooth, it reduces the chance of anomalies values. The experiment
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Figure 5.10: Read latency comparison with skewed data size

results also shows that our new algorithm performs well for this case.

5.2.4 Impact of workload on load condition

Furthermore, since we’ve found the load oscillation issue is severe with the traditional ds

algorithm, this further causes the load spikes, which has been shown in the top figure of

Figure 5.11. The experiment is the result for the large data set with the Zipfian distribution

workload. The y-axis is the request number served per 100 ms for one of the nodes.

Sometimes, the request number served in 100 ms is only 1. This is because the node is

very busy and cannot serve any request in the 100 ms time duration.

Through our new algorithm, the load is distributed more evenly among multiple
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Figure 5.11: Load versus time

nodes. This reduces the number of load spikes, as shown in the bottom figure of Figure

5.11. The result shows that the traditional ds algorithm could only serve 10 requests in

average, while the new algorithm could serve up to 13 requests in average per 100 ms.

This is about 30% improvement in the load performance.

Also, from the figure we can see, with the new algorithm the node could serve at least

about 5-6 requests every 100 ms. Meanwhile, from the x-axis we can also see that the

running time is reduced as well.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis measures all the important factors on the tail latency in Apache Cassandra,

especially the queue size, service time, response time, and the waiting time in the queue.

The distributions of these parameters are fully explored. Specifically, the results show that

the service time varies a lot during the whole process, which inspires the deeper research

on the background activities, including the Garbage Collection and data compaction.

Then a new algorithm is proposed to get the real time statistics of the service time and this

information is then piggy-backed to the client. Then based on the information collected,

the client avoids selecting busy nodes and sends the request to less-busy nodes.

Local read request are processed at the coordinator node with remote read requests

from non-coordinator node. This leads to unnecessary waiting time, queuing time and

the stages switching time. Then, the internal process for local read requests is modified to

avoid this unnecessary latency in the thread pool queue. This could also help to reduce

the latency for each request and improve the throughput for the whole cluster.

Through comprehensive evaluation, the final results show that it greatly improves the
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latency performance, including the median, and the percentile tail latency, compared with

the base-line Cassandra. Meanwhile, as the algorithm distributes the request more evenly,

it also works well with mixed requests, like read-heavy and update-heavy workloads.

6.2 Future Work

There are multiple different aspects which could be improved in our algorithm for future

work.

Firstly, Cassandra nodes compute the score for each node in a fixed, discrete interval,

which is 100ms in default. Hence, the system may not react to the time-varying perfor-

mance fluctuations, which may happen when a time scale is less than the fixed interval.

Though one may think about is to reduce the interval to re-calculate the score for each

node. However, it has been stated that the calculation could be very expensive. So a more

complex design should be proposed to consider this offset.

Secondly, Cassandra has its own mechanism called speculative retries to reduce the

tail latency. When sending out a read request to a replica, the coordinator waits for the

response for a configurable duration. After this, it’ll reissue the request to another replica.

As the duration is configurable, if it’s set to be small, then too many reissued requests

could make the system saturated. If it’s set to be large, then the effect of this mechanism

may not be obvious. So a better design on this duration and the integration with our own

algorithm could be further explored.

Meanwhile, the selection of the coordinator node could also be explored, as the

coordinator node is working as the proxy between the client and the whole cluster. How

to choose the right coordinator is also a big issue. Right now, companies like Datastax

and Netflix have their own drivers to Cassandra. For example, in the Datastax Java driver

for Cassandra, they implement different policies, such as DCAwareRoundRobinPolicy,
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LatencyAwarePolicy, TokenAwarePolicy and WhiteListPolicy [7]. Among all these polices,

the LatencyAwarePolicy chooses the coordinator with the least latency. As in Cassandra,

the coordinator is chosen randomly right now, then the integration of the previous policy

should be of great interest for research.

Lastly, in our thesis, the replica selection only chooses one replica from multiple

replicas, which is called eventual consistency [47]. However, to make data more reliable,

stronger consistency also needs to be explored, which means to choose more than one

replicas. This makes the design more challenging and more complex, and it may require

more synchronization among all these replicas.
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