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Abstract 
Using the spin-spiral formulation of the tight-binding linear muffin-tin orbital method, the principal 
components of the exchange stiffness tensor are calculated for typical hard magnets including tetrag-
onal CoPt-type and hexagonal YCo5 alloys. The exchange stiffness is strongly anisotropic in all stud-
ied alloys. This anisotropy makes the domain wall surface tension anisotropic. Competition between 
this anisotropic surface tension and magnetostatic energy controls the formation and dynamics of 
nanoscale domain structures in hard magnets. Anisotropic domain wall bending is described in de-
tail from the general point of view and with application to cellular Sm–Co magnets. It is shown that 
the repulsive cell-boundary pinning mechanism in these magnets is feasible only due to the aniso-
tropic exchange stiffness if suitably oriented initial pinning centers are available. In polytwinned 
CoPt-type magnets the exchange stiffness anisotropy controls the orientation of macrodomain wall 
segments. These segments may reorient both statically during microstructural coarsening and dy-
namically during the macrodomain wall splitting in external field. Reorientation of segments may 
facilitate their pinning at antiphase boundaries. 
 
Keywords: anisotropic exchange stiffness, domain wall bending, cellular Sm-Co magnets, polytwinned 
CoPt magnets 
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1. Introduction 
 
The formation and dynamics of magnetic domain structures are commonly studied by mi-
cromagnetic methods employing the phenomenological gradient expansion for the “ex-
change term” in the free energy [1]. For a crystal of arbitrary symmetry this term may be 
generally written as 
 

     𝐹𝐹ex = 𝐴𝐴𝛼𝛼𝛽𝛽 ∫
𝜕𝜕𝑒𝑒𝛾𝛾

𝜕𝜕𝑟𝑟𝛼𝛼

𝜕𝜕𝑒𝑒𝛾𝛾

𝜕𝜕𝑟𝑟𝛽𝛽
d3𝑟𝑟, (1) 

 
where e(r) = M(r)/M is the unit vector parallel to magnetization, summation is assumed 
over repeated Cartesian indices, Aαβ = MDαβ/4, and Dαβ is the spin-wave stiffness tensor 
which determines the long-wavelength part of the magnon spectrum as ħω(q) = Dαβqαqβ. In 
a cubic crystal Aαβ = Aδαβ where δαβ is the Kronecker symbol, and A is commonly referred 
to as the exchange constant. Below Aαβ is referred to as the exchange stiffness tensor. 

A cubic crystal may have only a fourth-order magnetocrystalline anisotropy (MCA) in 
the spin-orbit coupling parameter ξ, while noncubic crystals have MCA in second order in 
ξ. Since magnetic hardness generally requires high MCA, all known hard magnets are 
noncubic. Many of them are uniaxial, so that Aαβ has two principal components, in-plane 
Aαβ and out-of-plane Ac. 

The components of the exchange stiffness tensor may be found both theoretically using 
noncollinear spin-polarized band structure calculations, and experimentally, from the 
long-wavelength part of the magnon dispersion spectrum. Nevertheless, to my knowledge, 
none of these methods was applied to hard magnets, and the isotropic model (Ac = Aab = A) 
was explicitly used in all micromagnetic calculations (see, e.g., Refs. [2,3]), while A is usu-
ally estimated from the Curie temperature [4]. This paper reports the results of calculations 
of Aab and Ac for several uniaxial hard magnets including CoPt, FePt, FePd and the SmCo5-
like compound YCo5. It turns out that exchange stiffness anisotropy in hard magnets is 
typically quite large. 

Strong anisotropy of exchange stiffness may significantly affect the hysteretic properties 
of a magnet because it translates into anisotropic domain wall surface tension 
 
     γn = 4(AnK)1/2, (2) 
 
where K is the MCA constant, and An is the exchange stiffness along the direction normal 
to the domain wall. Therefore, the domain walls have a tendency to align normal to the 
magnetically soft direction (the one with the lowest An). 

On the other hand, according to the pole avoidance principle, the magnetostatic contri-
bution to the free energy prefers to eliminate the “magnetic charges” ρ = –div M localized 
on the domain walls by aligning them parallel to the magnetization axis. For a magnet with 
easy-axis MCA, if Aab < Ac then the exchange term favors the alignment of domain walls 
parallel to the easy axis, just as the magnetostatic term. However, if Aab > Ac as in all studied 
alloys, then the exchange and magnetostatic terms favor different (orthogonal) domain 
wall orientations. The relative importance of these terms depends on the length scale and 
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geometry of the domain structure. As we will see below, the exchange term often dominates 
in hard magnets with sufficiently fine domain structures. In this case common considera-
tions based on the pole avoidance principle are inapplicable, and various peculiarities in 
the domain structure and its response to the external magnetic field should be expected. 

The rest of the paper is organized as follows. Anisotropy of exchange stiffness in several 
typical hard magnets is determined using first-principles calculations in Section 2. Tem-
perature dependence of the exchange stiffness anisotropy is discussed in Section 3. The 
following sections describe the effects of exchange stiffness anisotropy on the properties of 
the domain structure. Anisotropic domain wall bending is considered in Section 4 from 
the general point of view. The effect of anisotropic domain wall bending on the coercivity 
of cellular Sm–Co magnets is addressed in Section 5. Section 6 examines the effects of ex-
change stiffness anisotropy on the structure of domain walls and coercivity of polytwinned 
CoPt-type magnets. Section 7 concludes the paper. 
 
2. Calculation of exchange stiffness in CoPt type and YCo5 magnets 
 
The values of Aab, Ac were calculated using the spin-spiral formulation [5] of the tight-binding 
linear muffin-tin orbital (TB-LMTO) method within the atomic sphere approximation 
(ASA) including the “combined correction” term [6]. The spin-spiral (“frozen magnon”) 
approach is much more reliable compared to the calculation of exchange stiffness based 
on a finite number of pair exchange parameters because in practice the corresponding sum 
in real space does not converge. 

Local spin density approximation (LSDA) was used with von Barth–Hedin exchange-
correlation potential [7]. The calculations were carried out for experimental values [8–10] 
of lattice constants given in Table 1. The atomic sphere radii for both constituents were 
taken to be equal to each other in CoPt, FePt, and FePd. In YCo5 the radii were 3.548 a.u. 
for Y and 2.627 a.u. for Co in both inequivalent positions. The calculations were repeated 
for two setups with three (lmax = 2) and four (lmax = 3) basis functions per atom, and care was 
taken to achieve convergence with the Brillouin zone sampling. Spin-orbit coupling was 
neglected. 
 

Table 1. Lattice parameters and calculated values of in-plane and out-of-plane exchange stiffness 
(units of 10–6 erg/cm). The value given before (after) the slash was calculated with lmax = 2(lmax = 3) 
 CoPt FePt FePd YCo5 Co 
a, Å 3.806 3.861 3.860 4.937 2.507 
c/a 0.968 0.981 0.968 0.806 1.623 
Aab 1.70/1.58 1.10/0.87 1.89/1.78 3.97/3.89 3.55 
Ac 1.13/1.03 0.38/0.06 0.87/0.72 1.68/1.57 3.43 
α = Ac/Aab 0.66/0.65 0.34/0.07 0.46/0.40 0.42/0.40 0.97 
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In the spin-spiral method the direction of the magnetic moment at site i depends on 
coordinates as 
 
     ei = (sin θ cos qri, sin θ sin qri, cos θ), (3) 
 
where q is the wave vector and θ the amplitude of the spin spiral. For a spin spiral with 
small q at zero temperature, according to Eq. (1), we have 
 
     E/V = Aαβ qαqβ sin2 θ, (4) 
 
where E and V are the excess total energy referenced from the ferromagnetic state and 
volume of the computational cell. 

The results listed in Table 1 show that the exchange stiffness anisotropy is quite large in 
all studied alloys. Notably, Aab is everywhere greater than Ac due to the predominantly in-
plane bonding between Fe or Co atoms. For comparison, the values of Aab and Ac were also 
calculated for HCP cobalt. Here the exchange stiffness is almost isotropic as expected, and 
its value of approximately 3.5 × 10–6 erg/cm (or D ≃ 600 meV Å2) is in good agreement with 
experiment [11] and with other calculations [12,13]. The exchange stiffness for both direc-
tions is larger in YCo5 compared to CoPt-type alloys due to higher Co concentration. Aab in 
YCo5 is close to that in HCP Co. 

The out-of-plane exchange stiffness in FePt is unusually small and very sensitive to the 
lattice parameter c. This magnetostructural effect may be quantified by the value W = dAc/d 
ln c = 26 × 10–6 erg/cm. Low value of Ac and high value of W imply that moderate compres-
sion of the order of 1–2% along the c-axis may induce magnetic instability in FePt with the 
formation of a spin wave in the c direction. This conclusion agrees qualitatively with the 
results of other studies suggesting that the layered antiferromagnetically ordered state (a 
special case of such spin wave) in FePt has lower energy compared to the ferromagnetic 
state under moderate c/a reduction [14] or even at experimental lattice parameters [15]. 
However, strong sensitivity of Ac to the basis set (see Table 1) indicates that ASA is too 
crude for the description of magnetic energetics in FePt. On the other hand, the LSDA ap-
proximation also seems to be insufficient because adding any of the two forms of gradient 
corrections [16,17] to the LSDA exchange-correlation potential notably tends to stabilize 
the ferromagnetic phase, not that the competition between different magnetic structures 
(including non-collinear ones) is characteristic for FCC phases of iron [18] and its alloys 
(Fe3Pt is a known Invar alloy), and hence it is not surprising for FePt. 

From the practical point of view, structural sensitivity of Ac in FePt suggests that the 
exchange stiffness anisotropy in this magnet may be controlled using chemical pressure 
[14], appropriate doping or off-stoichiometry. In view of the strong effect of this anisotropy 
on the hysteretic properties (see below), this possibility may be useful in applications, such 
as the design of perpendicular magnetic recording media. 
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3. Temperature dependence 
 
It is obvious that exchange stiffness anisotropy α = Ac/Aab is an additional parameter of 
micromagnetics which may have a strong effect on the coercivity and other properties of 
magnets. In this connection it is worth noting that in some materials α may strongly de-
pend on temperature and doping. For example, consider a layered magnet with atoms of 
type A in even layers and type B in odd layers. Suppose that the exchange interaction is 
strong for A–A pairs, negligible for B–B pairs, and small for A–B pairs. This is a good ap-
proximation for all CoPt type magnets, where A corresponds to the 3d metal, and B to Pt 
or Pd. If we assume that the magnitudes of the magnetic moments MA and MB do not de-
pend on temperature (rigid local moments model), in the mean field approximation the 
reduced magnetization of the B layer mB = ⟨MB⟩/MB is 
 
     mB = f(2JBAmA/T) (5) 
 
where mA = ⟨MA⟩/MA, f(x) = coth(x) – 1/x, and JBA = ∑jJij where site i is within the B layer and 
j runs over A sites. Since JBA, as we assumed, is much smaller than JAA (defined with both i 
and j in the A layer), there is a wide range of temperatures where the alloy is still ferro-
magnetic, but JBA/T ≲ 1. In this region f(x) ≈ x/3, and, supposing that the Curie temperature 
Tc is almost entirely determined by A-A interactions (Tc ≈ 2JAA/3), we obtain 
 
     𝑚𝑚B

𝑚𝑚A
≈ 𝐽𝐽BA

𝐽𝐽AA

𝑇𝑇c
𝑇𝑇

, (6) 

 
that is, the ratio of magnetizations of B and A sublattices is inversely proportional to tem-
perature. Obviously, the relative contribution of A–B pairs to Aab and Ac in the mean field 
approximation follows the same law. At the same time, due to the layered structure the A–B 
pairs may give an important contribution to Ac at T = 0 (according to the calculation, this 
is the case in FePt). Eq. (6) implies that close to Tc this contribution is reduced by a factor 
JBA/JAA, and hence α is essentially determined only by exchange interaction in A–A pairs. 

In addition, in magnets like FePt the induced magnetic moments of Pt atoms should be 
more easily destroyed by thermal excitations compared to the self-induced, well-localized 
Fe moments, and the temperature dependence of α should be even more pronounced. 

On the other hand, non-magnetic impurities in a layered system (e.g., Cu in SmCo5) may 
energetically prefer some specific layers. At high concentration of such impurities the in-
terlayer exchange coupling will be strongly reduced, again decreasing α and also enhanc-
ing its temperature dependence. 

These effects provide an interesting mechanism for the dependence of magnetic prop-
erties on temperature and doping due to the increased domain wall bending. This relation-
ship may be important in Sm–Co-type magnets where domain walls are heavily bent, as 
discussed in Section 5. 
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4. Anisotropic domain wall bending 
 
Bending of pinned domain walls in external magnetic field was invoked by many authors 
to describe certain aspects of coercivity and hysteresis in magnets [19–24]. This bending, 
which generally manifests itself in the initial magnetic susceptibility, was incorporated in 
the Globus model to describe the hysteresis loop of granular magnets [20]. Pinning of bend-
ing domain walls on an array of defects was also considered by a number of authors, see 
Ref. [22] and references therein. 

In real magnets domain wall bending may play a more subtle role in the magnetization 
reversal. For some microstructures bending of domain walls may facilitate their pinning 
by increasing the area of contact with pinning centers. In particular, this mechanism was 
discussed in the studies of coercivity and hysteresis loop in SmCo5 powders [21] and in 
cellular Sm–Co magnets [23,24]. 

In previous treatments of domain wall bending the exchange stiffness was assumed to 
be isotropic. Here we will discuss the effect of exchange stiffness anisotropy on the domain 
wall bending. 

First, we will study domain wall bending neglecting the associated stray fields. As we 
will see below, this approximation is valid when the characteristic magnetic flux closure 
length is sufficiently small. 

To get a general feeling of the problem of domain wall bending, it is useful to invoke a 
direct analogy between domain walls and foam bubbles. Indeed, in the presence of exter-
nal magnetic field H the domain walls in a uniaxial magnet experience constant pressure 
of magnitude 2MH directed away from the regions where MH is positive. On the other 
hand, if the exchange stiffness tensor is isotropic, the free energy of a domain wall is simply 
proportional to its total area, just as that of a foam membrane. 

This analogy allows one to guess the equilibrium configurations of domain walls pinned 
by certain symmetric pinning sites. For example, a domain wall pinned by a circular defect 
should obviously have the form of a sphere segment with radius R related to the external 
field as R = γ(MH)–1 (the Laplace pressure 2γ/R of the curved domain wall compensates 
the applied pressure 2MH). This result was obtained in Ref. [24] where the sphere segment 
was used as a variational trial function. A domain wall pinned at two parallel straight lines 
assumes cylindrical shape with twice as smaller radius; this solution was discussed for a 
domain wall in a thin ferroelectric film [25]. 

If exchange stiffness is anisotropic, the analogy with the foam membrane no longer 
holds because the domain wall surface tension is also anisotropic. Denoting the angle be-
tween the normal to the domain wall and the magnetization axis as φ, the surface tension 
of the domain wall is given by Eq. (2) with 
 
     An = Aab sin2 φ + Ac cos2 φ. (7) 
 

Consider a domain wall pinned at a closed curve B with a typical size R0 lying in the 
x = 0 plane, choosing the z axis parallel to the easy magnetization axis. The shape of the 
domain wall is defined by a function ξ = ξ(y, z) with ξ = 0 at the boundary B. The total free 
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energy is easily shown to be (we still neglect the stray fields and assume for simplicity that 
H is parallel to the z-axis) 
 

     𝐹𝐹 = �∫ 𝛾𝛾𝑎𝑎𝑎𝑎�1 + �𝜕𝜕𝑦𝑦𝜉𝜉�2 + 𝛼𝛼(𝜕𝜕𝑧𝑧𝜉𝜉)2 − 2𝑀𝑀𝐻𝐻𝜉𝜉� d𝑦𝑦 d𝑧𝑧 (8) 

 
where γab is the surface tension of a domain wall parallel to the z-axis, the integral is taken 
over the area bounded by B, and ∂y ≡ ∂/∂y, etc. In the isotropic case Eq. (8) reduces to the 
expressions of Refs. [24,25]. In zero field the equilibrium shape of the domain wall is just ξ 
= 0; while at H ≠ 0 it satisfies the Euler–Lagrange equation corresponding to the variational 
problem δF = 0 
 
     (∂yR–1∂y + α∂zR–1∂z)ξ + Rab–1 = 0, (9) 
 
where R is the square root from Eq. (8), and Rab–1 = 2MH/γab is the domain wall curvature 
for “in-plane bending” (i.e., that with ∂zξ ≡ 0). The role of exchange stiffness anisotropy is 
seen most clearly for the case when the external field is weak, H ≪ γ(MR0)–1, and ξ ≪ R0. 
In this case we obtain to first order in ξ 
 
     �𝜕𝜕𝑦𝑦

2 + 𝛼𝛼𝜕𝜕𝑧𝑧
2�𝜉𝜉 + 𝑅𝑅𝑎𝑎𝑎𝑎

−1 = 0. (10) 
 

Eq. (10) shows that the domain wall bends more easily “out of plane” (∂yξ = 0) if α < 1 
and “in plane” (∂zξ = 0) if α > 1: Indeed, if boundary B is formed by two straight segments 
parallel to the z axis as in Ref. [25] (e.g., pinholes in a film) at distance L = 2R0 from each 
other, then ξ does not depend on z; and from Eq. (10) we obtain the angle of domain wall 
deflection at the pinning site: β = 2MHR0/γab. On the other hand, if the boundary B is formed 
by straight lines parallel to y direction (e.g., scratches on a film surface), then ξ does not 
depend on y, and the deflection angle is α–1 times larger. The latter configuration is shown 
in Figure 1. 
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Figure 1. Cylindrical out-of-plane bending of a domain wall (thick solid line) pinned by 
two line defects located at x = 0, z = ± R0. C is the axis, and R the radius of the cylindrical 
domain wall. β is the domain wall deflection angle at the defect. The gray dashed line 
shows the fictitious domain wall used in the calculation of the magnetostatic energy. The 
size of plus and minus symbols schematically shows the magnetic charge density on the 
real and fictitious walls. 

 
The practical implication of this result is that the efficiency of pinning centers in a mag-

net with anisotropic exchange stiffness depends on their orientation. In α < 1 case typical 
for hard magnets the domain walls bend more easily when pinned by defects that are nor-
mal to the magnetization axis. 

The exact shape of the domain wall in external field may be found from the solution of 
the Euler-Lagrange equation without the assumption ξ ≪R0. This yields the circular cylin-
der segment [25] of radius Rab for in-plane bending, and the elliptic cylinder segment for 
out-of-plane bending 
 
     (𝜉𝜉 − 𝜉𝜉0)2 + 𝛼𝛼−1𝑧𝑧2 = 𝑅𝑅𝑎𝑎𝑎𝑎

2 , (11) 
 
where 𝜉𝜉0

2 = 𝑅𝑅𝑎𝑎𝑎𝑎
2 − 𝑅𝑅0

2/𝛼𝛼. 
 

Now, let us clarify the role of magnetostatic (stray) fields. If the domain wall is parallel 
to the magnetization axis z, it has no net magnetic charge. Any deviation from this align-
ment produces magnetic charge on the wall with surface density σ = 2M cos φ, where φ is 
defined exactly as in Eq. (7). Obviously, in-plane domain wall bending does not induce 
any charges on the wall, and we should only be concerned about stray fields when we are 
dealing with out-of-plane curvature. 

To estimate when stray fields may notably affect out-of-plane domain wall bending, we 
have to compare the magnetostatic energy δεm generated by domain wall charging to the 
excess surface free energy δεs associated with this bending (both energies are defined per 
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unit length in the y direction). We assume that the domain wall is pinned by two line de-
fects parallel to the y-axis and displaced from each other by a distance L = 2R0 along the 
z-axis, as shown in Figure 1. We will find δεm and δεs for a domain wall bent in a weak 
field. As follows from Eq. (10), in this case the domain wall is shaped as a segment of a 
circular cylinder of large radius R = αRab. Substituting this solution in Eq. (8) we obtain δεs 
≈ ⅓αγabR30/R2. 

The magnetostatic energy is given by the integral 
 
     𝛿𝛿𝜀𝜀m = − 1

2 ∫ 𝐌𝐌𝐇𝐇md𝑥𝑥 d𝑧𝑧, (12) 
 
where Hm is the stray field generated by the surface charges on the domain wall. The dis-
tribution of these charges is antisymmetric with respect to the z = 0 plane (see Fig. 1), and 
the stray field obviously falls off at the length scale of R0. The total positive charge per unit 
length of the wall is of the order ρ+ ≈ MR20/R (assuming R ≫ R0). Since the magnetization is 
reversed at the domain wall, there is a strong cancellation in integral (12). Indeed, using 
the superposition principle, let us add a fictitious domain wall which is a mirror image of 
the real domain wall with respect to the x = 0 plane. This fictitious wall is shown in Figure 
1 by the gray dashed line. Mirror reflection also reverses the sign of the magnetic charges. 
For symmetry considerations, the contribution to integral (12) from outside of the lens-
shaped area between the real and fictitious walls doubles when the fictitious charges are 
added. At the same time, this contribution is negligibly small because the two walls form 
a thin capacitor, and the field is confined to its interior. Therefore, only this interior region 
of cross-section 4/3 R30/R contributes to δεm. The stray field in this area is of the order 2ρ+/R0 
(now we should take the field only from the real domain wall), and from Eq. (12) we find 
δεm ≈ 4/3 M2R40/R2. Thus, we obtain δεm/δεs = νM2R0/(αγab) where the form-factor ν ≈ 4. This 
relation also holds when the curvature is not small (R~R0), but ν should be somewhat dif-
ferent. 

The relative importance of the magnetostatic energy increases linearly with R0. Using 
the relation γab = 4Kδab/π where δab = π(Aab/K)1/2 is the in-plane domain wall width, we find 
that δεm overcomes δεs at L~lcr = 4αδab/η, where η = 2πM2/K is the dimensionless magneto-
static parameter (in hard magnets η is small, e.g., in Sm2Co17, CoPt, and FePt it is close to 
0.1). Thus, at L ≲ lcr the external field works mainly against the domain wall surface tension, 
and its anisotropy is reflected in the domain wall bending according to Eq. (9). At L ≳ lcr 
the external field works mainly against magnetostatic forces, which makes the contribution 
of surface tension (together with its anisotropy) unimportant. By minimizing the total free 
energy given by Eq. (8) with δεm added, we find the deflection angle taking into account 
all energy terms: β ≃ β0L/(lcr + L) where β0 = H/2M. Note, however, that this expression is 
approximate because the equilibrium shape of the domain wall at L ≳ lcr is no more a cy-
lindrical segment, and because we derived it assuming R ≫ R0. At L ≪ lcr this result coin-
cides with β found above neglecting the stray fields. However, as L is increased beyond lcr, 
β approaches its asymptotic limit β0 and stops changing. 

In general, the parameter lcr appears in all problems when magnetostatic interaction 
competes with the domain wall energy. In a specific geometry, the characteristic flux closure 
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length lf should be compared with this parameter. At lf ≫ lcr the magnetostatic interaction 
dominates; at lf ≪ lcr it may be neglected. In particular, the crossover length lcr has the order 
of the material parameter λ of the magnetic bubble domain theory (see, e.g., Ref. [26]). 
Together with η, this parameter also controls the structure of charged domain walls in thin 
films [27]. The critical single-domain size of a particle Rsd is also proportional to lcr; for 
example, for a sphere with isotropic exchange stiffness Rsd ≈ 5.6δ/η [4]. 
 
5. Cellular Sm-Co magnets 
 
Magnetization reversal in cellular Sm-Co magnets involves heavy bending of domain 
walls. Since the anisotropy of exchange stiffness strongly affects the ability of domain walls 
to bend, it is likely to play an important role in the development of coercivity. In this sec-
tion we will focus on the model of repulsive domain wall pinning at the cell boundaries 
and show that this mechanism cannot be realized unless the exchange stiffness is strongly 
anisotropic, and specifically oriented line defects (such as those provided by the platelet 
phase) are available for domain wall pinning in addition to the cell boundaries. 

Precipitation-hardened magnets based on an appropriately doped Sm2Co17–SmCo5 sys-
tem develop outstanding magnetic hardness in a wide range of temperatures. It is associ-
ated with the formation of a cellular microstructure where rhomboid Sm2Co17-based (2:17) 
cells are surrounded by SmCo5-based (1:5) boundary phase [28–30] and is usually ex-
plained by domain wall pinning at the cell boundaries [28]. Some other mechanisms of 
coercivity were also suggested [31–33]. 

Whether pinning at the cell boundaries is attractive or repulsive depends on the mag-
netic properties of 2:17 and 1:5 phases for the given (doped) system. Recent experiments 
of Kronmüller and Goll [34] support the hypothesis that pinning is repulsive at room tem-
perature but attractive at high temperatures, which also explains the anomalous tempera-
ture dependence of coercivity (see Ref. [31] and references therein). 

The estimated unpinning field for the cell boundaries (in the plane-parallel configuration) 
agrees with the experimentally observed coercivity [34]. However, this does not fully ex-
plain high coercivity because magnetization reversal always takes the path of lowest ener-
getic barriers. It is not sufficient for a high barrier to be present; it is necessary that there 
be no way around it. The domain walls might move parallel to the hexagonal axis and 
never align parallel to the cell boundaries. In order to be pressed against the cell bounda-
ries, the domain walls must bend in the external field. Skomski [24] estimated the deflec-
tion angle β of a domain wall at a pinning site at 56° assuming H = 0.8 T, cell size L = 80 
nm, spherical bending, and isotropic exchange stiffness. 

However, this value of the external field appears to be too high for this estimate. Indeed, 
domain wall bending requires pinning at some “seed defects” other than the cell bounda-
ries.1 In order to estimate the unpinning field for these defects, we note that the coercivity 
of samples that had not been subjected to slow cooling is only of the order of 0.1 T [34]. 
The role of slow cooling is likely to promote the formation of the 1:5 phase with segregated 
copper [34]. Assuming that the properties of the 2:17 cells are essentially unchanged during 
the slow cooling, we may take the value of 0.1 T as an estimate of the unpinning field for 
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the seed defects. The same value corresponds to domain wall pinning at the vertices of the 
cells [24]. Thus, we obtain β ≈ 6° which is clearly insufficient to press the domain wall 
against the cell boundary. 

The above estimate assumes spherical bending and isotropic exchange stiffness. In re-
ality, it is reasonable to assume that the values of exchange stiffness anisotropy in the 2:17 
phases of the Sm-Co and Y-Co systems are very close because exchange coupling is dom-
inated by Co-Co pairs. Indeed, the Curie temperatures of all R2Co17 phases (where R is a 
rare-earth atom or yttrium) are almost identical [4], while the 2:17 phase may be obtained 
from the 1:5 phase simply by a replacement of every third samarium atom by a Co2 dumb-
bell. Thus, we assume that the factor α in pure Sm2Co17 is close to its value of 0.4 obtained 
for YCo5 at T = 0 (Table 1). How does this affect the estimate of β? As follows from Eq. (10), 
exchange stiffness anisotropy strongly facilitates domain wall bending only if it is pinned 
by line defects normal to the magnetization axis (as in Fig. 1). In this case the deflection 
angle β contains an additional factor of α–1 due to exchange stiffness anisotropy and a factor 
of two due to the fact that bending is cylindric instead of spheric. This brings β to 30°, 
neglecting the effect of stray fields. 

The magnetostatic term in the total energy of a bent domain wall is notable, although 
not yet dominating for the cell size L = 80 nm: Indeed, taking Aab = 4 × 10–6 erg/cm and α = 
0.4 as found above for YCo5, K = 3 × 107 erg/cm3 (Ref. [34]), and M = 950 emu/cm3 we obtain 
γab = 44 erg/cm2, δab = 12 nm, η = 0.15, and lcr ≈ 130 nm: Using the approximate formula from 
Section 4, we arrive at the final estimate of β ≈ 18°. 

Let us summarize the results obtained above. For the typical cell size of 80 nm the ex-
ternal field of 0.1 T (corresponding to the unpinning of uncurved walls) may induce the 
domain wall deflection of about 18° if the exchange stiffness anisotropy is large and if the 
domain walls may be initially pinned by line defects normal to the magnetization axis. If 
either of these two conditions is not met, the domain walls deflect only by about 6° before 
they are unpinned from the initial pinning centers. 

According to these estimates, the deflection angle does not reach the typical cell-boundary 
inclination of 30°. Although our assumptions may be loosened up to some extent (for ex-
ample, allowing for a somewhat larger unpinning field for uncurved walls), it seems clear 
that the repulsive cell-boundary pinning mechanism of coercivity may be realized in only 
Sm-Co magnets under a very favorable set of circumstances. In particular, it requires the 
presence of initial pinning defects normal to the z-axis. 

High coercivity develops in Sm-Co magnets only when they are doped with zirconium 
[35] which promotes the formation of thin lamellae normal to the hexagonal axis of the 
crystal. The intersections of these lamellae with cell boundaries have the “right” orienta-
tion needed for high coercivity in the repulsive pinning case. Therefore, if high coercivity 
of cellular Sm-Co magnets is due to repulsive pinning at the cell boundaries, it is likely 
that the lamellar phase provides the initial pinning centers for domain wall bending. This 
conclusion does not contradict the observation [34] that in the low-coercivity state obtained 
after annealing at 800°C the microstructure and the platelet phase are fully developed. In-
deed, the platelet phase simply provides initial pinning sites which may be useful only in 
the presence of strongly pinning cell boundaries developing only after the slow cooling. 
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However, the microscopic origin of pinning at the initial pinning sites is yet to be deter-
mined. 
 
6. Slanting and rotation of domain walls in CoPt-type magnets 
 
In this section we will explore the effects of exchange stiffness anisotropy on the structure 
of domain walls and magnetization reversal in polytwinned CoPt-type magnets. The mi-
crostructure of these magnets consists of regular stacks of L10-ordered domains (c-domains). 
In each stack the c-domains are separated by parallel twin boundaries in one of the {1 1 0} 
planes [36–40]. There is always a high density of antiphase boundaries within the c-domains 
[36–39,41]. 

Usually the c-domain thickness d is large compared to the domain wall width δ~5 nm, 
and each c-domain may be regarded as an individual magnetic domain with intrinsic 90° 
domain walls at the twin boundaries [40]. The dynamic domain structure is formed by 
macrodomain walls [39,40] crossing many twin boundaries in a stack. These walls are split 
at the twin boundaries, and their segments are coupled only by relatively weak magneto-
static forces [42]. 

Below, we study the effects of exchange stiffness anisotropy on the properties of mac-
rodomain walls. We will describe the orientation of macrodomain wall segments, the en-
ergetical preference of different global macrodomain wall orientations, the rotation of 
segments during macrodomain wall splitting in external field, and the relation of these 
properties with coercivity. 

Consider a (1 1̄  0) oriented macrodomain wall shown schematically in Figure 2. As it is 
shown by large empty arrows, the magnetization in each c-domain is parallel to the easy c 
axis, and it is reversed at the macrodomain wall. The exchange stiffness An is given by Eq. 
(7) where φ, as shown in Figure 2, is now the angle between the normal to the domain wall 
segment and the tetragonal axis c. Without magnetostatic interaction, the surface tension 
of the macrodomain wall (e.g., the free energy of the domain wall segment per unit normal 
cross-section) is 4(AnK)1/2[cos(π/4 – φ)]–1. Minimizing over φ we obtain 
 
   tan φ = α (13) 
 
where, as above, α = Ac/Aab. This result is analogous to a similar expression obtained for an 
antiphase boundary [43]. We see that for Ac = Aab (isotropic exchange stiffness) φ = π/4 as it 
should be—the domain wall has no preferential orientation and simply minimizes its area 
by aligning perpendicular to the twin boundaries. For Ac ≠ Aab the domain wall segments 
slant so as to decrease the surface tension. 
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Figure 2. Macrodomain wall in the polytwinned stack (three c-domains shown). The cen-
tral segment of the wall is marked DW. Large empty arrows show the direction of mag-
netization. Arrows marked “c” show the tetragonal axes in each c-domain; arrow marked 
“a” shows one of the other two four-fold axes of the parent FCC lattice. If x and y coordi-
nates are assigned to a and c axes of the central c-domain, the macrodomain wall has a 

global (1 1̄  0) orientation. 
 

Segments of a (1 1̄  0) macrodomain wall carry magnetic charges of alternating signs [42], 
and the flux closure length lf is obviously of the order of the c-domain thickness d. There-
fore, at d ≳ lcr the magnetostatic interaction dominates, and the segments align parallel to 
the tetragonal axes to get rid of the magnetic charge, while at d ≪ lcr their orientation is 
determined by Eq. (13). Here lcr is proportional to δ/η, but the form-factor is different from 
that found in Section 4 for domain wall bending. In CoPt and FePt lcr is of the order of 50 
nm. Thus, while d increases during the microstructural coarsening, the domain wall seg-
ments gradually slant from the angle given by Eq. (13) toward the tetragonal axis.2 

Contrary to the (1 1̄  0) oriented macrodomain wall, the segments of a (0 0 1) oriented 
one are perpendicular to the twin boundaries at any d because this minimizes both the 
surface energy and the magnetostatic energy. At d ≳ lcr the (0 0 1) macrodomain wall has 
lower energy than the (1 1̄  0) one because its segments do not carry any magnetic charge. 
However, at d ≪ lcr the preferential global orientation is determined by exchange stiffness 
anisotropy. The surface tension for (0 0 1) and (1 1̄  0) macrodomain walls (per unit normal 
cross-section) is γab and γab[2α/(1 + α)]1/2, respectively. Therefore, at α > 1 the (0 0 1) orienta-
tion is favorable, while in the actual case α < 1 the (1 1̄  0) orientation is favorable. This 
explains why macrodomain walls observed in FePt crystals have {1 1 0} orientation [40] 
while those in FePd with much larger η and hence smaller lcr have {1 0 0} orientation [44]. 

High coercivity of CoPt-type magnets is likely due to the combination of macrodomain 
wall splitting and pinning of their segments at antiphase boundaries [45,46]. The highest 
possible coercivity is achieved when antiphase boundaries are planar and domain wall 
segments are parallel to them [47]. The antiphase boundaries in CoPt-type magnets often 
have a preferential crystallographic orientation, which is clear from theoretical considera-
tions [43], and observed experimentally for CoPt [38]. Typically, they slant toward the te-
tragonal axis, contrary to the domain wall segments which slant away from the tetragonal 
axis at Ac < Aab and d ≪ lcr. This means that while d increases during the microstructural 
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coarsening, at some point the domain wall segments will become parallel to the preferen-
tial orientation of antiphase boundaries, producing a maximum in the coercivity. 

Interestingly, a similar segment rotation may occur dynamically. If the external field 
above the splitting threshold [45] is applied parallel to the twin boundaries, the macrodo-
main wall is split in two “partial macrodomain walls” which are driven apart from each 
other. One partial wall is composed of segments in all odd c-domains, and the other of 
segments in even c-domains. Suppose that d ≪ lcr so that the orientation of segments in the 
(1 1̄  0) macrodomain wall is given by Eq. (13). Since these segments carry magnetic charges 
of ± 2M cos φ per unit area, the two partial macrodomain walls carry equal charge densities 
of opposite sign. The corresponding stray field makes an additional contribution ΔE to the 
magnetostatic energy proportional to the distance L between the partial macrodomain 
walls. If the angle φ were fixed, at L ≳ lcr this positive contribution would dominate over 
the surface energy of the segments (now the flux closure length lf is clearly L). Therefore, 
as the two partial macrodomain walls move apart (L is increased to lcr), their segments 
gradually rotate toward the tetragonal axis to get rid of the magnetic charge. 

As a result, at some L the segments of a splitting macrodomain wall become parallel to 
antiphase boundaries, just as in the case of increasing d discussed above. If the typical dis-
tance between antiphase boundaries is smaller than lcr (the scale of L where domain wall 
segment rotation occurs), the segments will be pinned by antiphase boundaries at the 
plain-parallel configuration. In this scenario the coercivity achieves its highest possible 
value for suitably oriented polytwinned stacks at any d ≪ lcr, i.e., at relatively early stages 
of coarsening. This mechanism may play an important role in real CoPt-type magnets de-
veloping high coercivity just at these early stages. 
 
7. Conclusion 
 
Using the spin-spiral version of the TB-LMTO method, the in-plane and out-of-plane prin-
cipal components of the exchange stiffness tensor were calculated for several typical hard 
magnets. The results show that this tensor usually has a considerable anisotropy. The out-
of-plane component is smaller than the in-plane one in all studied hard magnets except 
pure HCP Co where exchange stiffness is isotropic. The anisotropy is especially high in 
FePt. In certain materials with intrinsically nonmagnetic layers (CoPt, FePt, etc.) the ani-
sotropy of exchange stiffness may strongly increase at finite temperatures or with suitable 
nonmagnetic doping. 

Anisotropy of exchange stiffness may have a strong effect on the orientation of domain 
walls and on their resistance to bending, and hence on the hysteretic properties of the mag-
net. These effects may be expected whenever the typical flux closure length associated with 
the stray fields does not exceed the crossover length lcr ∝ δ/η (see Section 4). 

Low out-of-plane exchange stiffness facilitates out-of-plane domain wall bending. This 
effect is crucial for the development of coercivity in cellular Sm-Co magnets in the repul-
sive cell-boundary pinning regime. This regime may be realized only in the presence of 
linear pinning defects normal to the magnetization axis (such as the intersections of lamel-
lae with the cell boundaries) providing initial pinning centers necessary for the domain 
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walls to bend and get pressed against the strongly pinning cell boundaries. However, the 
estimates obtained in Section 5 suggest that the set of conditions for the realization of this 
regime is very strict. 

In polytwinned CoPt-type magnets the competition between the anisotropy of exchange 
stiffness and magnetostatic interaction controls the orientation of domain wall segments 
and the preferential global macrodomain wall orientation. In particular, the domain wall 
segments gradually rotate toward the tetragonal axis during the microstructural coarsen-
ing as the c-domains become thicker. If the antiphase boundaries have a preferential ori-
entation, the coercivity achieves its maximum at the c-domain thickness when the domain 
wall segments become parallel to the antiphase boundaries. The same competition also 
leads to the dynamic rotation of the segments of a macrodomain wall which is being split 
by the external field. This rotation may result in a dynamic self-locking of domain wall 
segments at antiphase boundaries. 

The effects discussed in this paper demonstrate that the competition between exchange 
stiffness anisotropy and magnetostatic energy is a crucial driving force behind the for-
mation and dynamics of nanoscale domain structures in hard magnets. 
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Notes 
 
1. A similar concept was used by Durst et al. [23] to explain the inflections of the initial magnetiza-

tion curve assuming attractive cell boundary pinning in the same group of magnets. 
2. Simultaneously the magnetic structure of each domain wall segment transforms from neél-to-

Bloch-type in the center of the c-domain, while it remains neél-type in the vicinity of the twin 
boundary. The configuration of the domain wall segments at the initial stage of this transition for 
d ~ 20 nm was shown in Figure 1 of Ref. [42]. 
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