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Abstract

Infestations of corn rootworms (Coleoptera: Chrysomelidae) create economic and
environmental concerns in the Corn Belt region of the United States. To supplement
the population control tactics of areawide pest management programs, we believe
that a better understanding of the spatial relationships between biotic and abiotic
or physical factors at the landscape scale is needed. Our research used several
geographical information systems (GIS) and spatial analytical techniques to examine
relationships between corn rootworm metapopulation dynamics, soil texture, and
elevation. Within GIS, several spatially explicit procedures were used that include an
interpolation technique, spatial autocorrelation analysis, and contingency analysis.
Corn rootworm metapopulation distributions were found to be aggregated and
related to soil texture and elevation. We review techniques and discuss our
preferences for using particular spatially explicit procedures. The information derived
from the spatial analyses demonstrates how GIS can be used in areawide pest
management to provide inputs for spatially explicit models to predict future pest
populations and formulate more well-informed pest management decisions. The
techniques described in this paper could easily be extended to study the spatial
dynamics between other pest populations in agricultural landscapes.
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1 Introduction

Corn rootworms (Coleoptera: Chrysomelidae) are among the most serious insect pests
in the United States. Corn rootworm adults feed on various vegetative parts of the maize
(Zea mays L) plant, while larvae, causing the most severe damage, feed on maize roots.
Structural damage to the roots is caused by larval feeding, which inhibits nutrient and
water uptake, and weakens the root system leading to stalk lodging (Chiang 1973).
Severe stalk lodging causes the maize plant to fall completely over, but usually the
lodged plant continues to grow toward the sunlight leading to a curved plant or what
is commonly called goosenecking. Because these lodged plants are shorter than undam-
aged plants they usually are not harvested. Therefore, corn rootworm infestations cause
yield reductions, costly chemical applications, and increases in environmental contaminants
due to surface water runoff and groundwater alterations. In order to explore new, more
environmentally-friendly corn rootworm control options, the United States Department
of Agriculture (USDA), Agricultural Research Service (ARS) implemented an areawide
pest management initiative in 1995 (Chandler and Faust 1998, Chandler et al. 2000).
This initiative maintains several locations in the United States Corn Belt and relies on
management of adult corn rootworm populations over large geographical areas (land-
scape scale). In 1996, the ARS initiated the corn rootworm areawide management pro-
gram that uses action thresholds to determine appropriate timing for applications of toxic
bait formulations that will reduce corn rootworm populations, enhance environmental
compatibility, and increase economic gains by producers (Chandler and Faust 1998).
From a landscape perspective, the shape, size, and arrangement of habitat patches
can affect species distribution in space (Forman and Godron 1981, Turner 1989, Pickett
and Cadenasso 1995, Collinge and Forman 1998). Members of species that interact among
habitat patches via dispersal form a metapopulation (Opdam 1988). A metapopulation
is spatially subdivided into a series of local populations or subpopulations, and these
subpopulations occur in habitat patches that are immersed in a complex mosaic of other
habitat patches, corridors, and boundaries (Wiens 1997). A metapopulation can be com-
posed of either a single species or multiple species, depending on ecological relationships
such as competition, predation, and mutualism (Nee et al. 1997). A corn rootworm
metapopulation consists of multiple subpopulations each inhabiting maize fields (i.e.
patches) that are separated by other spatially distributed crop fields, roads, shelterbelts,
water bodies, and other land cover types. In addition to structural characteristics of habitat
patches, abiotic or physical factors in the landscape and species behavioral character-
istics can influence the distribution of a metapopulation. For example, soil properties and
topography can influence insect distribution. The microhabitat of a preferred oviposi-
tion site for female corn rootworms is influenced by soil properties such as type, texture,
moisture content, and compaction (Kirk et al. 1968, Ruesink 1986). Certain soil textures
can also influence the mortality rate of corn rootworm larvae (Turpin and Peters 1971).
In addition, corn rootworms are associated with microhabitats that result from differ-
ences in topography in the landscape (Hill and Mayo 1980). Therefore, to better under-
stand some of the sources of variability in arthropod abundance, distribution, and diversity,
it is important to view the agricultural mosaic at the landscape scale (Landis 1994).
To manage an insect metapopulation at the landscape scale, one must process
spatial data layers. GIS are becoming increasingly more important in pest management
programs because they can be used to create maps and conduct geostatistical analysis
of spatial interactions that occur at much larger scales (Roberts et al. 1993). The use of
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GIS to relate insect distributions to physiographic elements of the landscape is essential
for pest managers to predict future pest metapopulation dynamics. This prediction is
accomplished by analyzing map layers and field data to examine spatial relationships
over time. In addition to using GIS to relate insect metapopulations to biological and
physiographic elements of the landscape (Liebhold et al. 1993), GIS are used to analyze
impacts of climate change on insect distributions (Williams and Liebhold 1995) and to
improve pest scouting practices (Lefko et al. 1998).

There are many available spatial analytical techniques that can be employed to
analyze the distribution of corn rootworms. To map populations over sampled and
unsampled areas, a multitude of interpolation methods exist. The interpolation process
calculates predicted values (unknown) within a site by using georeferenced (known)
point locations and the associated table of population data (McCoy and Johnston
2002). To describe these mapped populations in spatial terms, some type of autocorre-
lation analysis can be used. This procedure determines the spatial distribution or dis-
persion pattern (i.e. random, uniform or regular, and aggregated or clumped) of the
population in question by measuring the relationship between aspatial (i.e. soil type,
land use class, and population densities) attributes of objects (i.e. trap sites) with the
distance between the objects (Griffith 1987). For example, two objects that are close
together and have very similar aspatial descriptors are highly spatially correlated (Good-
child 1986). To measure the relationships between physical factors and population
abundance, contingency analysis can be used. Contingency analysis compares the values
of one map layer with those of a second map layer and tabulates the frequency of each
possible combination of both variables (McGrew and Monroe 2000).

In this paper, we describe the use of GIS and spatial analysis to interpret patterns
of spatial variation in corn rootworm abundance. For the purpose of this paper, we
considered the two common regional corn rootworm species (northern corn rootworm
Diabrotica barberi Smith and Lawrence and western corn rootworm Diabrotica virgifera
virgifera Leconte) as one metapopulation. We treat the two species as one metapopula-
tion because management decisions are based on the cumulative numbers of both
species where their distributions overlap, and we wish to emphasize our GIS techniques
and not the biology of each species. Our analyses focuses on examining spatial relation-
ships between corn rootworm metapopulation dynamics, soil texture, and elevation
from 1997 to 2001 at the corn rootworm areawide pest management site in Brookings
County, South Dakota. To analyze these relationships, we used several spatially explicit
procedures within a GIS, which include an interpolation technique, spatial autocorrela-
tion analysis, and contingency analysis (Figure 1). Finally, we discuss our preferences
for using particular procedures compared to other available techniques and illustrate the
use of these outputs in the further development of areawide pest management programs.
We believe that a better understanding of the spatial interactions that occur with insect
pests and the landscape can generate information for spatially explicit models to predict
future metapopulation dynamics and formulate well-informed management decisions.

2 Methodology
2.1 Description of Study Area

Spatial dynamics of the corn rootworm were characterized over a five year period
(1997 to 2001) at the South Dakota Areawide Management Site. This site was located
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Figure 1 A schematic flow diagram of the spatial analytical techniques used and resulting
outputs for this pest management application

in Aurora Township about 3.2 km east of Brookings, South Dakota. It encompasses
41.4 km* (16 square miles) and contains about 60 maize fields, depending on the
year.

2.2 Trapping Methodology

We used different trapping procedures to collect adult corn rootworm beetles. To study
the relationships between environmental and edaphic factors with corn rootworm
population dynamics, an absolute population estimate was needed (Tollefson and
Calvin 1994). Therefore, emergence traps were used to obtain an absolute estimate of
the number of corn rootworms that completed development within a maize field. These
traps (0.6 m X 1.0 m) were placed directly over five cut plants in the crop row to capture
beetles as they emerged from the soil. We also used Pherocon AM® yellow sticky traps
(post-emergence) to monitor adult populations throughout the growing season. The
passive post-emergence traps (0.2 m x 0.3 m) were clamped onto wood lathes placed
between crop rows within each field. We placed these traps at ear height of the maize
plant, or approximately 1 m above the soil surface. As beetles flew through the field,
they were captured on the adhesive surface of the trap.

The number of post-emergence and emergence traps used in each field varied with
field size. Based on previous methods developed by Gerald Sutter (unpublished data),
12 traps were placed in fields of 247 ha, nine traps in fields of 25-46 ha, six traps in
fields of 10-24 ha, and three traps in fields of <9 ha. The traps were placed along
measured transects approximately 60 m apart in the field during mid-to late June each
year, depending on weather conditions. All traps were collected weekly through vital
stages of maize phenology (i.e. no further yield damage could occur from the beetles).
The weekly totals were combined for each year from 1997 to 2001.
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2.3 Land Use and Trap Location

Fields of maize and soybean (Glycine max L Merr) were first georeferenced in 1997
using handheld Trimble GeoExplorer II (Trimble, Sunnyvale, CA) Global Positioning
System units. All land features (fields, roads, streams, etc.) were mapped between 1997
and 2000 and classified according to vegetation type. Trap locations were also
georeferenced in 1998, 1999, and 2000 and classified by trap type. Trap locations were
not georeferenced in 1997, and land features were not georeferenced in 2001; instead
they were deduced from prior georeferenced trap locations and crop fields from the
1998, 1999, and 2000 maps. The georeferenced data were differentially corrected using
Trimble Pathfinder Office 2.01 (Trimble, Sunnyvale, CA) and exported into shapefiles
and projected to match other spatial datasets (i.e. population abundance, soils, and
elevation maps). The projection used for all georeferenced data was Universal Transverse
Mercator (UTM) Zone 14 using the Clarke 1866 Spheroid. The resulting shapefiles
were exported into ArcGIS Desktop 8.x (ESRI, Redlands, CA) and converted to cover-
ages. The computerized tables containing the number of corn rootworms captured were
imported into the trap location tables.

2.4 Species Abundance Layers

The species population abundance maps were created using the ‘Interpolate to Raster’
tool in the ArcGIS 8.x Desktop Spatial Analyst extension to estimate corn rootworm
abundance from the georeferenced trap locations. We used the Inverse Distance
Weighted (IDW) method of interpolation to create the abundance maps. This method
estimates the values of sample data points in the vicinity of each cell. The closer the
point is to the cell center being estimated, the more influence it has in the averaging
process. With IDW, the exponent or power value controls the significance of known
georeferenced points upon the interpolated values, based upon the distance from the
output point (McCoy and Johnston 2002). A high power value (3-5) emphasizes nearer
points and smoothes local differences while a low value (0-2) emphasizes points further
away, resulting in either a more detailed, less smooth output surface or a smoother
surface with less detail, respectively (Krajewski and Gibbs 2001). We chose the most
commonly used, and default, power value of 2. A search radius (fixed or variable) can
also influence the characteristics of the interpolated surface or map layer by limiting the
number of input points for calculating each interpolated cell (McCoy and Johnston
2002). The fixed search radius requires a distance and minimum number of points while
the variable search radius requires the number of points and an optional maximum
distance. We used the default variable search radius, with 12 input points to allow for
variable search neighborhoods, depending on the density of measured points near the
interpolated cell. The resulting maps were in a raster grid format with 26.4 m cell size.

2.5 Soil Texture

The five major soil textures found at the management site were extracted from the
geographic soil survey (SSURGO) database for Brookings County, South Dakota pro-
vided by the USDA Natural Resource and Conservation Service data clearinghouse
(www.ftw.nrcs.usda.gov/ssur_data.html). SSURGO consists of georeferenced digital
map and attribute data in a 7.5-minute quadrangle format.

© Blackwell Publishing Ltd. 2005



114 A A Beckler, B W French and L D Chandler

A soil coverage was created from the Brookings County SSURGO dataset to cover
only the extent of the management site. The ‘Clip’ tool was used in ArcGIS Desktop 8.x
to extract the SSURGO dataset. A surface texture item was added to the soil coverage
and the surface texture attribute, found in the “COMP” table of the SSURGO dataset,
was linked to each map unit (MUSYM). The soil texture coverage was reclassified into
a raster grid with 26.4 m cell size and five major soil texture classes.

2.6 Elevation

The five major elevation classes found at the management site were extracted from
United States Department of Interior Geological Survey digital elevation models provided
by an online database (www.gisdatadepot.com). The dataset consists of georeferenced
digital map and attribute data in a quadrangle format. The scale of the digital elevation
model is 1:24,000 (30 m cell size) and the vertical accuracy is equal to or better than
15 m.

An elevation raster grid was created from the Brookings County dataset to cover
only the extent of the management site. The ‘Subset’ tool was used in ERDAS Imagine
8.4 (Leica Geosystems, Atlanta, GA) to manipulate the digital dataset. The range of
elevation was 494 m to 519 m. The clipped elevation raster grid was reclassified into a
new raster grid with 26.4 m cell size and five equal-interval elevation classes.

2.7 Statistical Analysis

To measure corn rootworm spatial distribution, the Moran’s I coefficient was used to
determine the degree of autocorrelation for the interpolated species abundance maps.
Using Idrisi 32.22 GIS software (Clark Labs, Worcester, MA), the ‘Autocorr’ command
calculated a Moran’s I coefficient for each raster grid. In a raster grid, the objects correspond
to the cells and the aspatial attributes correspond to cell values. The Moran’s I coefficient
describes the degree to which values in any cell will be similar to the cells surrounding
it. When adjacent cells are very dissimilar (negative or random spatial autocorrelation),
the coefficient is —1, when they are very much alike (positive or aggregated spatial
autocorrelation), the coefficient is +1 (Vasiliev 1996). The King’s Case procedure was
used, which examines the cells diagonally connected to each cell as well as those nor-
mally examined for the Rook’s Case, which examines only cells to the left, right, above,
and below each raster grid cell. Diagonal cells are given a weight of only 0.7071, relative
to a weight of 1.0 to those vertically or horizontally adjacent (Eastman 2001).
Contingency analysis was used to analyze the relationship between corn rootworm
populations, soil texture, and elevation. To do this, we had to determine whether to use
emergence or post-emergence traps in the analysis. Corn rootworm emergence probably
correlates with optimal conditions for oviposition and larval survival and should asso-
ciate with edaphic factors like soil texture and topography (Tollefson and Calvin 1994).
However, the number of emergence cages in the management site was much fewer than
the number of post-emergence traps. Hence, the post-emergence traps covered a broader
extent of the management site than emergence cages, and encompassed all elevation
classes and soil types. These traps are also less cumbersome to handle and process than
emergence cages, commercially available, and provide a relatively accurate estimation of
population abundance (Hein and Tollefson 1984, 1985; but see Gray and Steffey 1995).
In addition, the post-emergence traps were successfully used as a population control
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technique (i.e. triggered pesticide applications) in the South Dakota management site as
well as corn rootworm management sites in Illinois/Indiana, Iowa, Kansas, and Texas
(Chandler and Faust 1998, Tollefson 1998, Wilde et al. 1998). Therefore, a significant
correlation between corn rootworm emergence and post-emergence would justify using
post-emergence interpolated maps in determining relationships with soil texture and
elevation.

The ArcInfo 8.x GRID module (ESRI, Redlands, CA) was used to compute a cor-
relation coefficient that compared emergence and post-emergence population abundance
raster maps. The ‘Correlation’ command calculates the cross correlation or degree of
similarity between the cells of two input grids (emergence and post-emergence) and
outputs a correlation coefficient. The resulting correlation coefficient will be a value
ranging from -1 to +1. If the two grids are highly correlated the coefficient will equal
+1, if they are independent, 0, and if there is a strong negative correlation the output
value will equal -1 (Chou 1997). Significance of each correlation coefficient was deter-
mined from a table of critical values of the correlation coefficient (Zar 1984).

To run the contingency analysis, post-emergence abundance raster maps were clas-
sified by year into five classes (showing the number of WCR captured/trap). The natural
breaks classification scheme was used to identify natural groupings of data based on
breakpoints inherent in the data resulting in classes with varied class breaks, minimum
values, and maximum values for each of the five years (Abler et al. 1971, Monmonier
1977, Hatakeyama et al. 2000). For each year, the data layers, soils, elevation, and
population, were imported into Idrisi 32.22 GIS software and masked using the ‘Query’
command to display only those portions of map layers covering maize fields. The mask
raster grid was created with ArcGIS 8.x Desktop Map Calculator using conditional
statements. Within Idrisi 32.22 GIS software, the ‘Crosstab’ command created a contin-
gency or cross-tabulation table and measures of association. The measures of associa-
tion were a chi-square statistic and Cramer’s V coefficient that measured the degree of
association between the variables. The Cramer’s V coefficient ranges from 0.0 indicating
no correlation to 1.0 indicating perfect correlation (Ott et al. 1983, Siegel and Castellan
1988, Bonham-Carter 1994). Significance of each chi-square statistic was determined
from a table of critical values of the chi-square distribution (Zar 1984).

3 Results
3.1 Map layers

Land use coverages were reclassified by vegetation type into continuous maize, first year
maize, mixed maize, other maize, and soybeans for each year from 1997 to 2001 (see
1997 for example; Figure 2). The latter was classified and deemed important because of
the prominent maize-soybean rotation in the management site. Continuous maize fields
are fields that were planted to maize for two or more consecutive years. First year maize
fields are fields that were planted to a crop other than maize the previous year (usually
soybeans). Mixed maize fields are fields that were planted to two or more crops (i.e.
maize and soybean) the previous year. Other maize fields are fields that include maize
for human consumption or maize test plots and make up only a small portion of the
maize planted in the management site. Over the five year period, the agricultural
landscape was dominated by the maize-soybean crop complex. Figure 2 also illustrates
the placement of the georeferenced locations of emergence cages and sticky traps
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Figure 2 Vector map layer illustrating roads, emergence cages and sticky traps (post-
emergence), and crop fields found at the South Dakota Areawide Management Site in 1997

(post-emergence) in 1997. The post-emergence traps were distributed much more widely
compared to emergence traps, covering nearly all maize fields.

The soil texture raster map contains five major soil texture classes found at the
management site. These include (with percent occupied in landscape) silty clay (0.3%),
silty clay loam (31.4%), silt loam (17.7%), loam (47.7%), and sandy loam (2.9%). The
elevation raster map contains five equal-interval elevation classes found at the manage-
ment site. These include (with percent occupied in landscape) 494-499 m (24.1%), 500-
504 m (34.6%), 505-509 m (22.4%), 510-514 m (17.7%), and 515-519 m (1.2%).

The interpolated corn rootworm map layers illustrate the spatial distribution of the
corn rootworm emergence and post-emergence metapopulation over the management
site (see 1997 for example; Figures 3 and 4, respectively). The raster maps illustrate the
range of interpolated cell values with varying low and high values for each year. By
visual inspection alone, the maps depict the nature of the clumped or aggregated spatial
distribution of corn rootworms.

3.2 Autocorrelation Analysis

We used the interpolated population raster map layers to conduct autocorrelation analysis
to determine cell value statistics and type of spatial distribution exhibited by the
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Figure 3 Raster map layer illustrating interpolated values of corn rootworm (CRW)
emergence at the South Dakota Areawide Management Site

corn rootworm metapopulation (Table 1). Mean cell values and standard deviations
based on the IDW interpolation indicate the average condition and variation for
estimated population values in each map layer. Mean cell values of corn rootworm
emergence decreased from 1997 to 1998 and increased again in 1999, followed by a
decline from 1999 to 2001. Mean cell values of corn rootworm post-emergence increased
from 1997 to 1999 and decreased from 1999 to 2001. There were large deviations from
the mean for all map layers. In addition to general metapopulation fluctuations esti-
mated by the cell statistics, the Moran’s I coefficient indicated the dispersion pattern for
each population map layer. Each of the corn rootworm emergence and post-emergence
surfaces had Moran’s I coefficients near +1, which indicates a highly aggregated meta-
population within the management site for all five years (Table 1).

3.3 Contingency Analysis

There were significant correlations between corn rootworm emergence and post-
emergence interpolated maps for all five years (Table 2). Corn rootworm popula-
tions occurred most frequently on loam and silty clay loam soil textures (Table 3).
Corn rootworms also occurred on silt loam soil textures, but in smaller proportions.
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Figure 4 Raster map layer illustrating interpolated values of corn rootworm (CRW) post-
emergence found at the South Dakota Areawide Management Site

Contingency analysis revealed highly significant associations between soil texture and
corn rootworm abundance for each year, as indicated by chi-square values (Table 4).
The strength of the association was greatest in both 1997 and 1999 and least in 1998
as indicated by Cramer’s V coefficients (Table 4). Corn rootworms occurred most
frequently on elevation classes at 500-504 m, 505-509 m, and 510-514 m (Table 35).
Corn rootworms also occurred at 494—499 m, but in smaller proportions. Contingency
analysis revealed highly significant associations between elevation and corn rootworm
abundance for each year, as indicated by chi-square values (Table 6). The strength of
the association was greatest in 1997, 1999, and 2001 and least in 2000 as indicated
by Cramer’s V coefficients (Table 4).

4 Discussion

Interpolation is central to many ecological field studies because it gives the researcher
the ability to infer values over an entire plot, thus reducing overall sampling costs. A
variety of interpolation methods exist, including weighted moving averages (e.g. the
IDW method), kriging, spline, and trend surface analysis, among many others (Burrough
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Table T Moran’s | coetticients computed for corn rootworm emergence and post-emergence
1997 to 2001. The variables include type of raster layer (Layer), cell value (mean + SD) of
each map layer, and Moran’s [ coefficient (Moran)

Layer Mean £+ SD Moran
1997

Emergence 3091 £ 21.66 0.9993

Post-Emergence 83.01 + 48.06 0.9947
1998

Emergence 2412 +£18.47 0.9976

Post-Emergence 105.80 * 74.69 0.9979
1999

Emergence 27.45 +17.10 0.9899

Post-Emergence 175.09 £ 126.79 0.9846
2000

Emergence 21.58 £ 14.87 0.9991

Post-Emergence 120.85 £ 69.49 0.9843
2001

Emergence 22.82 £ 15.08 0.9972

Post-Emergence 119.05 £ 54.60 0.9882

Table 2 Correlation coefficients between corn rootworm emergence and post-emergence
interpolated maps layers for 1997 to 2001. The variables include year, number of observations
(N), correlation coefficient (r), calculated t value (t value), and probability value (P)

Year N r t-value P

1997 62,750 0.82 360 <0.001
1998 62,750 0.87 446 <0.001
1999 62,750 0.64 209 <0.001
2000 62,750 0.84 392 <0.001
2001 62,750 0.52 153 <0.001

1986). Each of these methods has traits (i.e. ease of use, execution time, accuracy of the
interpolated values compared to actual data values, sensitivity to parameter changes and
number of required inputs, and smoothness of the interpolated surface) that are condu-
cive to certain applications (Heine 1986). Regardless of which interpolator is used,
however, the more input georeferenced points and the greater their distribution, the
more dependable the results (McCoy and Johnston 2002).

The most commonly used interpolation methods are kriging and weighted moving
averages. As with any interpolation method, there are advantages and disadvantages for
each technique used depending on the desired result. In the case of irregularly distrib-
uted trap locations, weighted moving averages or IDW is useful because it can use a
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Table 3 Cell frequencies tor contingency analysis between soil texture and corn rootworm
abundance raster maps. Variables listed include classes of corn rootworm abundance (CRW
Class) and soil texture classes, including silty clay (SiC), silty clay loam (SiCL), silt loam (SiL),
loam (L), and sandy loam (Sal)

Soil Texture Class

CRW Class SiC SiCL SiL L SaL
1997
5-51 0 839 817 4,458 456
52-94 0 785 920 1,524 65
95-135 53 3,013 886 1,272 0
136-186 66 2,034 434 731 18
187-426 4 195 138 335 16
1998
2-79 28 2,022 1,357 4,249 321
80-157 0 1,190 1,005 3,995 111
158-261 22 1,188 759 634 2
262-378 89 567 231 847 34
379-686 1 35 117 409 0
1999
10-126 46 745 1,197 3,841 760
127-213 77 2,758 1,270 2,467 13
214-341 2 2,409 225 817 0
342-777 0 920 22 451 0
778-1498 0 0 57 1 0
2000
17-86 22 619 1,630 3,682 219
87-135 64 1,709 541 2,487 87
136-197 12 1,721 342 2,992 13
198-422 0 987 100 1,150 0
423-903 0 1 57 0 0
2001
11-77 0 3,145 219 1,140 124
78-121 0 1,377 820 2,560 473
122-168 0 665 950 2,030 102
169-317 52 156 476 1,805 31
318-533 0 3 57 24 0

variable or fixed search radius to determine the interpolated value (McCoy and John-
ston 2002). Kriging also allows for a variable search radius. At larger scales (i.e. land-
scape scale) however, kriging needs to be fitted to various data distributions instead of
using just one semivariogram model for the entire surface (Burrough 1986). The IDW
method is by definition a smoothing technique where maxima and minima in the
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Table 4 Contingency statistics for soil texture and corn rootworm abundance. Variables
listed include year, chi-square, degrees of freedom (df), Cramer’s V coefficient, and
probability value (P)

Year Chi-Square df Cramer’s V P

1997 5,216 16 0.26 <0.001
1998 2,111 16 0.17 <0.001
1999 5,321 16 0.27 <0.001
2000 2,785 16 0.19 <0.001
2001 4,888 16 0.27 <0.001

interpolated surface can occur only at the data points. Unlike kriging, IDW does not
include outlier data values such as negative numbers and exceptionally high values that
do not match the actual data values collected at each trap location. Kriging provides
more information about errors computed during the interpolation process and allows
greater user-defined control over fitting data to the appropriate semivariogram model
because it is based on the theory of regionalized variables (Oliver and Webster 1990).
IDW does not compute errors and it does not allow user-defined inputs specific to the
actual data distribution. However, fitting the data value distribution to the semivario-
gram can be difficult to ascertain without prior knowledge of the behavior of data
values and a broad understanding of statistical theory (Burrough 1986). In general, the
IDW algorithm allows for rapid calculations and generates quick contour plots for
relatively smooth data values. Kriging requires more user inputs, more intense comput-
ing load, but gives more detailed estimates of interpolated values.

Analyzing the spatial pattern of individuals of a particular species has concerned
ecologists and biologists because of the implications to metapopulation dynamics and
physiographic influences. Traditional measures of aggregation are functions of the mean
and sample variance (Taylor 1961, Lloyd 1967, Iwao 1968). These methods have been
used extensively in population ecology, but are criticized because of the lack of any
direct relationship with the movement of individuals, and because they do not use the
available spatial information (Perry 1995). However, with the use of GIS applications,
we are able to apply aggregation indices to metapopulations. Examples of aggregation
indices include Negative Binomial k, Morisita’s Index I §, Mean Crowding, Moran’s [
coefficient, and Geary’s ¢ coefficient to determine the type of spatial distribution of
organisms at all scales (Taylor 1984, Young and Young 1998, Koenig 1999). The most
commonly used spatial autocorrelation techniques used in GIS applications are Moran’s
I and Geary’s ¢ coefficients (Johnston 1998). The Moran’s I coefficient computes the
degree of correlation between the values of a variable as a function of spatial locations
(Fortin 1999). The Geary’s ¢ coefficient, on the other hand, measures the difference or
distance among values of a variable at nearby locations. Two major weaknesses of these
statistics include “topological invariance” (i.e. both indices disregard the spatial
arrangement of sampling units) and measurement of spatial correlation between sam-
pling units that are physically contiguous, which limits the knowledge of how the
strength of the correlation changes over space (Young and Young 1998). However,
these indices are relatively easy to use, interpret, and most GIS programs allow the
computation of these two spatial autocorrelation techniques.
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Table 5 Cell trequencies for contingency analysis between elevation and corn rootworm
abundance raster maps. Variables listed include classes of corn rootworm abundance (CRW
Class) and elevation classes, including Class 1 (494-499 m), Class 2 (500-504 m), Class 3
(505-509 m), Class 4 (510-514 m), and Class 5 (515-519 m)

Elevation Class

CRW Class 1 2 3 4 5
1997
5-51 2,004 2,252 1,797 517 0
52-94 285 955 1,238 764 52
95-135 13 1,206 1,657 2,233 115
136-186 14 753 1,215 1,253 48
187-426 38 47 428 175 0
1998
2-79 1,432 2,901 2,053 1,308 283
80-157 1,400 2,726 1,344 821 10
158-261 14 688 1,033 805 65
262-378 0 148 1,080 540 0
379-686 0 135 341 86 0
1999
10-126 1,928 1,870 2,032 759 0
127-213 261 1,998 2,203 1,996 127
214-341 74 997 1,105 1,187 90
342-777 14 344 156 879 0
778-1498 57 0 0 1 0
2000
17-86 848 2,791 2,048 458 27
87-135 707 1,614 1,355 938 274
136-197 949 1,549 1,101 1,447 34
198-422 561 571 312 793 0
423-903 57 0 0 1 0
2001
11-77 332 504 1,763 1,813 216
78-121 960 1,791 1,461 1,017 1
122-168 579 1,898 1,004 266 0
169-317 436 976 1,040 68 0
318-533 75 2 6 1 0

Our available GIS programs allowed computation of the Moran’s I coefficient
to measure spatial autocorrelation. High values of the Moran’s I coefficients for all
emergence and post-emergence raster grids showed highly aggregated metapopulations.
Aggregated corn rootworm populations were also reported by Steffey and Tollefson

© Blackwell Publishing Ltd. 2005



GIS in Pest Management 123

Table 6 Contingency statistics for elevation and corn rootworm abundance. Variables listed
include year, chi-square, degrees of freedom (df), Cramer’s V coefficient, and probability
value (P)

Year Chi-Square df Cramer’s V P

1997 5113 16 0.26 <0.001
1998 3,321 16 0.21 <0.001
1999 4,370 16 0.25 <0.001
2000 2,465 16 0.18 <0.001
2001 3,998 16 0.25 <0.001

(1982), Midgarden et al. (1993), and Ellsbury et al. (1998). However, these studies were
conducted at the field scale, and not at the larger landscape scale. In our study, the
aggregated spatial distribution of the corn rootworm metapopulation at the landscape
scale shows that structural characteristics of the landscape (i.e. vegetation configuration)
and physiographic factors such as soil type characteristics and elevation influence their
distributions.

Using GIS, we were able to test the strength of correlation between emergence and
post-emergence traps for each year. Because the correlation was significant, we believe
that post-emergence sticky traps may provide a reliable, accurate, and more cost-efficient
sampling replacement for large, cumbersome emergence cages in describing the land-
scape scale distribution of corn rootworms. In addition, contingency analysis allows pest
managers to effectively compare population abundance and physiographic map layers
using GIS (McGrew and Monroe 2000). Contingency analysis was a useful technique to
analyze the significance of spatial relationships between soil texture, elevation, and
corn rootworm metapopulation dynamics at the landscape scale. The variability in soil
texture at our site was comparable to a laboratory study that showed survival rate of
corn rootworm larvae depended on the clay percentage of the soil and porosity, both of
which are functions of soil texture (Turpin and Peters 1971). Knowledge about the
interaction between different soil textures and corn rootworm survival, therefore, pro-
vides an additional measure of habitat suitability for this pest. The variability in eleva-
tion at our site is typical for eastern South Dakota and provided evidence of the
prominence of corn rootworm abundance on several elevation classes.

Further research on other areawide sites that have a varying range of soil textures
and elevation may be useful to determine the significance of the influence of these
variables on corn rootworm metapopulation dynamics. However, the range of Cramer’s
V coefficients in our study was comparable to research that looked at the associations
for site quality and stand characteristics with top kill severity due to defoliation by the
jack pine budworm (Hall et al. 1998). The variations in our coefficients for both soil
texture and elevation may be explained by the high mobility of corn rootworms, causing
fluctuations in yearly population dynamics. Knowledge of factors like soil texture and
topography that promote intense corn rootworm infestations allows pest managers to
focus on problem areas within the landscape. Other factors such as temperature, pre-
cipitation, predators, and parasitoids not included in our study could affect the spatial
distribution of corn rootworms and other agricultural pests.
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5 Conclusions

There are many available spatial analytical approaches within GIS that can be used in
pest management applications. Examples include basic map overlays to determine
suitable habitat, contouring to determine location of varying concentration levels of
attributes, and proximity analyses to determine locations of organisms in relation to
buffers (Burrough 1986, Walker 1996). We applied several spatial analytical techniques
using GIS, and the results provided information on the interactions between corn root-
worm metapopulation dynamics and physical factors. The GIS operations were con-
ducted with relative ease and in a timely manner. Thus, GIS may play a critical role in
identifying and describing the interaction of physical variables at other sites with differ-
ing species, soil textures, elevation, and land use to improve pest management strategies.

The role of GIS techniques in pest management can provide descriptive information
(i.e. knowledge of statistical spatial relationships) on physical and biological interactions
with metapopulation dynamics as well as providing information on spatially explicit
models to predict future pest populations by identifying suitable habitat conditions. To
identify suitable habitat conditions, the raster map layers (population abundance, land
use, soil texture, and elevation) can be combined with the use of a GIS compatible
modeling program like RAMAS GIS (Applied Biomathematics, Setauket, NY). A habitat
suitability function is created by assigning values to each of the various map layer
categories. The relative values are determined by using information derived from the
contingency analysis that illustrated preferences of corn rootworm abundance on vari-
ous soil textures and elevation classes. The habitat suitability maps can then be coupled
with corn rootworm fecundity rates and dispersal rates to analyze the behavior of meta-
population dynamics in the future. This information can then allow pest managers to
make more well-informed decisions regarding control of pest populations at different
locations and at much larger, regional scales.
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