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Summary
Association studies use statistical links between genetic markers and the phenotype variation

across many individuals to identify genes controlling variation in the target phenotype. However,

this approach, particularly conducted on a genome-wide scale (GWAS), has limited power to

identify the genes responsible for variation in traits controlled by complex genetic architectures.

In this study, we employ real-world genotype datasets from four crop species with distinct minor

allele frequency distributions, population structures and linkage disequilibrium patterns. We

demonstrate that different GWAS statistical approaches provide favourable trade-offs between

power and accuracy for traits controlled by different types of genetic architectures. FarmCPU

provides the most favourable outcomes for moderately complex traits while a Bayesian approach

adopted from genomic prediction provides the most favourable outcomes for extremely complex

traits. We assert that by estimating the complexity of genetic architectures for target traits and

selecting an appropriate statistical approach for the degree of complexity detected, researchers

can substantially improve the ability to dissect the genetic factors controlling complex traits such

as flowering time, plant height and yield component.

Introduction

Association studies in natural populations have been widely

adopted as a complement to classical gene mapping and gene

knockout approaches in identifying and characterising the func-

tions of specific genes. Association studies identify functionally

variable alleles segregating in target species and these alleles can

guide breeding efforts in crop and livestock species, as well as

provide increasingly accurate predictions of disease risk factors in

humans. Advances in genotyping technology have dramatically

reduced the barriers to conducting association studies with

genome-wide genetic marker datasets across natural popula-

tions. Since becoming feasible in the mid-2000s, genome-wide

association studies (GWAS) have been successfully used to

identify thousands of single nucleotide polymorphisms (SNPs)

associated with diseases in human (Burton et al., 2007) and

complex agricultural traits in plants (Chen et al., 2016; Jia et al.,

2013; Lasky et al., 2015; Romero Navarro et al., 2017). For most

traits analysed, loci identified by GWAS can generally explain only

a subset of total genetically controlled phenotypic variation for

most traits analysed (Maher, 2008; Manolio et al., 2009; Visscher

et al., 2010). Many explanations have been proposed for this

“missing heritability” including epigenetic effects (Gerasimova

et al., 2013), epistasis (Moellers et al., 2017; Visscher et al.,

2008; Zhang et al., 2015), structural variants which are not

detected by conventional SNP genotyping (McCarroll, 2008), rare

alleles with large effects and common alleles with small effect

sizes (Jakobsdottir et al., 2009; Pritchard, 2001). While the first

two proposed explanations for missing heritability are more

difficult to address, both rare alleles with large effect sizes and

common alleles with small effect sizes can potentially be

identified through increases in the statistical power of GWAS to

identify causal variants.

Many traits of interest to biologists are controlled by complex

genetic architectures (Huang et al., 2012; Lasky et al., 2015;

Romero Navarro et al., 2017) where hundreds, thousands, or the

majority of all genes (Boyle et al., 2017) may control variation in

the target trait. The most straightforward approach to increase

the proportion of causal variants identified is to increase the size

of genotyped and phenotyped populations. However, increases in

population size are expensive and subject to diminishing returns

in terms of the improvement of power to detect both rare alleles

and alleles with small effect sizes. Improved statistical approaches

to isolating a larger proportion of total causal variants controlling

complex traits are therefore highly desirable.

Currently, GWAS approaches based on mixed linear models

(MLM) are widely employed in both plant and animal systems.

MLM-based approaches are able to control for confounding

effects of both population structure and unequal relatedness

among individuals, which are left uncontrolled in approaches

based on generalised linear models (GLM), at the expense of

greater run times. A wide range of different algorithms have been

proposed and developed to improve the computational efficiency

of MLM, including EMMAX (Kang et al., 2010), Compressed-

MLM (Zhang et al., 2010), FaST-LMM (Lippert et al., 2011) and

GEMMA-MLM (Zhou and Stephens, 2012). However, because

MLM-based methods are ultimately evaluating the relationship

between each genetic marker and the overall variation in a given

trait across a population independently, the statistical power of

these methods rapidly decreases as the total number of variants
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controlling variation in a given trait increases, and the proportion

of total genetic variance explained by any one locus decreases.

Multi-locus mixed-models (MLMM) explicitly identify and con-

trol for the effects of large effect loci as fixed effects as these loci

are identified by the model. Compared to GLM or MLM which

only conduct tests on one marker at a time, the MLMM can test

multiple markers simultaneously by fitting the supposed causal

variants in the process called “forward-backward stepwise linear

mixed-model regression” (Segura et al., 2012). This approach

increases the proportion of the remaining genetic variance

explained by the remaining unidentified variants, and increases

the statistical power of the method to detect a greater number of

causal variants for complex traits. While the high computational

cost of MLMM initially acted as a barrier to widespread adoption,

a modified method, fixed and random model circulating proba-

bility unification (FarmCPU), has dramatically reduced the com-

putational complexity and computing time of this approach (Liu

et al., 2016). Ongoing optimisation and parallelisation efforts

have continued to decrease real-world run times for MLMM-

based approaches (Schnable and Kusmec, 2017).

A second potential approach to accurately identifying causal

variants for traits controlled by complex genetic architectures is

the use of Bayesian multiple-regression methods (Fernando and

Garrick, 2013; Fernando et al., 2017). The Bayesian-based

approaches fit all the available markers simultaneously, which

makes them especially suitable to study highly polygenic traits.

Although Bayesian approaches such as BayesA, BayesB, BayesC

and BayesCp have been widely employed in genomic prediction

and selection areas (Bernardo and Yu, 2007; Hayes et al., 2001;

Piepho, 2009; Sun et al., 2011; Verbyla et al., 2009), they are

seldom applied in GWAS, especially in plant GWAS. Several

studies have employed Bayesian-based approaches to identify

putative causal variants in animals (Fan et al., 2011; Peters et al.,

2012); however, the performance of these Bayesian methods

when employed in GWAS have not been extensively evaluated

relative to current non-Bayesian approaches.

Here, we systematically compared the performance of MLM,

FarmCPU and Bayesian-based (BayesCp) GWAS approaches

across simulated trait datasets containing 2 to 1024 causal

variants and different levels of heritability ranging from 0.1 to 1.

To capture realistic patterns of minor allele frequency distribu-

tions, population structure and linkage disequilibrium, we

employed real-world genotype datasets from four widely studied

crop species: rice (Oryza sativa), foxtail millet (Setaria italica),

sorghum (Sorghum bicolor) and maize (Zea mays) (Jia et al.,

2013; Lasky et al., 2015; McCouch et al., 2016; Romay et al.,

2013). We demonstrate that the power and accuracy of both

FarmCPU and BayesCp to identify causal variants for complex

traits exceed conventional MLM-based approaches. Of the three

methods, FarmCPU generally provides the most favourable trade-

off between power and low false discovery rates (FDR) for

moderately complex traits controlled by several dozen variants,

while the BayesCp approach provides a more favourable trade-off

for traits controlled by hundreds of more variants. However, the

number of casual variants where the cross-over between the

comparative advantages of these two methods occurred varied

across species. The results presented here, including a set of 4000

simulated phenotypic datasets generated from four real-world

genotype datasets, will provide both a resource for evaluating

future innovations in GWAS software, and information to help

researchers select the most effective experimental design and

statistical approach for their particular research projects.

Results

Characteristics of the four association populations
employed in this study

Each of the four populations employed in this study presents a

different combination of linkage disequilibrium, minor allele

frequency distribution and population structure (Figure 1,

Table 1). These differences may result from differences in

population demographics, criteria used to assemble the popu-

lations and genotyping technologies employed in each of the

genotype datasets. For example, the comparatively low fre-

quency of rare alleles in rice results from selection loci with

more frequent minor alleles prior to microarray design

(McCouch et al., 2016), while the low frequency of rare alleles

in foxtail millet results from a post-genotyping, prepublication

filter for loci with relatively more common minor alleles (Jia

et al., 2013). Marker selection for inclusion on the rice

genotyping array incorporated an explicit counter-selection

against markers in high LD with each other within the

resequencing population and the extremely low LD observed

in this set of markers is consistent with the LD analysis in the

original release paper (McCouch et al., 2016). Foxtail millet

population exhibited the slowest LD decay, with the average

correlation coefficient (r2) between genetic markers dropping to

0.25 around 100 kb, consistent with the original description of

this dataset (Jia et al., 2013). The LD decay curve shown here

for maize is somewhat more rapid than was reported in (Romay

et al., 2013), however, this divergence is likely explained by the

Romay et al. curve being calculated using a subset of ~22 000

SNPs with low missing data and high minor allele frequencies.

With the exception of rice, the patterns of LD decay observed

across populations of the remaining three species exhibit a

negative correlation with reported outcrossing frequencies for

each species (Figure S1). This negative correlation suggests that

the difference is the result of biological variation rather than

genotyping strategy (Barnaud et al., 2008; Dj�e et al., 2004;

Gutierrez and Sprague, 1959; Hufford et al., 2011; Wang et al.,

2010).

Evaluation of conventional MLM-based GWAS

A total of 1000 phenotype datasets were generated per species

with ten independent replicates for each possible combination

of ten different sets of causal variants and ten different levels

of heritability, which represents different levels of genetic

architecture complexity. A causal variant was considered to be

identified if either the causal SNP selected by the simulations,

or one or more markers linked (r2 > 0.6) with the causal SNP

were identified by a given GWAS analysis. As expected, the

power to detect true positives decreased in response to both

increases in the number of simulated causal variants controlling

the trait and decreases in simulated heritability (Figure 2). The

MLM-based approach failed to identify the vast majority of

causal variants for traits controlled by 256 or more loci under

whatever levels of heritability (Figures S2 and S3). Consistent

with previous theory and studies that both rare alleles and

alleles with smaller effect sizes were the least likely to be

identified in the MLM-based GWAS analysis (Figure S4;

Table S1). Subsampling of each population was used to

evaluate how rapidly the proportion of total causal variants

identified increases with increased population size. The effect

of increasing population size was relatively more pronounced

when genetic architecture was less complex, and smaller
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increases were observed with increasing population size for

more complex genetic architectures (Figure 3).

Alternative GWAS methods for complex traits

As shown above, MLM-based GWAS identifies only a small

proportion of causal variants for complex traits controlled by over

hundreds of distinct genetic loci. We next evaluated two methods

potentially developed to analyse polygenic traits: FarmCPU (Liu

et al., 2016) and BayesCp (Habier et al., 2011). To avoid

confounding effects from different approaches to scoring the

strength of associations between genetic markers and trait

variation, cross-method comparisons are made based on selecting

equivalent numbers of positive causal variants in each analysis.

The proportion of causal variants detected declines in each

species as heritability decreases and as the total number of causal

variants controlling the trait increases. However, FarmCPU and

BayesCp both consistently outperformed MLM-based analysis in

terms of both overall proportion of causal variants identified and

FDR control (Figures 4 and 5). For moderately complex traits (32,

64 causal variants), the statistical power of BayesCp and FarmCPU

provided approximately equivalent statistical power, however,

FarmCPU tends to provide lower false discovery rates than

BayesCp for these genetic architectures (Figures 4 and 5, S5 and

S7). For complex traits with high heritability (128, 256 causal

variants with h2 = 0.9), the BayesCp approach outperforms

FarmCPU on both power and false discovery rate metrics

(Figures 4 and 5, S6, and S8). However, we also observed that

this advantage is less apparent for traits with medium heritability

(h2 = 0.7; Figures S10 and S12). Furthermore, once heritability

decreased to 0.5, the difference between these two methods was

only apparent in the foxtail millet dataset (Figures S9, and S11).

The two approaches exhibited similar power to control type I error

for traits controlled by simple genetic architectures while BayesCp
exhibited better performance on false-positive control for traits

controlled by moderately and extremely complex genetic archi-

tectures (Figures S13 and S14).

A second analysis was conducted utilising published flowering

time data for 1371 maize inbred lines from the maize association

population utilised in the simulation study above (Romay et al.,

2013). Flowering time in maize is an extremely complex trait

controlled by hundreds of genes and most individual loci explain

only extremely small proportions of total phenotypic variance

Table 1 Statistical summary of each genotype dataset

Species Genotyping technology Genome size (Mb) LD Decay (Kb) No. of Accessions No. of Markers

Sorghum bicolor GBS 732 2 2327 354 940

Setaria italica Low coverage WGS 406 794 916 663 985

Oryza sativa Microarray 372 0.004 1568 629 019

Zea mays GBS 2300 0.063 2503 560 515

Figure 1 Characterisation of the four association

populations and associated genotype datasets

employed in this study. (a) Distribution of minor

allele frequencies across all genotyped markers in

each population. (b) Patterns of linkage

disequilibrium decay in each population based on

average pairwise r2 between genetic markers

(Methods). (c) Cumulative proportion of total

genotypic variance explained up to ten principal

components in each population. (d) PCs

distribution for individuals in each population.

ª 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 1–13
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(Buckler et al., 2009; Romero Navarro et al., 2017). MLM,

FarmCPU and BayesCp analyses identified 12, 20 and 32 markers

within this dataset, respectively. To assess accuracy, we employed

a set of candidate flowering time genes identified in an

independent study utilising distinct genotypic and phenotypic

data collected from 4471 maize lines across 22 environments

(Romero Navarro et al., 2017). Of the signals identified by each

algorithm above, 3 (25%), 5 (25%) and 13 (41%) of the markers

identified via MLM, FarmCPU and BayesCp, respectively, were

located within 50KB of a flowering time candidate gene identified

in the independent and more highly powered study

(Appendix S1). Markers associated with three candidate flowering

time genes were identified by both FarmCPU and BayesCp. No
overlap of identified candidate genes was observed between

candidates identified by MLM and the other two methods.

The characteristics of causal variants identified by BayesCp and

FarmCPU were also different. Using data from simulations

conducted with 256 causal variants and heritability of 0.5, causal

variants were classified into four mutually exclusive categories in

each population: those identified by both methods, those

identified by either only FarmCPU or only BayesCp, and those

missed by both. As shown in Figure 6, causal SNPs identified by

both methods tended to have higher MAFs and larger effect sizes.

SNPs identified only by FarmCPU tended to have lower MAFs than

those identified only by BayesCp in all four species (Table S2,

Figure 6). However, we did not observe a statistically significant

difference in effect size distribution (Table S2, Figure 6). Similar

results were obtained in other levels of heritability (Figure S15).

Notably, FarmCPU controlled type I error rates equivalently for

SNPs of varying MAFs, while the type I error rate for BayesCp was

higher for common allelic variants and lower for rare allelic

variants (Figure S16). Overall, the two approaches appear to have

complementary strengths for identifying different subsets of

allelic variants missed by conventional MLM-based GWAS meth-

ods.

Using BayesCp to estimate genetic architecture of
complex traits

One key difference between the GWAS presented above and

real-world GWAS is that here the complexity of the genetic

Figure 2 Changes in the power of conventional (MLM-based) GWAS to identify causal variants in response to changes in heritability and the complexity of

the genetic architecture controlling the target trait. Data shown are from foxtail millet. (a) Change in power to detect true positives as the number of causal

variants increases under high (0.9), medium (0.5) and low (0.1) levels of heritability. (b) Change in power to detect true positives as heritability decreases for

traits controlled by simple (N = 8), moderately complex (N = 32) and complex (N = 256) genetic architectures. Positive calls were defined as those above a

Bonferroni corrected P-value cut-off of 0.05. Comprehensive results from all four populations are available in Figures S2 and S3.

Figure 3 Changes in the power of conventional MLM-based GWAS to identify causal variants for complex traits in response to increases in population size

in each of the four association populations evaluated. (a) a moderately complex trait controlled by 32 loci; (b) a complex trait controlled by 128; (c) a

complex trait controlled by 256 loci. All analyses used data from traits with heritability of 0.7. Positive calls were defined as those above a Bonferroni

corrected P-value cut-off of 0.05.
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Figure 4 Changes in the power of three GWAS approaches across all four association populations in response to the changes of the statistical

threshold employed. To enable comparisons across different methods with different approaches to reporting statistical significance, the x-axis is ordered

by the total number of positive genetic markers accepted at a given statistical threshold. Data shown are for traits with increasingly complex genetic

architectures with near-best-case assumptions for trait heritability (0.9). Results for all other simulated genetic architectures are provided in Figures S5,

S6, S9 and S10.

ª 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 1–13
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Figure 5 Relationship between power and false discovery rate (FDR) using each GWAS method to analyse simple, medium and complex traits in each

population. Data shown are for traits with increasingly complex genetic architectures with near-best-case assumptions for trait heritability (0.9). Results for

all other simulated genetic architectures are provided in Figures S7, S8, S11 and S12.

ª 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 1–13
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Figure 6 Differences in the characteristics of causal SNPs identified by BayesCp and FarmCPU in all four species. Distribution of MAF (Left) and absolute

effect size (Right) for causal variants identified by both BayesCp and FarmCPU, only BayesCp, only FarmCPU, or neither approach. The number of causal

variants in each category is indicated as part of the legend of each panel. Data shown are collected from ten replicates with 256 causal variants and 0.5

heritability in each species.
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architecture of each trait is a known variable. However, in real-

world application, the complexity of the genetic architecture

controlling different traits may not be known prior to the start of

analysis. The BayesCp method includes a statistical approach to

estimate the number of causal variants controlling a given trait

prior to fitting a model to the data (Habier et al., 2011). These

estimates serve as a prior for model fitting in BayesCp. As

different GWAS approaches provide the most favourable results

for traits with different complexities, estimation of the number of

genetic loci controlling a trait can also guide which GWAS

approach is best suited to analyse a given dataset. The accuracy

of the estimates of the number of causal variants generated by

the BayesCp approach was evaluated across varying levels of

heritability and trait complexity. In all four crop species, BayesCp
was able to accurately estimate heritability for traits controlled by

different numbers of causal variants (Figure S17). It also provided

accurate and unbiased estimates of the number of causal variants

when the heritability of the trait was high and/or the total

number of causal variants was small (Figure 7). However, the

number of causal variants was systematically overestimated for

complex traits with lower levels of heritability (Figure 7).

Discussion

In this study, we employed four genotype datasets with different

population structures from different crop species. The MLM-

based approach showed substantial reductions in power as the

complexity of the genetic architecture of the trait being analysed

increased. Compared to the MLM-based approach, FarmCPU

approach and BayesCp adopted from genomic prediction show

complementary strengths, higher power and lower false discovery

rates for complex traits. FarmCPU provided a more favourable

trade-off between power and FDR for moderately complex traits

and a greater likelihood of identifying rare causal variants, while

BayesCp approach provided greater power to detect more causal

variants with small effect sizes for extremely complex traits.

However, this outperformance is less apparent or nonexistent for

traits with lower levels of heritability. Present statistical

approaches to GWAS have the greatest statistical power to

identify SNPs which are both common, and control a large

proportion of total genetic variation in the target populations. As

a result, few previously unknown loci with utility for plant

breeding have been discovered through GWAS-based analysis

Figure 7 Relationship between estimated

complexity of genetic architectures generated by

BayesCp and true genetic architecture complexity

given different levels of heritability in each species.

Grey areas indicate 95% confidence bands

around each estimate.
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(Bernardo, 2016). The identification of common alleles with

moderate effect sizes and rare alleles with large effects would

improve the utility for GWAS for both basic biological and applied

applications.

Our results also indicate estimates of the complexity of the

genetic architectures are clearly also needed, given the differ-

ences in the relative strengths of MLM, FarmCPU and Bayesian

approaches. BayesCp can accurately estimate the trait heritability

and the number of causal variants in most situations. However, it

tends to overestimate the number of causal variants for complex

traits with lower levels of heritability. One potential explanation

for this observation is that the model is attempting to explain

residual error – not heritable phenotypic variation – by including

additional, noncausal SNPs in the model. However, with aware-

ness of this limitation, estimation of the number of causal variants

controlling a given trait can aid researchers in determining, which

GWAS method is likely to provide the most informative result for

a given dataset.

Evaluations of GWAS approaches can be performed using

either real data or simulated data. Here, simulated phenotypic

dataset was employed, as it provided comprehensive information

for comparison across methods, something unavailable for real-

world phenotype datasets for complex traits. The use of real-

world genotype datasets captured the patterns of MAFs, LD

decay and population structures are comparable to those

observed in the real world. However, it is also important to

acknowledge the limitations of simulation-based studies. The

simulated phenotype datasets employed here assumed the effect

sizes of minor alleles are drawn from a normal distribution, which

is supported by real-world observations of multiple complex traits

as shown in Figure S18 (Brown et al., 2011; Buckler et al., 2009).

Notably, the comparison of MLM and FarmCPU here are similar to

the results described in (Liu et al., 2016), which employed a

geometric distribution of effect sizes. However, not all traits will

exhibit a normal distribution of effect sizes for underlying genetic

loci. For example, traits which have experienced strong and

recent natural or artificial selection are likely to exhibit a non-

normal distribution of effect sizes (Orr, 1998; Wallace et al.,

2014; Xu et al., 2017) and the absolute estimates of power

presented here are likely to be inflated for such traits. More

significantly, the simulation parameters used assumed no corre-

lation between the minor allele frequency of an allele and its

effect size, which does not match predictions from population

genetic theory or observation that rare alleles tend to be

associated with larger molecular phenotypes in maize (Kremling

et al., 2018). These simulations assumed that the true functional

variant was included as one of the genotyped markers within the

dataset. At the moment, in many populations the best case

outcome for researchers is to identify a genetic marker in high LD

with the true causal variant. In the future whole-genome

resequencing or independent genome assemblies may make the

identification of true causal variants more likely, at least in species

such as maize which exhibit rapid LD decay. In addition, the

statistical model used to generate phenotype datasets here did

not incorporate epistatic interactions between causal variants.

While the results presented here for the use of BayesCp to

identify causal variants are promising, additional work is needed

to further adapt BayesCp for use in GWAS applications. The

model employed here did not yet incorporate any controls for

population structure which may explain a portion of the higher

type one error rates observed for this method. Integrating such a

control might marginally reduce power. The model we employed

provided a ranking of genetic markers but not the straightfor-

ward method of establishing a cut-off between candidate causal

variants and noncandidate loci. Although ranking enabled com-

parisons of power, type I error, and false discovery rate, the

application of BayesCp-based GWAS in a real-world setting will

require methods to establish such cut-offs. One promising

approach recently discussed in the literature is to estimate

posterior type I error rates (Fernando et al., 2017). Approaches

using machine learning to identify cut-offs, such in NeuralFDR,

also seem a promising avenue of investigation (Xia et al., 2017).

In addition, computational resource requirements play a substan-

tial role in which statistical approaches become widely adopted

over time. With the largest of the four genotype datasets

employed here (maize) BayesCp required approximately 4.5 Gb

of RAM and 2 h to analyse one dataset. For comparison, the

MLM implementation in GEMMA required only 1 Gb of RAM and

approximately 40 min to analyse the same dataset and FarmCPU

required approximately 30 min and 5.5 Gb RAM (Figures S19 and

S20). However, optimisation of computational pipelines can

reduce run times dramatically without the need for changes to

statistical models. For example, modifications to the reference

implementation of the FarmCPU algorithm have been shown to

produce the same results while reducing runtime by approxi-

mately two-thirds (Schnable and Kusmec, 2017).

Conclusion

Association studies have been and seem likely to remain an

important tool for investigating how genotype determines

phenotype. Although certain diseases and target traits for

breeding efforts are controlled by a small number of large effect

loci segregating in Mendelian fashion, many traits of interest are

controlled by moderately or extremely complex genetic architec-

tures. Here, we have shown that different approaches to GWAS

have complementary strengths, and the complexity of the genetic

architecture controlling a target trait should be determined prior

to the selection of an appropriate statistical approach for

analysing a given dataset. Further improvements in both statistical

approaches and computational optimisation hold the promise of

dramatically expanding our understanding of the role that both

rare alleles with large consequences and common alleles with

small consequences play in determining how genotype determi-

nes phenotype across species.

Methods

Genotype dataset sources and filtering parameters

Genotype dataset for foxtail millet (Setaria italica) (Jia et al.,

2013), maize (Zea mays) (Romay et al., 2013), sorghum (Sorghum

bicolor) (Lasky et al., 2015), and rice (Oryza sativa) (McCouch

et al., 2016) were taken from published sources. Foxtail millet

SNPs were discovered and scored using low coverage (0.59)

whole-genome resequencing reads aligned to the Setaria italica

reference genome (v2 from Phytozome v7.0; Bennetzen et al.,

2012). The partially imputed SNP dataset was downloaded from

Millet GWAS Project website (http://202.127.18.221/MilletHap1/

GWAS.php). The downloaded genotype data included 916

diverse varieties and 726 080 SNPs with minor allele frequencies

lower than 5% had been removed prior to the publication of the

dataset. After downloading, SNPs without calls in >10% of

samples were removed from the dataset. The sorghum GBS

dataset which included 404 627 SNPs scored relative to the v1.4
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of the sorghum reference genome (Paterson et al., 2009) across a

set of 1943 accessions were downloaded from Data Dryad

website (http://datadryad.org/resource/doi:10.5061/dryad.jc3ht/

1; Lasky et al., 2015). The maize GBS dataset which included

calls for 681 257 SNPs relative to B73 RefGenV1 (Schnable et al.,

2009) across a set of 2815 accessions was downloaded from

Panzea website (https://www.panzea.org/; Romay et al., 2013).

After downloading, both SNPs in sorghum and maize without

genotype calls in >30% of samples and SNPs with heterozygous

calls in >5% of samples were removed from the datasets. After

any filtering parameters described above for individual datasets,

missing data in foxtail millet, sorghum and maize dataset were

imputed using Beagle v4.1 with default parameters (Browning

and Browning, 2016). Data from genotyping 1568 diverse rice

accessions using the 700 000 marker HDRA microarray platform

were downloaded from GEO (ID: GSE71553) (McCouch et al.,

2016). The downloaded SNPs with heterozygous genotype calls in

>5% of samples were removed. Statistics on the final number of

SNP markers and samples in each dataset are provided in Table 1.

Characteristics and summary statistics of genotype
datasets used in this study

The minor allele frequency was calculated for each SNP in each

dataset. Patterns of minor allele frequency distributions for each

dataset were assessed and visualized using kernel density plots

generated using the function ‘kdeplot’ from the Python package

‘seaborn’. For each dataset, the top ten principal components

were calculated using Tassel (version 5.0; Bradbury et al., 2007).

The top three principal components from the same analyses were

used to plot population structure using the R package scatter-

plot3d. Plink 1.9 was used to calculated r2 between all pairs of

SNP markers separated by less than 10 million bases (Purcell

et al., 2007). The average r2 values were calculated from 100.1 to

107 using a logarithmic step size of 0.1. A regression curve was fit

to these values using the function ‘regplot’ from the Python

package ‘seaborn.’

Phenotype simulation

Phenotype datasets were simulated using an additive genetic

model (Equation 1) derived from the underlying genotype

datasets.

Yj ¼
X

ai � Sij
� �þ ej (1)

In the model, Yj is the simulated phenotype for plant j; ai is the

effect of the i-th causal SNP; Sij is the SNP genotype (coded with

0, 1, 2) for the i-th causal SNP of the j-th plant; and ej is the

residual error for j-th plant extracted from a normal distribution

with mean of 0 and standard deviation of
Var

P
Sijaið Þ

1=h2�1
, where h2

denotes the heritability.

An R function ‘simcrop’ was implemented within the open

source ‘g3tools’ R package (https://github.com/jyanglab/g3tools).

For the results employed in this study, both the effect sizes of

individual SNPs ai and the error term in measurements of

individual genotypes ej were drawn from normal distributions.

However, the software package developed to enable this study

also provides the option to specify other effect size distribution

models. Phenotype datasets were simulated for scenarios where

the number of causal genetic loci ranged from 21 to 210 (2–1024
QTNs) and where the heritability of trait values ranged from 0.1

to 1.0 in steps of 0.1. For each combination of heritability and

number of causal variants, 10 independent replicates with

different randomly selected causal variants were generated.

Methods of Genome-wide association studies

All MLM-based GWAS analysis in this study were performed using

GEMMA (version 0.95alpha) with the command “gemma -g

[genotype mean file] -a [genotype annotation file] -p [phenotype

file] -c [PCs file] -k [kinship file] -o [output file]” (Zhou and

Stephens, 2012). Tassel (version 5.0) was used to generate PCs

and the first three PCs from the Tassel analysis were included in

both the MLM and FarmCPU analyses (Bradbury et al., 2007). The

kinship matrix file applied in MLM method was generated using

“gemma -gk 1” command in GEMMA package for each

genotype dataset. Within the MLM, population structure (Q)

and the relationship among individuals (K) were fitted at the same

time, which is also called as Q + K model: y = Q + K + s + e,

where y is an vector of phenotype values for all the individuals in

the population and e is the residue; Q is a matrix known as

covariates/PCs representing the population structure; K is the

kinship matrix representing the relationship among individuals;

and s is the genetic effects.

FarmCPU was run using the command: FarmCPU (Y = myY,

GD = myGD, GM = myGM, CV = myCV, method.bin = “opti-

mum”) in R. Y, GD and GM represent phenotype, genotype and

genotypic map data respectively. CV represents the principal

components file. The kinship matrix was automatically estimated

in FarmCPU. While kinship matrices were independently gener-

ated by GEMMA and FarmCPU, the correlation between these

two matrices is over 0.9999 (Pearson r2). The parameter

method.bin = “optimum” allows the FarmCPU to selected opti-

mized possible QTN window size and number of possible QTNs in

the model (Liu et al., 2016).

The BayesCp approach was adopted from genomic prediction

area to represent Bayesian multiple-regression methods for

GWAS. BayesCp was conducted using GenSel software package

(Version 2.14; Habier et al., 2011). In the Bayesian method, a

two-step procedure was employed to account for the potential

effects of the arbitrary priors (Yang et al., 2018). In the test run,

1000 iterations was used with 100 burn-in iterations of MCMC

simulations using default priors: genetic variance = 1 and residual

variance = 1. In the real run, the priors were replaced using the

posteriors obtained from test run and a longer chain of

simulations was employed (chain length = 11 000, burnin =
1000 and p = 0.9999). All the GWAS jobs were run on HCC’s

(the Holland Computing Center) Crane cluster at University of

Nebraska-Lincoln.

Statistical evaluation of accuracy and power

For all genetic markers assigned P-values by GEMMA or Farm-

CPU, individual markers were sorted by reported P-values. Within

BayesCp, markers were first sorted by model frequency. When

multiple markers were assigned the same model frequency by

BayesCp, ties were broken by the genetic variance assigned to

each marker by BayesCp. To evaluate FDR, statistical power and

Type I error, an increasing rank method was applied. Each rank

contains the first K markers from the sorted GWAS results as

described above. These K markers were treated as positive

markers and rest of markers were treated as negative markers. A

true positive marker was defined if it was in the causal variants list

or exhibited LD r2 > 0.6 with a causal variant. LD thresholds

between 0.6 and 0.9 did not significantly change observed results
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(Figure S21), while considering only causal variants as true

positives significantly decreased power for all methods. If there

several positive markers were linked to the same causal variants,

the combined set was counted as only a single true positive and

the number of total positives reduced accordingly. False positives

were defined as positives neither in causal variants list nor in LD

with causal variants. For each scenario, power was defined by

Equation 2:

Power ¼ No. of true positive SNPs

No. of total causal SNPs
(2)

The corresponding FDR and Type I error were defined by

Equation 3 and 4:

FDR ¼ No. of flase positive SNPs

No. of positive SNPs
(3)

Type I error ¼ No. of false positive SNPs

No. of noncausal SNPs
(4)
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identified by BayesCp and FarmCPU. Distribution of MAF (Left)

and absolute effect size (Right) for causal variants identified by

both BayesCp and FarmCPU, only BayesCp, only FarmCPU, or

neither approach.

Figure S16 Relationship between minor allele frequency and type

I error rates for markers in the maize, sorghum and rice datasets

for both FarmCPU and BayesCp.
Figure S17 Relationship between simulated heritability and

heritability estimates generated by BayesCp for traits controlled

by different numbers of causal variants.

Figure S18 Empirically determined effect sizes for loci control

seven different traits in maize.

Figure S19 Average run time of a single GWAS analysis using

each of the three methods evaluation in each of the four

populations tested.

Figure S20 Average maximum memory use of a single GWAS

analysis using each of the three methods evaluation in each of the

four populations tested.

Figure S21 The influence of different LD decay cut-offs on

apparent GWAS power. Data shown are from simulations where

the number of causal variants is 32 and heritability is 0.7.

Table S1. Mann–Whitney U test between SNP groups detected

and undetected by GEMMA. Data shown are from simulations

where the number of causal variants is 64 and heritability is

0.7.

Table S2. Mann–Whitney U test between SNP groups identified

by FarmCPU, BayesCp, both and neither. Number of causal

SNPs is 256 and heritability is 0.5.

Appendix S1 The significant SNPs identified by MLM, FarmCPU

and BayesCp in real-world maize flowering time dataset.
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