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 Site-specific variable rate irrigation (VRI) may help in intensification of 

agriculture by producing more yield per unit of land and water. VRI could be managed 

using different methods. Real time spatial information about water balance components is 

important for designing VRI prescription maps. This work involved use of a spatial 

evapotranspiration (ET) model for studying spatial variability in an agricultural field at 

the Eastern Nebraska Research and Extension Center near Mead, Nebraska. Imagery 

from unmanned aerial systems (UASs) and Landsat were used as input for the spatial 

evapotranspiration model. Other inputs into the model were soil water content 

measurements from neutron probes, weather data, crop data, previous irrigation 

prescriptions, and soil properties for the field. Weekly prescriptions were output from the 

model and were applied to respective VRI treatments. The work included comparison of 

VRI treatments with uniform irrigation and rainfed treatments in terms of yield potential 

and reduced water withdrawal. Uniform irrigation methods included uniform irrigation 

managed using soil water content measurements from neutron probe and rainfed 

treatment. The objectives were to quantify benefits of VRI in terms of crop yield and 



 

consumptive use. Other water balance variables were also compared among the 

treatments. The model was updated and improved during the study period in attempt to 

more accurately model water balance components and manage VRI. One addition to the 

model was a decaying method of modeling deep percolation allowing soil water content 

to exceed field capacity temporarily after a wetting event. Treatment differences were 

tested at 5% significance for yield and irrigation results. Mean total prescribed irrigation 

depth was significantly larger for VRI using Landsat than uniform treatments for soybean 

in 2017. It was significantly lower for VRI using Landsat than other irrigated treatments 

for soybean in 2018. No other differences in applied irrigation depth were found between 

treatments. Maize yield in 2017 was significantly greater for VRI using Landsat and 

uniform treatments than the rainfed treatment. No other significant yield differences were 

observed in 2017 and 2018. The VRI-L and uniform treatments performed better than 

rainfed for maize in 2017 by significantly increasing maize yield due to irrigation. VRI-L 

treatment in 2018 was managed using less water for soybean showing reduction in water 

withdrawal over other irrigated treatments. Hence, VRI-L performed well in these cases. 

VRI-U treatment performed similar to uniform treatment in 2018. Future research may 

focus on: 1) inclusion of thermal infrared UAS imagery in the model to detect stress, 2) 

development of a more advanced method of incorporating water content measurements in 

the model, and 3) more research on managing VRI using UAS imagery at commercial 

field scales.  
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CHAPTER 1. INTRODUCTION AND OBJECTIVES OF RESEARCH  

1.1 Motivation for Study 

 Irrigation is the primary use of fresh water sources in the world (Kassam et al. 

2007). Since fresh water resources are limited, it is essential to improve the efficiency of 

water use for agriculture, which can be achievable by managing irrigation optimally and 

reducing losses. Optimal irrigation management may include precise irrigation 

scheduling and an advanced level of management at the sub-field scale. Uniform 

irrigation include a uniform application of water across an entire field, which may lead to 

areas of under and over irrigation (Higgins et al. 2016). This is because there may exist 

variability in soil properties, topography, plant health, and pest pressure across the same 

field. Precise management of irrigation is limited using uniform application of water and 

hence, is a factor that restrains improvements in water use efficiency under these variable 

conditions. Sadler et al. (2005) emphasize the need to adopt more efficient irrigation 

systems for conservation of water in context of drought events, regulations on water use 

in various sectors, and water scarcity. Therefore, site-specific management of irrigation at 

a sub-field scale may prove beneficial for improving water use efficiency in agriculture. 

 Enhanced communication systems, improved sensing technologies, and capable 

control systems collectively allow the management of water application at a sub-field 

scale in center pivot sprinkler systems and lateral move irrigation systems (Kranz et al. 

2012). With the evolution of site-specific irrigation or variable rate irrigation (VRI), it is 

possible to apply spatially varying amounts of water to the field with the potential of 

avoiding zones of excess and deficit water applications (Higgins et al. 2016). Various 

field studies and simulations presented the benefits from adoption of VRI (Lo et al. 2016; 
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O’Shaughnessy et al. 2016; Miller et al. 2017; Sui and Yan 2017). For example, Sadler et 

al. (2005) simulated site-specific irrigation in various case studies and estimated about a 

10-15% reduction in water withdrawals over uniform irrigation method. They also 

discussed benefits other than reduced water withdrawals, such as reduced leaching, lower 

disease occurrences, and more harvestable area. West and Kovacs (2017) proposed the 

use of site-specific VRI using an unmanned aerial system and soil moisture sensors to 

encourage sustainable use of water resources and help reduce ground water withdrawals. 

Therefore, this section will discuss VRI as a potential tool to increase water efficiency in 

agriculture. 

1.2 Literature Review 

1.2.1 VRI Management Factors 

Examining variability in different characteristics of a field is crucial to VRI 

management. Pan et al. (2014) addressed the importance of studying temporal changes in 

soil conditions for making accurate decisions on various agricultural inputs. They 

considered various factors, including soil apparent electrical conductivity and field 

elevation, while selecting locations for installation of soil moisture sensors to study 

heterogeneity in the field. Sadler et al., (2002) found statistically significant variation in 

crop response to irrigation in a field. They applied different irrigation treatments to study 

the variability in crop response to site-specific irrigation. Four irrigation treatments and 

two nitrogen treatments were applied to randomly arranged plots in a center pivot 

equipped field with highly variable soils. They found significant differences in yield due 

to varying irrigation application both among and within soil types. They recommended 
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division of the field into small management zones with similar soils and field 

characteristics to manage irrigation optimally, which may increase profitability.  VRI 

may be implemented to mine undepleted soil water from areas of large soil water holding 

capacity in a field to reduce pumpage requirements for irrigation (Lo et al. 2016). On the 

other hand, Bramley and Hamilton (2005) studied spatial variability in winegrape yield in 

a vineyard situated in the Coonawarra region, South Australia. They found that 

winegrape yield within the study field varied an order of magnitude. They did not study 

the factors contributing to yield variability over study years, but suggested a shift from 

uniform management of the vineyard to zonal management. 

 An important factor contributing to spatial variation in crop yields across a field is 

variability in soil water content within a field. Kaleita et al. (2007) studied spatial 

variability and temporal stability in soil water content patterns in a field at a University of 

Illinois research farm in Urbana, Illinois. Soil water content patterns were correlated with 

topography of the field. Results indicated that temporal stability in water content patterns 

existed for over half of the field, and for the remaining half of the field, no temporal 

stability in water content patterns was observed. Furthermore, no major correlations were 

obtained between topographic features and soil water content patterns. A ten-meter scale 

was recommended for future soil water content sampling studies based on the results 

obtained from the study. 

 Evapotranspiration (ET) is a critical component of a soil water balance, which 

helps to determine irrigation requirements. Since ET can vary spatially within a field 

planted with same crop, it is vital to determine spatial ET when determining spatial plant 
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water requirements. Barker et al. (2018a) used a hybrid ET model (Neale et al., 2012) for 

managing VRI at two research sites in Nebraska. This model computes spatial ET across 

the field using remote sensing imagery. Howes et al. (2015) conducted a study on 15 

center pivots located in Los Angeles County, near Palmdale, California. They used 

Landsat 5 satellite images processed with Mapping Evapotranspiration at High 

Resolution with Internal Calibration (METRIC) to map spatial ET. They found that there 

is a considerable effect of distribution uniformity of irrigation systems on the spatial 

variability of evapotranspiration in a field, especially during water stressed conditions. 

Their study reported that 55% of non-uniformity in spatial ET was caused by distribution 

uniformity of the irrigation system under crop water stressed conditions. 

1.2.2 Remote Sensing in VRI 

 Recently, remote sensing has been used to map spatial variability in ET within a 

field. For example, Howes et al. (2015) utilized remote sensing images to examine spatial 

variability in ET. A common method of estimating spatial ET is the utilization of crop 

coefficients (Kc) based on remotely sensed vegetation indices (Barker et al., 2018b). Crop 

coefficients based on remotely sensed vegetation indices could be effectively utilized for 

estimation of spatial ET (Bausch and Neale 1987) and hence, this methodology could be 

used to manage VRI with different management zones (Stone, Bauer, and Sigua 2016). 

Bausch and Neale (1987) studied the correlation between a vegetative index and basal 

crop coefficient (Kcb) at the Northern Colorado Research and Demonstration Center near 

Greeley, CO. They estimated Kc by correlating them with the Normalized Difference 

Vegetative Index (NDVI). Neale et al. (2012) applied a hybrid approach to estimate ET 
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over cotton fields located at the USDA-ARS, Conservation and Production Research 

Laboratory (CPRL), in Bushland, TX. Another approach to estimate ET is by using an 

energy balance model, which considers radiative surface temperature of canopy. The 

hybrid approach is comprised of two components namely, the Two Source Energy 

Balance (TSEB; (Norman, Kustas, and Humes 1995) model and remote sensing-based Kc 

approach. In the hybrid model, TSEB model provided estimates of crop ET on the days 

when there were remote sensing inputs. For estimation of crop ET between days of 

remote sensing inputs, the reflectance-based Kc approach was used to compute crop ET. 

Hybrid model ET output was compared with ET measurements from eddy covariance 

systems to evaluate the performance of the hybrid approach. They found the hybrid 

approach performed reliably, improved the estimates of crop ET, and resulted in accurate 

soil water content estimation with the inclusion of ET from the TSEB model. The hybrid 

spatial ET model could also be effectively used for real time site-specific irrigation 

management (Barker et al., 2018b). They compared remote-sensing-based crop 

coefficient modeled ET, and TSEB computed ET with eddy covariance data to study 

model performance with different methodologies.  

 On a larger scale, Kukal et al. (2017) studied trends in ET spatially and temporally 

over the Great Plains region of the United States. Multiplatform satellite imagery was 

used to analyze ET over the period of 1982-2013. In conclusion, they found that satellite-

based Kc could be adopted to estimate crop development and plant water use. Diarra et al. 

(2017) compared and evaluated the TSEB model and the FAO Irrigation and Drainage 

Paper No. 24 dual Kc approach for computing ET and evaluate the model performance. 

This study was conducted on four plots of wheat and sugar beet in the Haouz plain of 
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Marrakech, Morocco. The TSEB model in their study performed proficiently in 

comparison to the dual Kc approach to estimate ET on a large scale. The conclusion 

drawn from the study was that the TSEB model can be used to calculate actual ET and 

may help in creating irrigation scheduling decisions. Accurate estimation of spatial ET is 

crucial to design accurate VRI prescription maps. 

1.2.3 VRI Management Systems 

 Though VRI allows more flexibility and control over irrigation management, it is 

complex and difficult to manage. Site-specific irrigation requires an expert system which 

can accurately study variability in soils and prescribe irrigation to reduce water 

withdrawals over uniform irrigation methods (Stone et al. 2015). O’Shaughnessy et al. 

(2016) used a comprehensive supervisory control and data acquisition (SCADA) system 

to estimate the potential benefits using VRI. 

 Additionally, center pivot VRI can be implemented in two ways, namely speed 

control and zone control. In speed control, the field is divided into small angular sectors 

based on spatial variability in the field. Zone control provides more control by allowing 

division of field into irregularly shaped management areas. These areas can then be 

precisely managed according to spatial characteristics of the field. Zone control VRI 

systems are more costly and complex than speed control VRI systems. The current use of 

zone control VRI is mainly to avoid irrigation on non-cropped areas of a field such as 

streams, waterways, ponds, roads, drainage ways, or rocky outcrops (Evans et al. 2013). 

This implies the need for studying and presenting other potential benefits from VRI, 

which could increase water use efficiency in irrigation sector. 
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 In the past, a number of studies have reported application efficiencies of VRI-

equipped center pivots. For example, Higgins et al. (2016) studied the application 

efficiency of a VRI system by two-dimensional layout of catch cans for measuring net 

irrigation applied through a center pivot system. About a 7% difference in water depth 

was observed between prescribed and measured depths. The largest differences were 

found in the areas where transitions occurred from one to another irrigation depth 

between management zones. They developed a criterion for designing minimum size of 

management zone for VRI management which was a function of characteristic length of 

transition from one zone to other zone. Yari et al. (2017) undertook a study to evaluate 

the performance of a VRI system versus a constant rate system on the basis of uniformity 

coefficients. The study was conducted on a five span center pivot sprinkler system at the 

Alberta Irrigation Technology Centre in southern Alberta, Canada during 2014 and 2015. 

While wind speeds were significant in reducing the application uniformity of the 

irrigation system, they reported that different application rates from the system did not 

affect the uniformity. Additionally, an updated sprinkler package on the pivot positively 

affected the uniformity coefficients and hence, it is important to have an appropriate 

knowledge of equipment such as age, wear and functionality. After computing different 

uniformity coefficients for both variable application and constant application 

experiments, they concluded that variable rate applications do not affect application 

uniformity of their center pivot irrigated system.  

 Various studies have been undertaken to evaluate VRI systems by comparing the 

yield and water response from VRI with a uniform irrigation, which is uniform irrigation 

managed by maintaining specific range of soil water deficit. Stone et al. (2015) managed 
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irrigation using four treatments on a field situated near Florence, South Carolina over the 

period of three years. The four treatments applied were VRI using an expert system for 

uniform irrigation in plots, VRI using an expert system to manage irrigation within plots 

according to individual soils, uniform irrigation based on maintaining specific soil water 

potential and a rainfed treatment. Results indicated that over the three-year study, the 

rainfed treatment had significantly lower yields than other three treatments. No 

significant differences in yields were observed among irrigated treatments. Additionally, 

they also found that water use efficiency was greater for the rainfed and uniform 

irrigation treatments than for both VRI treatments. They concluded that the expert system 

used in the study needed further improvement to manage VRI efficiently. Stone et al. 

(2016) conducted a similar study in which three irrigation treatments were compared: 

VRI using Irrigator Pro, uniform irrigated managed using remotely sensed Kc and 

uniform irrigation based on soil water potentials. No significant differences in yield and 

water use between VRI and uniform irrigation treatments were observed. They concluded 

that Irrigator Pro could be adequately implemented to manage irrigation. Barker et al. 

(2018a) undertook a field study to evaluate the performance of VRI compared to uniform 

irrigation and rainfed treatments. VRI was managed using two methods; VRI using a 

spatial ET model (Neale et al. 2012), and VRI using neutron probe soil water content. 

Other treatments were uniform irrigation and rainfed. They found that drift in their water 

balance model caused over application of water in the model-based VRI treatment. With 

current advancements in technologies such as improved computational capabilities and 

enhanced data management, development of VRI and evolution of plant and water 
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sensing technology, there is a potential to improve water use efficiency with the adoption 

of VRI.   

1.2.4 Potential Benefits of Variable Rate Irrigation 

 Estimation of potential benefits of VRI has been studied in a number of studies by 

simulating VRI (Evans et al. 2013; Lo et al. 2016; Miller et al. 2017). O’Shaughnessy et 

al. (2016) presented the potential of increasing water use efficiency through the adoption 

of VRI using SCADA. Lo et al. (2016) quantified potential water withdrawal reductions 

from adopting VRI to account for variability in root zone AWC. The gridded Soil Survey 

Geographic database (gSSURGO; NRCS, 2014) was used to study variability in soils 

over the region and estimated that 51 mm per year water in 2% of the fields and 25 mm 

per year in 13% of the fields water withdrawals can be reduced with VRI. Adoption of 

zone control VRI in areas having large variability in soils and high pumping costs was 

recommended. 

It is important to comprehensively quantify all benefits of VRI management to 

promote its adoption. Sadler et al. (2005) discussed the potential benefits from adoption 

of spatially varying irrigation in a field and concluded that future field research is needed 

to validate the concept of water and nutrient conservation through VRI. They added 

development of decision support and control systems for real-time monitoring could 

enhance the applications of precision irrigation or VRI. Extensive field testing is required 

to determine the economic feasibility and benefits of VRI to motivate producers to invest 

in this technology (O’Shaughnessy et al. 2016).  
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Adoption of VRI can also result in pumpage reductions by applying an optimal 

depth of water throughout a field (Sadler et al. 2005). Management of VRI using spatially 

varying soil available water capacity (AWC) may prove beneficial by producing optimal 

crop yield and water use efficiencies (Hedley and Yule 2009). Spatial ET along with 

spatial AWC will provide better estimates of spatial irrigation requirements for precise 

VRI management (Barker et al., 2018a). They suggested future research in the direction 

of VRI management in large commercial scale fields as well as economic analysis on the 

VRI system.  

West and Kovacs (2017) studied the potential of managing VRI with remote 

sensing using an unmanned aerial system and soil moisture sensors to improve water use 

efficiency and reduce ground water pumpage and associated reduction in pumping costs. 

Further, they performed an economic analysis on soil moisture sensors and unmanned 

aerial systems for VRI management and reported that soil moisture sensors are more 

economical to adopt than unmanned aerial systems. They also added that cost of 

unmanned aerial systems has been decreasing, which may result in consideration of these 

systems as a potential and viable option for VRI management. 

1.2.5 Conclusion  

 To conclude, irrigation systems need to be more efficient to meet future food 

requirements and use water resources sustainably. In uniform irrigation, irrigation is 

managed by treating the whole field as a homogeneous region. Since spatial variability 

may exist for various characteristics of a field such as soil types, slope, and soil water 

content, assuming field uniformity may lead to over or under watering certain areas 
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within the field. This restrains optimal irrigation management and further improvements 

in water use efficiency in irrigated systems. VRI is a technology that divides the field into 

small management zones based on spatial variability of the field. It may be considered as 

an option to improve water use efficiency, but there are many challenges that need to be 

overcome before VRI becomes beneficial and feasible for farmers to implement. An 

efficient decision control system needs to be developed, which is user friendly and is 

capable of creating precise real time prescriptions for VRI management. Additionally, 

zone-control VRI systems are expensive and additional research and development is 

needed to improve the economics for farmers, in most cases. VRI has potential for 

optimal management of irrigation, but there is a gap which needs to be filled before it 

could be adopted widely. This gap includes lack of comprehensive research, user-friendly 

accurate model for decision making in VRI, and economic viability for a broad range of 

applications. 

1.3 Objectives 

 The research goal for the study was to evaluate a spatial ET model for VRI 

management in terms of crop yield improvement and water withdrawal reduction 

compared to uniform irrigation and rainfed methods at the production field scale. The 

uniqueness of the study as compared to past studies lies in terms of the scale of this study. 

This study is conducted at a quarter section field (53 ha), similar to commercial farms. 

This study is a continuation of the Barker et al. (2018a) study with improved 

methodology for old treatments and new treatment inclusions. We added several new 

components to the study including unmanned aerial system imagery for model input, soil 
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water measurements for reducing model drift, and an improved method of estimating 

deep percolation for improved estimation of water balance components. We hypothesized 

that VRI would result in reduced water withdrawal over other irrigation treatments, while 

minimizing yield reduction. 

Following are the specific objectives: 

1. Evaluation of VRI implemented using a spatial ET model by comparing crop yields 

and water withdrawals with uniform and rainfed treatments. 

2. Continued development of a decision support system that simplifies the process of 

developing VRI prescription maps for easy management of VRI.  

3. Address and examine the spatial variability in yields, soils and ET. 
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CHAPTER 2. PERFORMANCE OF VARIABLE RATE IRRIGATION 

MANAGEMENT USING A SPATIAL EVAPOTRANSPIRATION MODEL WITH 

SATELLITE AND AIRBORNE IMAGERY UPDATED USING SOIL WATER 

CONTENT MEASUREMENTS 

Abstract 

 Variable Rate Irrigation (VRI) considers spatial variability in field and plant 

characteristics for irrigation management in agricultural fields. VRI may reduce water 

losses by applying optimum irrigation depth to all areas of field. This research aims to 

quantify the potential of VRI using a spatial evapotranspiration (ET) model in terms of 

relative crop and water response compared to a uniform and rainfed treatments. Irrigation 

treatments were (1) VRI using Landsat imagery (VRI-L), (2) VRI using unmanned aerial 

system (UAS) imagery (VRI-U), (3) uniform, and (4) rainfed treatments. These 

treatments were compared in a randomized experiment under maize and soybean 

production in a research field near Mead, Nebraska. An updated version of the Spatial 

Evapotranspiration Modeling Interface (SETMI; Geli and Neale, 2012) model was used 

to make prescriptions for VRI treatments. Imagery from Landsat and UAS coupled with 

soil water content measurements from neutron probe were used as inputs into the model. 

In 2017, we found that mean total gross prescribed irrigation depth (Ip) for VRI-L was not 

significantly different (α = 0.05) than the Ip for the uniform treatment for maize. 

However, the Ip for the VRI-L treatment was significantly greater than the Ip for the 

uniform treatment for soybean. Differences in soybean yield were not found to be 

significant among treatments. Maize yield was significantly greater for uniform and VRI 

treatments than for the rainfed treatment. In 2018, Ip for soybean was highest for VRI-U 
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treatment followed by uniform, and VRI-L treatments. They all were significantly 

different from each other. No significant results in Ip for maize were observed. No 

differences in crop yield were found in 2018. In all crop-year combination, the VRI and 

uniform treatments had higher ET than the rainfed treatment. 

2.1 Introduction 

 Irrigated agriculture constitutes the largest freshwater usage in United States with 

approximately 80% of freshwater used for agriculture (Schaible and Aillery, 2015). 

Agricultural production is becoming more intensified and more yield can be obtained per 

unit of land and water. Over the years, new efficient irrigation systems have been 

introduced with an objective of increasing water productivity (yield produced per unit of 

water diverted for irrigation) in agricultural fields. Center pivot irrigation systems 

equipped with sprinkler systems are one of the most efficient irrigation systems 

(O’Shaughnessy et al. 2016), constituting about 80% of total irrigated acreage in 

Nebraska (Johnson et al. 2011). Agricultural freshwater use in Nebraska is about 6.83 

million acre-feet per year (Dieter et al., 2017). 

 Conventionally, irrigation is applied uniformly intending to apply an equal depth 

to all parts of the field. Uniform irrigation is often managed according to a soil in the 

field having low available water capacity (Daccache et al. 2015). Uniform irrigation may 

lead to various water losses, which may be in the form of runoff and deep percolation 

(DP). Production of high yields throughout a field with significant spatial variability in 

field characteristics may be difficult to achieve with uniform irrigation. Such variability 

may exist in terms of soil types, topography, pest attack, crop growth, and nutrient 
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availability (O’Shaughnessy et al. 2016). To account for spatial variability in water 

management, VRI can be implemented to manage irrigation with more control and 

precision. VRI systems can apply varying amounts of irrigation to different parts of a 

field during a single irrigation prescription (Hedley and Yule, 2009; Evans et al., 2013; 

Stone et al., 2016). This ability could be used to match irrigation prescriptions with 

spatially varying crop water needs. VRI can be speed control or zone control. The 

differences between the two options exist in terms of cost, control, and flexibility. Speed 

control VRI systems can vary irrigation depths only in angular sectors of a circle and 

cannot vary rates along the pivot lateral. Zone control VRI systems can apply varying 

amounts of water throughout a field by using the ability to control individual or banks of 

sprinklers along the pivot.  

 VRI management may consider variability in multiple field characteristics to 

generate irrigation prescriptions. VRI can account for both spatial and temporal variation 

in crop water needs. Lo et al. (2016) predicted that mining undepleted soil water from 

areas of large available water capacity (AWC) in a field can reduce pumpage for irrigation 

in Nebraska center pivot irrigated fields. Differences in AWC of a field were used to 

compute VRI prescriptions and potential reductions in energy and water withdrawals 

were estimated (Miller et al. 2017). Similar to these studies, this study also utilized the 

differences in AWC among different management zones to manage irrigation treatments.   

 Evapotranspiration is an important component of the soil water balance. Spatial 

ET estimates are useful to study for efficient management of VRI (Barker et al., 2018a). 

Spatial ET estimates help in computation of spatial plant water needs. Real time 

estimation and forecasting of spatial ET helps in computing real time dynamic VRI 



20 

 

prescription maps (Barker et al., 2018b). Studies have utilized water balance models 

based on remote sensing imagery to compute spatial ET (Barker et al., 2018a, Stone et al., 

2015). Barker et al. (2018a) used a hybrid spatial ET model (Neale et al. 2012) to manage 

VRI on fields in Nebraska. The hybrid model included a water balance model based on 

reflectance-based crop coefficients (Neale, Bausch, and Heerman 1989) and the two-

source energy balance model (TSEB; Norman et al., 1995). The reflectance-based crop 

coefficient model used vegetation indices to compute spatial crop coefficient (Kc); Spatial 

Kc was then used to compute spatial ET.  

 Improvements in software capabilities, center pivot VRI systems, communication 

advancements, and better sensing instruments have enabled irrigation to be managed with 

more control and flexibility. O’Shaughnessy et al. (2016) discussed the potential of 

supervisory control and data acquisition systems for VRI management. They discussed 

specific advantages of these enhanced decision support systems in their study. However, 

VRI is complex to manage and may be costly. Because of the complexity and undefined 

benefits, it is currently being used primarily for avoiding areas in fields like rock outcrops 

and streams or drainways (Evans et al. 2013). Future work is needed to document the 

benefits of VRI and economic viability of investing in VRI systems. Precise models are 

helpful to estimate water balance components and manage VRI efficiently and precisely.  

 A number of field studies on VRI have been conducted to quantify the benefits of 

VRI (Stone et al. 2015; Stone and Sadler 2016; Barker et al., 2018a ; Sui and Yan 2017). 

Significant crop yield increases or reduction in water withdrawals resulting from VRI 

adoption were not observed in most studies. Reduction in water withdrawals was 
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observed with VRI compared to uniform irrigation method in Sui & Yan (2017). Most 

studies are conducted at smaller scales, which may or may not be representative of 

commercial-field-scale agricultural production. Research is needed to evaluate the 

potential of VRI at commercial farm scale. 

 The overall objective of this study is to quantify potential benefits in terms of 

yield increases and reduction in water withdrawals with VRI management compared to 

uniform irrigation and rainfed treatments at a commercial producer sized field. A spatial 

ET model was fed with remote sensing inputs from satellite and UAS. Crop yield, 

prescribed gross irrigation depth, actual evapotranspiration (ETa), and various irrigation 

efficiencies were compared among treatments. Specific objectives of the study included: 

(1) comparing different irrigation treatments in terms of crop yield and irrigation usage, 

(2) improving VRI management using spatial ET model and remote sensing inputs from 

different sources, and (3) comparing treatments using water balance response variables. 

2.2 Material and Methods 

2.2.1 Study Site 

A field site equipped with a center pivot irrigation system was used to conduct the 

experiment in 2017 and 2018. The site was near Mead, Nebraska (41.165°N, 96.430°W) 

and is property of the University of Nebraska’s Eastern Nebraska Research and Extension 

Center (ENREC). The field was irrigated with a Lindsay Corporation (Omaha, Nebraska) 

Zimmatic 8500 center pivot with Lindsay’s Precision VRI system allowing individual 

sprinkler control. The field size was nearly 53 ha (Google Earth Pro, assessed on October 

15, 2018). 
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 The north and south halves of the field were planted with maize and soybean, 

respectively, in 2017 and rotated for each half in 2018. The VRI-equipped center pivot 

was installed in 2014. The center pivot consisted of 7 spans having a total lateral length 

of about 380 m with sprinklers fixed on top of the lateral pipe. Soils in the field were 

classified as silty clay loam and silt loam (gSSURGO, Soil Survey Staff, 2018). Crops 

were planted in straight rows running east-to-west. The tillage practice was no till and the 

field was covered with residue from previous seasons. A single crop was sown in each 

half every year, and cattle grazed the maize residue during winter. A uniform anhydrous 

ammonia injection applications were applied to the field in the autumn preceding maize 

planting next year close to planting. 

2.2.2 Experimental Design 

 The maize and soybean crops were managed as two different fields. Plots were 

designed along crop rows. Similar to Barker et al. (2018a), the design of the study plots 

was a generalized randomized complete block design (RCBD). Treatments were 

randomly assigned to plots in each soil group and were randomized both years. The 

design included 108 plots: 72 plots in the north and 36 plots in the south (Figure 2.1). The 

plots were rectangular with length of ~ 61 m and width of ~ 37 m. Blocking was based on 

the range of AWC in each soil class. AWC of each plot was computed from estimated 

values of field capacity (FC) and at wilting point (WP) for each plot. Plots were grouped 

into six blocks for the north half and three blocks for the south half of the field. The 

number of blocks was dependent on the range of AWC values in each block. Each final 
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soil block had a similar range of AWC of soils. The maximum variability in AWC values 

for a 1.2 m soil profile in each block was less than 40 mm. 

 Four treatments in 2017: variable rate irrigation using SETMI and Landsat (VRI-

L), uniform (based on neutron probe), uniform 2, and rainfed, were applied to plots in 

both the north and south halves of the field. There were twice as many uniform plots as 

other treatments. This is because a fourth intended treatment was omitted after the 

experiment began. The uniform treatment was applied to omitted treatment plots. The 

108 plots were equally divided among the four treatments to form balanced design for 

both north and south halves of the field.  

 In 2018, a new treatment, VRI using SETMI and unmanned aerial systems 

imagery (VRI-U), was added to the study. In 2018, the north half had four treatments, 

VRI-L, VRI-U, uniform, and rainfed. The south half design had three treatments, 

excluding the VRI-L treatment. Only 54 plots in north half and 24 plots in south half 

were used in the 2018 analysis because a new treatment was dropped from the study. The 

design was balanced for south and unbalanced for north. In the north, more plots in each 

block were attributed to the new treatment (VRI-U) to gain more knowledge on these 

treatments.  

 Irrigation was managed according to computed plot-specific water balances for 

the plots in VRI treatments. For the uniform treatment, a single plot was chosen in each 

half of the field for irrigation management. These plots had AWC near the lower 10th 

percentile of AWC for plots under uniform treatment in the respective half of the field. 

Uniform 2 treatment in 2017 was also irrigated according to the water balance for the 
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selected plot in uniform treatment. Rainfed plots were not irrigated throughout the 

season.  

 

Figure 2.1 Plot layout of experiment in 2017 and 2018. Letters inside plots denote 

treatments applied in 2017/2018. Treatment are: A) VRI-L, B) VRI-U, C) Uniform, C2) 

Uniform 2, and D) Rainfed. ‘-’ in plot labels is used to indicate that the plot was not used in 

the analysis for that year. Background basemap: World imagery from ESRI ArcMAP. 
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2.2.3 Acquired Data 

2.2.3.1 Weather Data 

 Weather data was acquired from the High Plains Regional Climate Center’s 

(HPRCC) data network called Automated Weather Data Network (AWDN). Data from 

The Memphis 5N (41.15°N, 96.417°W) weather station was used. This station was at a 

distance of approximately 1 km southeast of research field. Hourly and daily weather data 

from the station was used to compute reference evapotranspiration (ETr) using the ASCE 

Standardized Tall Reference Evapotranspiration equation (ASCE-EWRI, 2005). ETr was 

computed on hourly time step and summed up to daily step. 

 For irrigation scheduling, daily ETr and growing degree days (GDD) were 

forecasted for remainder of the season after the most recent data. Daily average values of 

maximum and minimum air temperature (for GDDs) and ETr were computed based on 20 

years of historic weather data. Historic data from years 1997-2016 and 1998-2017 were 

used in 2017 and 2018, respectively. This data was obtained from the same weather 

station. These forecasted values along with forecasted Kc values were then used to predict 

crop evapotranspiration (ETc). Finally, irrigation needs were computed using forecasted 

ETc values. 

 Four tipping bucket type rain gauges were installed in different locations around 

the field. The rain gauges were Isco Model 764 (Teledyne Isco, Lincoln, NE) in 2017 and 

TR-525 USW (Texas Electronics) in 2018. Multiple rain gauges were used to accurately 

capture mean rainfall received by the field. Rain gauges were calibrated before 

installation. Correction values calculated in the calibration process were applied to the 
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data. The arithmetic mean of all four rain gauges was used to represent rainfall for a 

given day. Rainfall data was recorded on an event basis and the sum of events was used 

to represent rainfall on a daily basis. In 2018, rainfall data from weather station was used 

till 11 May due to erroneous measurements taken by field rain gauges due to improper 

installation. 

 Atmospheric pressure was obtained from Neb Field 3 Cosmic-ray Soil Moisture 

Observing System (COSMOS) station (Zreda, n.d.). Pressure data was used as an input 

into the TSEB model.  

2.2.3.2 Remote sensing data 

  Remote sensing inputs from both satellite and UAS were used in the model. 

Satellite imagery from Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 

Operational Land Imager (OLI) and Landsat 8 Thermal Infrared Sensor (TIRS) were used 

in the model. The Level-1 raw and Level-2 surface reflectance imagery was retrieved 

from U.S. Geological Survey. Since Landsat 8 image becomes available after every 16 

days, Landsat 7 imagery was used to increase the frequency of useful images. Images 

with cloud cover above the field or close were not used in the study. Some Landsat 7 

images with missing data for the field were also not used. Therefore, these images were 

excluded from the study for that half. Atmospheric corrections for thermal infrared 

images were based on parameters calculated using Atmospheric Correction Parameter 

Calculator web application (Barsi, Barker, and Schott 2003). Ground-based pressure data 

and various weather parameters were used in obtaining parameters for atmospheric 

corrections. Thermal infrared images with low atmospheric transmission values (< 0.6) 
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were not used. Low transmissivity values indicate more error in temperature of images. 

Thermal infrared corrections were applied using ERDAS Imagine 2014 (Hexagon 

Geospatial, Madison, AL) software in 2017 and ArcGIS 10.4 (ESRI, Redlands, CA) in 

2018. 

 In 2018, spectral imagery from UAS was collected using a MicaSense (Seattle, 

Washington) RedEdge multispectral sensor. The UAS imagery was captured at least once 

a week with exception with fewer imagery towards end of season due to logistical 

reasons. The imagery was taken at a ground resolution of approximately 17 cm. The 

imagery was processed and calibrated using Pix4D (San Francisco, California) software. 

It was scaled to resolution of 1 m to input into the model. ArcGIS (Esri, Redlands, 

California) software was used to scale and georeference the images.  

2.2.3.3 Soil Water Content Data  

 Soil volumetric water content (θ) was monitored using neutron probe (NP) at the 

field. Two NPs, model 503 Elite Hydroprobe (CPN, Concord, California), were used to 

measure θ. Aluminum access tubes, having diameter of 5.1 cm, were used to monitor θ at 

different depths. The depths of measurement were 15, 30, 46, 76, 107, 137 and 168 cm 

for field. Tubes were installed near the geometric center of each plot. Tubes were 

installed between two plants with some offset distance from the crop row. Soil water 

content data was used to estimate soil water depletion within the root zone. θ 

measurements taken on a day were assumed to represent daily soil water status for end of 

that day. θ was monitored with a frequency of one to three weeks in 2017. Standard 

neutron counts were noted before and after the measurements were taken. Average 
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standard counts were used to convert soil neutron counts to θ. Thirty-second neutron 

count tests were used for θ measurement at a depth. The soil neutron count data obtained 

was then divided by average standard neutron count to obtain count ratio. Volumetric 

water content was obtained by using respective count ratios and probe’s calibration slope 

and intercept coefficients. 

Two NPs used in the study will be referred as probes E1 and E2, respectively. 

Both were locally calibrated using 22 soil samples from the field in 2017. The soil 

extracted during installation of tubes was used for soil sampling and site-specific 

calibration of NPs. The average length of soil samples used for calibration was about 10 

cm with diameter of 4.1 cm. 60-second neutron counts were taken to be more accurate in 

calculations for calibration process. Each depth measurement of volumetric water content 

from probe was correlated to gravimetric water content obtained from oven drying 

method. The linear regression for the slope and intercept from the calibration were 

0.3132 m3 m-3 and -0.1632 m3 m-3, respectively for probe E1 and 0.2869 m3 m-3 and          

-0.1135 m3 m-3, respectively for probe E2. The root mean square error (RMSE) in the 

calibration process was 0.018 for probe E1 and 0.019 for probe E2. Probes E1 and E2 

needed firmware upgrades and maintenance after the 2017 season. Probe E1 needed new 

calibration coefficients in 2018 after probe was serviced. Probe E1 was cross-calibrated 

using probe E2. The new slope and intercept for probe E1 were 0.2766 m3 m-3 and -

0.1189 m3 m-3, respectively with R2 = 0.96.  
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2.2.3.4 Soil sampling 

 Soil properties were determined for locations where access tubes were installed. 

FC and WP of each plot were estimated by Barker et al. (2018a). FC and WP were 

estimated for access tube location in each plot were assumed to represent FC and WP for 

the entire plot. FC was estimated using θ measurements from NP. WP was estimated 

using correlation with apparent electrical conductivity. FC values were updated in 2018 

using neutron probe readings from 2017. 

2.2.4 Water Balance Components 

 In modeling for the VRI-L, VRI-U, and uniform treatments, soil was assumed to 

be at FC before start of each growing season. This assumption was used due to off season 

recharge from precipitation at the field. Water balance calculations were computed with a 

daily time stamp and the end of the day happening at midnight. All measurements taken 

on a day were assumed to represent the end of that day. The root zone was grown linearly 

from a specified minimum to a maximum value (Barker et al., 2018a). The minimum 

value of the root zone depth used was 0.1 m and the maximum value was assumed to be 1 

m for both crops. Initiation of root growth started at the emergence date computed as the 

day that basal crop coefficient (Kcb) first exceeded 0.12, and it was allowed to increase to 

its peak value when the Kcb reached their peak value. Projection of Kcb to its peak is 

discussed below. 

2.2.4.1 Effective Rainfall 

 Rainfall data from the installed rain gauges at field site and the weather station 

were both used. Data from the rain gauges at field were used if data from both sources 
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were available. Rainfall data from the gauges at the field were more representative of 

rainfall received by the field. When recent data from these rain gauges were not 

downloaded, data from the weather station was used for irrigation scheduling purposes. 

The field rain gauge data were primarily used in the final analysis. The curve number 

method was used to compute runoff (SCS 1985). The curve number used for runoff 

calculations was 80. Runoff was subtracted from rainfall depth to get effective rainfall.  

2.2.4.2 Evapotranspiration 

 For uniform irrigation plots, single Kc were employed to compute crop 

evapotranspiration (ETc). Crop coefficients for maize were computed using mean Kc 

based on Allen & Wright, 2002. These coefficients were based on days after planting. For 

soybean, the average daily value of the two single Kc relationships (2007 and 2008) of 

Irmak, Odhiambo, Specht, & Djaman, (2013) was used. These coefficients were based on 

days after emergence. These coefficients were originally developed for Clay Center, 

Nebraska, which is approximately 160 km southwest of the field. The offseason single Kc 

was assumed to be 0.2. The day of year at which single Kc peaks out was estimated early 

in the season for irrigation forecasting. This estimation was done using 20-year historic 

daily average values of GDD and the previous season’s GDD from planting to effective 

full cover. 

 For VRI treatments, dual crop coefficients were used in SETMI to compute ET. 

Reflectance based basal crop coefficients (Kcbrf) were computed based on the soil-

adjusted vegetation index (SAVI) computed from remote sensing imagery. Using Kcbrf 
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relationships from Campos et al. 2017, ETc was computed following FAO Irrigation and 

Drainage Paper No. 24 with equation: 

𝐸𝑇𝑐 = 𝐸𝑇𝑟 ∗ 𝐾𝑐 

where ETc is crop ET, ETr is alfalfa-based reference ET and Kc is crop coefficient. Dual 

Kc were used in the spatial ET model to compute ET for VRI treatments. Dual Kc were 

computed using following FAO Irrigation and Drainage Paper No. 24 with equation: 

𝐾𝑐 = (𝐾𝑐𝑏 ∗ 𝐾𝑠) + 𝐾𝑒 

where Kc is dual crop coefficient, Kcb is basal crop coefficient, Ks is water stress 

coefficient and Ke is soil evaporation coefficient.  

2.2.4.3 Stored soil water  

 As mentioned in section 2.2.3.3, θ was monitored at 7 depths in the soil profile 

depth. Weighted average θ depth was used to represent stored θ in the water balance. 

Reading at 15 cm was assumed to represent 0 – 23 cm, 30 cm to represent 23 – 38 cm, 46 

cm to represent 38 – 61 cm, 76 cm to represent 61 – 91 cm, 107 cm to represent 91 – 122 

cm, 137 cm to represent 122 – 152 cm and 168 cm to represent 152 – 183 cm. However, 

a weighted average of θ down to a depth of 1 m, similar to modeled root zone depth, was 

used for water balance calculations.   

2.2.4.4 Irrigation 

 Gross irrigation requirements were calculated from plot-specific water balances. 

A 9.1 m inner buffer zone inside the boundary of plots was used to allow time for 
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transitions between varying application depths (Barker et al., 2018a). The irrigation 

requirements were computed for the inner portion of the plot excluding the buffer area. 

Manageable allowable depletion (MAD) was the threshold used for irrigation 

management. This was the soil water content threshold below which crop water stress 

was assumed to occur. The MAD used for maize was 50% of AWC before maturity was 

reached. Soybean was managed at 55% MAD until reproductive stage R2, after which 

MAD was reduced to 50% (Kranz, 2012). MAD was increased to 60% for both crops late 

in the season (Yonts, Melvin, and Eisenhower 2008). Soils were not irrigated to reach 

FC. Irrigating less than FC level allowed water to infiltrate into the soil from rainfall 

events. This rainfall allowance was chosen to be 25.4 mm. During real time irrigation 

management, irrigation requirements were forecasted every week. The maximum 

irrigation depth applied by the center pivot in a single pass was 30.48 mm. Irrigation 

depths were split into two or three prescriptions when irrigation requirements exceeded 

the maximum irrigation depth that could be applied by irrigation system in a single pass. 

Irrigation was applied to maintain root zone depletion less than MAD and greater than the 

rainfall buffer zone. This methodology is described by Barker et al. (2018a) and Barker et 

al. (2019). 

The pivot typically took more than one day to complete a single irrigation event 

for one half of the field. For water balance calculations, the day when a plot received 

irrigation was computed based on average pivot travel time. If a plot received irrigation 

after midnight, it was considered to be irrigated on the next day similar to Barker et al., 

2018a. Plots were considered irrigated if the pivot passed over the neutron access tube 
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location in the plot. The pivot was assumed to run at a constant speed, though speed 

varied in reality due to variable application depths. The speed was calculated using the 

start-stop time and angular distance covered.  

 Application efficiency was assumed to be 85% to account for losses such as 

evaporation, wind drift, etc. Gross irrigation was assumed to be the depth of water which 

was intended to be applied. Net irrigation was the assumed depth which infiltrated into 

the soil and could be utilized by plants. Net irrigation was computed after accounting for 

application efficiency in the gross irrigation. 

 Real-time adjustment of irrigation prescriptions due to rainfall was done if rainfall 

occurred after irrigation prescription development. If rainfall occurred before applying an 

irrigation prescription, the prescription was adjusted by reducing the rainfall amount from 

prescribed depth. In a case where rainfall happened during an irrigation event, the 

prescription was not adjusted for rainfall. In this case, the irrigation events were 

completed when it was feasible. 

2.2.4.5 Deep percolation 

 Deep percolation was computed using different methods among the treatments. 

For the uniform and VRI-L treatments, instantaneous DP method was used which drained 

all water in excess of FC at end of the day (FAO Irrigation and Drainage Paper No. 24). 

This does not allow the depletion to go below 0 mm. A decaying function for DP (Raes et 

al., 2016) was used for the new VRI-U treatment in 2018 (Barker et al., 2019). 

Computation of DP for VRI-L and uniform treatments was done using instantaneous DP 

method only in 2018. This was done to stay consistent between methodologies for 
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treatments in 2017 and 2018. This allowed water in excess of FC to stay in the root zone 

to be used by plants for a few days. Also, depletion could go below 0 mm when using this 

method. This method was used during the final analysis. 

2.2.5 SETMI Modeling for Irrigation Management 

 SETMI was embedded in ESRI’s (Redlands, CA) geographic information system 

(GIS) software ArcGIS 10.4. SETMI (Geli and Neale 2012) was used to compute 

irrigation requirements for VRI-L and VRI-U plots. Dual Kc based on FAO Irrigation and 

Drainage Paper No. 24 were used in the model. Refer to Barker et al. (2018a) and Barker 

et al. (2019) for current information on SETMI in addition to the included water balance 

and TSEB models. Maize and soybean were considered as different fields in the model.  

2.2.5.1 Water balance model 

 The offseason Kcb value was set to 0.12. Kcbrf values were forecasted using two 

different methods depending on crop development (Barker et al., 2018b). The first 

method was used if the crop development was before full cover. This method projected 

the peak Kcb curve to day of the year at which Kcbrf is expected to reach its peak value. 

Based on input imagery, a limit on how late this day could occur was estimated using last 

season’s GDD to reach full cover from planting. At least two reflectance images were 

needed to project the Kcb curve to the peak value. The second method was followed after 

full cover. The day when the crop was expected to mature (reach an offseason SAVI 

value = 0.099) was input in SETMI. This input helps lower Kcb value at an appropriate 

rate after full cover. The end-of-season SAVI forecast was also used in final calculations 

for maize in 2017. 
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2.2.5.2 Two Source Energy Balance adjustment 

 Thermal infrared imagery was input into the TSEB (Norman, Kustas, and Humes 

1995). The TSEB in SETMI can compute ET using different canopy latent heat flux 

equations (Barker et al., 2018b). The Priestly-Taylor equation was used to estimate 

canopy latent heat flux. As in Norman, Kustas, and Humes 1995, instantaneous ET which 

was calculated using TSEB model and scaled up to daily value (Barker et al., 2018b). The 

TSEB adjustment was not made for the VRI-U treatment, since the TSEB model was not 

extensively tested with UAS imagery as input. The TSEB was used to adjust ET and 

depletion (Neale et al. 2012) only for VRI-L treatment in both years. 

 TSEB ET was included in SETMI when the fraction of vegetation cover was 

above 20% for the majority of the field. Crop height and leaf area index, modeled based 

on Optimized Soil-Adjusted Vegetation Index values, were adjusted late in the season 

(Barker et al., 2018b). This adjustment was made to maintain crop height and leaf area 

index late in the season. Crop height and leaf area index images output from TSEB model 

at full effective cover (peak) were input into model late in the season to maintain peak 

values. 

 For VRI-L, TSEB ET was used to adjust the Kcbrf computed ET on each day a 

thermal image was input into SETMI. The adjustment was weighted based on a factor 

called Kalman gain or weighting factor (W) (Neale et al. 2012). Weighting factor can be 

changed from 0 to 1 to change the weight of TSEB ET in calculating the resulting ET 

after adjustment. 
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 𝐸𝑇𝑊𝐵
𝐴 = 𝐸𝑇𝑊𝐵

𝐵 +𝑊(𝐸𝑇𝑇𝑆𝐸𝐵 − 𝐸𝑇𝑊𝐵
𝐵 ) (1) 

where 𝐸𝑇𝑊𝐵
𝐴 , 𝐸𝑇𝑊𝐵

𝐵  are actual ET from water balance with and without adjustment using 

TSEB ET, respectively, and 𝐸𝑇𝑇𝑆𝐸𝐵 is ET calculated by TSEB. We used weighting factor 

of 0.56 in computing actual ET.  

 TSEB ET could also update the soil water balance by adjusting the modeled 

depletion through the Ks. In case when the TSEB ET was lower than water balance ET, 

the Ks was decreased below unity. This would update the soil water balance by increasing 

depletion for the previous day. This new increased depletion for the previous day was 

then used to compute new depletion for the current day. However, in the case when 

TSEB ET was larger than water balance ET, the stress coefficient calculated in this case 

was 1, irrespective of a stressed condition that may be modeled by water balance.  

2.2.5.3 Adjustment using measured soil water content  

 The output depletion from SETMI was adjusted using θ measurements from NP. 

Mean θ adjustment was used to adjust modeled depletion in 2017 and 2018. Four plots 

from the VRI-L and VRI-U treatments were selected for each of the two crop-year 

combination. These plots had θ values close to 0th, 33rd, 66th and 100th percentiles of the 

range of θ values on a measurement day among respective VRI-L and VRI-U plots. 

There were the most recent dates at which θ measurements were available at that time of 

selecting plots. Means of modeled depletion values from these four plots were compared 

to mean of measured values for the respective locations for each NP measurement date 

as:  
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𝜃𝑎𝑑𝑗 = 𝜃𝑚𝑜 + (𝜃𝑚𝑠 − 𝜃𝑚𝑜) 

where θadj is the adjusted soil water content using measured soil water content from NP, 

θmo is modeled soil water content, 𝜃𝑚𝑠 is mean of measured soil water content for 4 plots 

and 𝜃𝑚𝑜 is mean of measured soil water content for 4 plots. This adjustment was made on 

each measurement day in 2017 and 2018. 

2.2.6 Data Analysis 

 The total prescribed gross irrigation depth was compared between treatments. 

Treatments were also compared using various response variables, including ETa, crop 

yield, DP, change in soil water storage (SW), irrigation water use efficiency (IWUE), 

evapotranspiration water use efficiency (ETWUE), and crop water use efficiency 

(CWUE). The various efficiencies were computed following Djaman & Irmak, 2012. 

2.2.6.1 Computation of response variables 

 Seasonal water balances were modeled for each plot for computation of these 

variables. Similar to Barker et al. (2018a), analysis was performed between the first and 

last day of NP measurements. Unlike Barker et al. (2018a), SETMI was used to perform 

the final analysis. The measurement period in 2017 was from 18 April to 22 September 

for maize and from 9 May to 29 September. The measurement period in 2018 was from 

23 April to 22 September for maize and from 8 May to 18-19 September for soybean. 

Last θ measurements for soybean in 2018 were taken in two days due to rainfall event 

happening later in the day on 18 September. Rainfall on 18 September was not included 

in water balance calculations for plots with last θ readings on 18 September since θ 
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readings were taken before the rainfall event for these plots. However, this rainfall event 

was included for plots with last θ readings on 19 September. 

 As discussed above that root zone depth of 1 m was used during irrigation 

management. During final analysis, depth of root zone was considered to be constant at 

1.22 m for both crops. Weighted average of θ readings down to 1.22 m depth were used 

to represent soil water status on measurement dates. During final analysis, a decaying 

function (Raes et al., 2016; Barker et al., 2019) was used to simulate DP due to wetting 

events.  

 Landsat 7 and 8 imagery was used in SETMI for analysis in 2017. Due to sparse 

Landsat imagery in 2018, UAS imagery was used to run seasonal water balances and 

compute response variables in 2018. Peak SAVI values were based on imagery. For 

soybean, no end-of-season forecasted SAVI value was input late in the 2017 final 

analysis. Projected end SAVI value was input for maize due to lack of imagery close to 

end of season in both years. For soybean in 2018, projected end SAVI was also used. 

This input was used to end the Kcbrf curve if there is no imagery close to maturity. The 

projected end SAVI was estimated based on visual observations of crop maturity close to 

end of season. 

 Soil evaporation was dampened by 25% for both crops to account for residue 

present in field. This adjustment was made following Barker et al. (2018a). Soil 

evaporation was also dampened during the season while computing water balance 

components. The amount of residue at field was estimated using the line transect method 

following (Shelton and Jasa 2009). Residue was estimated through multiple readings at 
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different locations in the field. The observations were taken at about 45o angle to crop 

rows. 

2.2.6.2 Yield Processing 

 Crop yield was measured using yield monitoring equipment on harvesters. Yield 

data was filtered and cleaned using Yield Editor software version 2.0 (Agricultural 

Research Service, United States Department of Agriculture). These filters included 

moisture delay, maximum and minimum velocity, minimum swath, smooth velocity, 

maximum and minimum yield, standard deviation, overlap, and moisture adjustments. 

The filtered clean data was checked using mean yield (weight per unit area) reported for 

weighing grain carts. Plots were excluded from analysis if processed plot yield data 

points were less than 20 for maize and less than 25 for soybean within yield plot buffer in 

2017. Threshold for excluding plots from 2018 analysis was less than 30 yield data points 

for both crops in 2018. 

 The yield analysis was done on the computed dry mass of crop grain yield. Mass 

of the moisture (using yield monitor measured moisture) present in grains during harvest 

was removed from grain mass while executing calculations for yield analysis. 

2.2.6.3 Statistical Analysis 

 Similar to Barker et al. (2018a), multivariate analysis of variance (MANOVA) 

and univariate analysis of variance (ANOVA) were tests performed to study treatment 

and blocking effects of the response variables. SAS 9.4 (SAS Institute, Inc., Cary, NC) 

software was used to compute statistical analyses on the data. MONOVA tests and partial 

correlations between response variables was completed using PROC GLM. ANOVA 
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using PROC GLIMMIX was run and type III sum of squares and cross-products were 

calculated. Treatment differences were identified if each of these tests show significant 

results. Blocking was considered to be a fixed effect when these tests were performed.  

 Analysis on applied seasonal irrigation and response variables was done 

separately. The least mean squares mean were tested at 5% significance level.  

2.3 Results and Discussion 

2.3.1 Soil Properties  

FC and WP were used to characterize different soils in the field. FC and WP for 

plots were computed using depth-weighted averages of FC and WP values at a location. 

Soil property estimates of FC and WP were used as in Barker et al. (2018a). In their 

study, WP was related to apparent electrical conductivity of soil. WP estimates had an 

uncertainty more than ±0.1 to ±0.2 m3 m-3. FC was estimated using θ measurements from 

two days. The range of FC values was from 0.37 to 0.43 m3 m-3 for north half and 0.37 to 

0.41 m3 m-3 for south half. WP values ranged from 0.17 to 0.21 m3 m-3 for north and 0.18 

to 0.20 m3 m-3 for south. As a result, AWC values ranged from 0.17 to 0.25 m3 m-3 for the 

north and 0.17 to 0.24 m3 m-3 for the south. 

In 2018, FC values for plots were updated using θ measurements taken in 2017. 

Irrigation requirements for a selected plot in the uniform treatment were small for early in 

the 2018 growing season. Consequently, there was less confidence in FC numbers from 

Barker et al. (2018a). θ readings from June 19, 2017 and May 12, 2017 were used to 

update FC numbers for plots in the north and south halves of the field, respectively. New 

FC values for the north plots ranged from 0.37 to 0.45 m3 m-3. The FC range was 0.38 to 
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0.44 m3 m-3 for the south plots. The new FC numbers, in general, were greater than the 

values used in 2017. This resulted in an increase in AWC for most of the plots.  

2.3.2 Rainfall 

 Historic (1981-2010) average rainfall from May to October was about 540 mm 

near the research field (NCEI, n.d.-a). This data was recorded by National Climatic Data 

Network’s weather station Mead 6S which was situated about 6.5 km southwest of the 

field. The cumulative rainfall for months May to October recorded by the rain gauges at 

the field was 691 mm in both 2017 and 2018. These two years could be considered wetter 

than normal years. 

2.3.3 Remote Sensing Imagery 

 Satellite imagery was used as a remote sensing input in 2017. Both Landsat 7 and 

8 imagery were used in the model. Images with cloud cover were excluded from the 

model. Few Landsat 7 images were usable for the field (Table 2.1). Only one Landsat 7 

imagery each for the north and south halves of the field was considered good.  

 Spectral UAS imagery was used in 2018 for the VRI-U treatment. Table 2.2 is a 

list of imagery used for irrigation scheduling and end-of-season analysis. 
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Table 2.1 List of dates of satellite imagery used in VRI-L treatment in 2017 and 2018. 

Image Dates in 2017 
 

Image Dates in 2018 

Satellite Date TSEB 
 

Satellite Date TSEB 

Maize 2017   
 

Soybean 2018   

Landsat 8 May 13, 2017 No 
 

Landsat 7  May 8, 2018 No 

Landsat 8 May 29, 2017 No 
 

Landsat 8 May 16, 2018 No 

Landsat 7 June 6, 2017 No 
 

Landsat 7  May 24, 2018 No 

Landsat 8 June 14, 2017 Yes 
 

Landsat 8 June 1, 2018 No 

Landsat 8 June 30, 2017 Yes 
 

Landsat 8 July 3, 2018 Yes 

Landsat 8 July 16, 2017 Yes 
 

Landsat 7  July 11, 2018 No 

Landsat 8 August 17, 2017 Yes 
 

Landsat 8 July 19, 2018 Yes 

Landsat 8 September 2, 2017  Yes 
    

Soybean 2017 
     

Landsat 8 May 29, 2017 No 
    

Landsat 8 June 14, 2017 No 
    

Landsat 8 June 30, 2017 Yes 
    

Landsat 8 July 16, 2017 Yes 
    

Landsat 8 August 17, 2017 Yes 
    

Landsat 7 August 25, 2017 No 
    

Landsat 8 September 2, 2017  Yes 
    

Landsat 8 October 20, 2017 No 
 

      

 

Table 2.2. List of UAS images used in 2018. 

No. of images Date 

Maize & Soybean 2018 

1 May 10, 2018 

2 May 30, 2018 

3 June 5, 2018 

4 June 18, 2018 

5 June 27, 2018 

6 July 2, 2018 

7 July 6, 2018 

8 July 11, 2018 

9 July 24, 2018 

10 August 1, 2018 

11 August 9, 2018 

12 August 29, 2018 

13 September 17, 2018 

14 September 26, 2018 
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2.3.4 Eliminated Data 

 In 2017, two plots (16 and 2) were not used in the analyses for maize, the plots 

were part of VRI-L and rainfed treatments, respectively. The eliminated plot in VRI-L 

had an accidental spill of water on the neutron access tube which may result in erroneous 

soil water status in that plot. This plot was also used to correct the model using θ 

measurements. The spill of water occurred after irrigation prescriptions were applied in 

2017. The other excluded plot in rainfed was due to low yield data points. No plot was 

excluded for soybeans.  

 In 2018, five plots in soybean and one plot in maize were excluded from final 

analysis due to less yield data points for these plots. In soybean, excluded were one plot 

from VRI-L, VRI-U, and rainfed each and two plots from uniform. In maize, excluded 

plot was from the uniform treatment. 

2.3.5 Mean Total Gross Prescribed Irrigation Depth 

 In this section, treatment differences for Ip applied to the crop during a growing 

season are discussed. The rainfed treatment plots received no irrigation throughout the 

season. In 2017, total gross prescribed irrigation depth (It) for plots under VRI-L 

treatment ranged from 56 to 107 mm (Figure 2.1). Plots under uniform and uniform 2 

treatments received equal Ip (Table 2.3). For maize, Ip was 77 mm for VRI-L treatment 

and 76 mm for the uniform and uniform 2 treatments. Treatment differences were not 

found to be significant. Contrary to these results, Barker et al. (2018a) found that Ip 

applied for VRI-L treatment was significantly greater than the uniform treatment in maize 

for this site during their two-year field study in 2015 and 2016. Rainfall during the 



44 

 

growing season of 2015 and 2016 was also greater than normal years. Their study did not 

include θ measurements in the model. We observed that model adjustments using 

measured soil water content decreased the irrigation requirements prescribed by the 

model. For soybean, Ip for the uniform and uniform 2 treatments (51 mm) was 

significantly lower than Ip for the VRI-L (76 mm) treatment. The range of It was 56 to 87 

mm for the VRI-L treatment. Lower irrigation needs for the uniform treatment could be 

attributed to management using a plot that needed relatively less amount of water.  

 In 2018 for maize crop, Ip for VRI-U (64 mm) and uniform (66 mm) treatments 

were not different from each other. For soybean, Ip was 98 mm for VRI-U, 91 mm for 

uniform, and 70 mm for VRI-L. Significant differences in soybean were observed 

between all treatments. Less water was prescribed to the VRI-L treatment signifying a 

considerable reduction in water withdrawals over the uniform and VRI-U treatments. A 

Figure 2.2 Total mean prescribed irrigation depth for each plot in 2017 and 2018. 
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Table 2.3. Mean total seasonal gross irrigation prescribed for treatments in 2017 and 2018. 

2017   2018 

Treatment Mean ± SE (mm) DF  Treatment Mean ± SE (mm) DF 
  

Maize 

   

Maize 

 
 

VRI-L 76.5 ± 3.3 12 
 

VRI-U 63.8 ± 1.9 22 

Uniform 76.2 
  

Uniform 66.0 
 

Uniform 2 76.2 
  

Rainfed 0 
 

Rainfed 0 
  

Soybeans 
   

Soybeans 
  

VRI-L 76.2 ± 4.4 6 
 

VRI-L 70.3 ± 2.8 40 

Uniform 50.8 
  

VRI-U 97.6 ± 2.3 40 

Uniform 2 50.8 
  

Uniform 91.4 
 

Rainfed 0 
  

Rainfed 0 
 

 

small difference in Ip was observed between the VRI-U and uniform treatments. We 

acknowledge this difference to be small and non-practicable. 

2.3.6 Correlation Among Response Variables 

Table 2.4. Partial correlation coefficients for response variables. 

Maize 2017    Maize 2018 

DF = 61 ETa DP ∆SW Yield 
 

DF = 29 ETa DP ∆SW Yield 

ETa 1 -0.59 -0.75 0.37 
 

ETa 1 -0.84 -0.69 -0.55 

DP 
 

1 0.05 -0.31 
 

DP 
 

1 0.24 0.2 

∆SW  
 

1 -0.16 
 

∆SW   1 0.77 

Yield  
  

1 
 

Yield   
 

1 

Soybean 2017 
 

Soybean 2018 

DF = 30 ETa DP ∆SW Yield 
  

ETa DP ∆SW Yield 

ETa 1 -0.1 -0.83 -0.19 
 

ETa 1 -0.93 0.09 0.14 

DP 
 

1 -0.43 -0.21 
 

DP 
 

1 0.03 -0.06 

∆SW   1 0.37 
 

∆SW 
  

1 0.22 

Yield    1   Yield       1 
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 As in Barker et al. (2018a), calculations were performed to test correlations 

between various response variables. The correlations were tested at a significance level of 

10%. Table 2.4. is a summary of all correlations matrices. In 2017, we found significant 

correlation between ∆SW and ETa for both crops (P < 0.0001). Other significant 

correlations included ETa with yield (P = 0.003), ETa with DP (P < 0.0001), and yield 

with DP (P = 0.013) for maize. Other significant correlations for soybean were between 

∆SW and DP (P = 0.016), and ∆SW and yield (P = 0.039). In 2018, significant 

correlations for maize were observed between ETa with DP (P < 0.0001), ∆SW and ETa 

(P < 0.0001), ETa with yield (P = 0.002), and ∆SW & yield (P < 0.0001). For soybean, 

only significant correlation was observed between DP and ETa (P < 0.0001). 

2.3.7 MANOVA and Univariate ANOVA Test Results 

2.3.7.1 MANOVA test  

 Statistical analyses in this section were performed to test the hypothesis that there 

will be no significant differences in yield and ETa between treatments. In the uniform 

treatment, irrigation was managed based on 90% irrigation adequacy (Lo et al. 2016) and 

hence, most parts of the field were sufficiently irrigated to prevent yield reduction. In 

years with normal rainfall amounts, fields dependent solely on rainfall produce good 

yields in proximity to the study site. It was expected that the rainfed treatment will 

perform well in years receiving normal rainfall. The results of the tests for the 2017 and 

2018 data are discussed below. 

 MANOVA test were performed to determine overall treatment and blocking 

effects for all fields. Differences in response variables between treatments and soil blocks 
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were tested at a significance level of 5%. Wilks’ lambda statistic was used to study these 

effects.  

 We found that treatments had a significant overall effect on response variables for 

both crops in 2017 and 2018 (P < 0.0001). Hence, data provided enough evidence to 

reject the null hypothesis that there were no treatment differences. The blocking effect 

was also significant for both crops in 2017 (P < 0.0001 for maize & P = 0.0265 for 

soybean in 2017). Univariate ANOVA tests were carried out after MANOVA results 

were found to be significant. In 2018, blocking effect was not significant for maize. 

2.3.7.2 Univariate ANOVA tests  

 Individual univariate ANOVA tests for both crops were performed to study 

differences in response variables for all treatments. Results for four response variables: 

ETa, DP, ∆SW, and yield, are discussed. All effects were tested at a 5% significance 

level. Overall, the treatment had a significant effect on ETa for both crops in 2017 (P = 

0.0001). We were able to reject the null hypothesis when ETa was compared for these 

cases. Significant differences were also found in ∆SW and yield due to treatment effect 

for maize in 2017. 

2.3.7.3 Least Squares Means of Response Variables 

 Table 2.5 is a summary of estimated least squares means from the ANOVAs for 

various response variables in each treatment for all crop year combinations (see also 

Figure 2.2). In 2017, the mean yield for different treatments in soybean ranged between 4 

and 4.1 Mg ha-1. Plot yield ranged from 3.4 to 4.4 Mg ha-1. Significant differences in  
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Table 2.5. ANOVA test results for different response variables with least squares mean and 

multiple ranges groupings 

Treatment 
ETa (mm) DP (mm) ∆SW (mm) Yield (Mg ha-1) 

M ± SE M ± SE M ± SE M ± SE 

Maize 2017 

   VRI-L 552 ± 5.7 a 52.3 ± 3.1 a -21 ± 4.5 a 12.2 ± 0.2 a 

Uniform 557 ± 5.5 a 53.1 ± 3.0 a -26.4 ±4.3 a 12 ± 0.2 ab 

Uniform 2 557 ± 5.5 a 49.9 ± 3.0 a -23.1 ± 4.3 a 12.3 ± 0.2 a 

Rainfed 496 ± 5.7 b 50.5 ± 3.1 a -39.3 ± 4.5 b 11.6 ± 0.2 b 

Soybean 2017 

   VRI-L 545 ± 9.2 a 105 ± 4.9 a -67.3 ± 9.9 a 4.0 ± 0.1 a 

Uniform 511 ± 9.2 b 106 ± 4.9 a -59.3 ± 9.9 a 4.1 ± 0.1 a 

Uniform 2 523 ± 9.2 ab 102 ± 4.9 a -66.8 ± 9.9 a 4.0 ± 0.1 a 

Rainfed 477 ± 9.2 c 111 ± 4.9 a -81.5 ± 9.9 a 4.1 ± 0.1 a 

Maize 2018 

   VRI-U 597 ± 9.3 a 40.4 ± 6.5 a -11.7 ± 5.1 a 12 ± 0.18 a 

Uniform 595 ± 9.9 a 45.2 ± 6.8 a -12.7 ± 5.4 a 12.2 ± 0.19 a 

Rainfed 531 ± 9.3 b 39.6 ± 6.5 a -8.5 ± 5.1 a 12.1 ± 0.18 a 

Soybean 2018 

   VRI-L 550 ± 9.7 a 43.6 ± 8.3 a -37.6 ± 5.9 a 3.4 ± 0.08 a 

VRI-U 567 ± 7.8 a 54.5 ± 6.7 a -38.8 ± 4.7 a 3.4 ± 0.06 a 

Uniform 565 ± 10.4 a 48.9 ± 8.9 a -43.2 ± 6.3 ab 3.3 ± 0.08 a 

Rainfed 505 ± 9.7 b 19.6 ± 8.4 b -57.4 ± 5.9 b 3.4 ± 0.08 a 

 

soybean yield were not found among treatments. This may be a result of having adequate 

water availability from rainfall for soybean. Thus, more water in irrigated plots did not 

increase the yield for soybean in 2017. For maize, mean yield ranged from 11.6 to 12.3 

Mg ha-1. Minimum and maximum plot yield was 8.3 and 13.4 Mg ha-1 respectively. The 

minimum yield was found in one of the rainfed plots. Significantly greater maize yield 

was observed for VRI-L (12.2 Mg ha-1) and uniform 2 (12.3 Mg ha-1) treatments than for 

the rainfed (11.6 Mg ha-1) treatment. We may attribute increased yields as compared to  
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rainfed plots to be due to irrigation applied to the VRI-L and uniform 2 treatments. Mean 

yield for the uniform (12 Mg ha-1) treatment was greater than the rainfed (11.6 Mg ha-1), 

but it was not significantly different. Results were observed that irrigation improved 

maize yield over rainfed treatment in 2 out of 3 cases. 

 No significant differences in maize yield were observed in 2018. All treatments 

performed similar to each other. The mean yield of the VRI-U treatment was 12 Mg ha-1. 

Converse to results observed in 2017, the rainfed treatment performed similar to irrigated 

treatments. This could be attributed to better distribution of rainfall events during the 

vegetative stages of maize in 2018. Mean yield for the rainfed treatment observed was 

12.1 Mg ha-1. Rainfall in 2018 may have been adequate to keep crop free from significant 

water stress and to produce adequate yield when compared to other irrigated treatments. 

 As discussed above, there were treatment differences found in mean seasonal ETa 

for both crops. In 2017, the rainfed (496 mm) treatment had significantly lower ET over  

Figure 2.3. Dry yield for treatments for maize and soybean in 2017. 
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other treatments for maize. Mean ET was largest for uniform and uniform 2 treatments 

with 557 mm for maize. As expected, ET was correlated with yield for maize crop. 

treatments as compared to the rainfed treatment did not result in higher yield. Greater ET 

calculations in the VRI-L and uniform treatments could be attributed to overestimation of 

ET through under estimation of DP and runoff. 

 In 2018, mean ET for maize was larger for irrigated treatments than rainfed 

treatment. This trend was not observed in maize yield. Mean ET was largest for VRI-L 

(597 mm), followed by the uniform treatment (595 mm). Rainfed (531 mm) had 

significantly lower mean ET than VRI-L and uniform. For soybean, Mean ET for VRI-U 

and uniform was significantly larger than rainfed and VRI-L. Mean ET was 565 mm for 

uniform and 567 mm for VRI-U. Rainfed had significantly lowest ET than other 

treatments. These ET differences did not also result in differences in yield among 

treatments. 

 Computed mean DP was only found significantly different for soybean in 2018. 

Mean DP was lowest for rainfed (19.6 mm) than other irrigated treatments. Among other 

irrigated treatments, VRI-L (43.6 mm) had lowest DP and VRI-U had highest DP (54.5 

mm), but they were not significantly different from each other. Thus, we did not find any 

significant reduction in DP with VRI treatments in comparison to the uniform treatment. 

Mean ∆SW was different among treatments in case of maize in 2017 and soybean in 

2018. For both cases, rainfed had lowest ∆SW compared to other treatments. This signify 

that less water was available in the root zone soil layer at the end of the season for rainfed 

in these cases. 
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 Three efficiencies were computed to compare the performance of the irrigation 

treatments. The efficiencies computed for different treatments and crops are given in 

Table 2.6. In 2017, IWUE for maize varied from 6.6 kg ha-1 mm-1 for uniform to 9.3 kg 

ha-1 mm-1 for the uniform 2 treatment. Irrespective of the uniform and uniform-2 

treatments being similar, IWUE was different for these two treatments suggesting more 

factors than just applied irrigation contributing to changes in water use efficiency. The 

VRI-L treatment achieved a IWUE of 8.4 kg ha-1 mm-1. IWUE for soybean ranged from -

0.7 kg ha-1 mm-1 for uniform 2, and VRI-L treatments to 0.2 kg ha-1 mm-1 for the uniform 

treatment. Positive values for maize indicate increased yield with irrigation. Values for 

soybean indicate that there was no meaningful yield improvement with irrigation as 

expected from Table 2.5. In 2018, maize had IWUE ranging from 0.1 kg ha-1 mm-1 for the 

uniform treatment to -2 kg ha-1 mm-1 for the VRI-U treatment. For soybean, lowest IWUE 

was observed in uniform (-1.2 kg ha-1 mm-1). VRI-L had IWUE of 0.5 kg ha-1 mm-1 and 

VRI-U had IWUE of 0.6 kg ha-1 mm-1. 

 ETWUE was also computed in the study. In 2017, maize had ETWUE values of 11 

kg ha-1 mm-1 for VRI-L, 11.4 kg ha-1 mm-1for uniform 2 and 8 kg ha-1 mm-1 for uniform. 

For soybean, ETWUE values were -0.7 kg ha-1 mm-1 for VRI-L, -0.8 kg ha-1 mm-1 for 

uniform 2, and 0.4 kg ha-1 mm-1 for uniform. In 2018, the range of ETWUE for maize was 

from -1.9 kg ha-1 mm-1 for VRI-U and 0.1 kg ha-1 mm-1 for uniform. Range of values for 

soybean was -1.9 kg ha-1 mm-1 for uniform and 0.9 kg ha-1 mm-1 for VRI-U. 

 CWUE in 2017 ranged from 21.5 kg ha-1 mm-1for the uniform treatment to 23.4 

kg ha-1 mm-1for the rainfed treatment for maize. It ranged from 7.3 kg ha-1 mm-1for the  
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Table 2.6. Different water use efficiencies for treatments for maize and soybean in 2017 and 

2018. 

Treatment 

IWUE ETWUE CWUE 

(kg ha-1 mm-1) (kg ha-1 mm-1) (kg ha-1 mm-1) 

M M M 

Maize 2017 

 
 

VRI-L 8.4 11 22.1 

Uniform 6.6 8 21.5 

Uniform 2 9.3 11.4 22.1 

Rainfed - - 23.4 

Soybean 2017 

 
 

VRI-L -0.7 -0.7 7.3 

Uniform 0.2 0.4 8 

Uniform 2 -0.7 -0.8 7.7 

Rainfed - - 8.6 

Maize 2018 

 
 

VRI-U -2 -1.9 20 

Uniform 0.1 0.1 20.4 

Rainfed - - 22.6 

Soybean 2018 

 
 

VRI-L 0.5 0.7 6.2 

VRI-U 0.6 0.9 6 

Uniform -1.2 -1.9 5.8 

Rainfed - - 6.7 

 

VRI-L treatment to 8.6 kg ha-1 mm-1 for the rainfed treatment for soybean. Values for 

CWUE indicate that the rainfed treatment was most efficient in using ET to produce 

yield. In 2018, rainfed had the greatest CWUE among treatments with 22.6 kg ha-1 mm-1 

for maize and 6.7 kg ha-1 mm-1 for soybean. 
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2.3.8 Modeling Differences using UAS and Landsat Imagery 

2.3.8.1 Spatial Resolution of Both Systems 

 Landsat 7 and 8 capture images at a 30 m ground resolution for multispectral 

imagery (green, red, and near-infrared bands), and 100 m and 70 m resolution for thermal 

infrared imagery taken from Landsat 8 and 7, respectively (NASA website, assessed on 

20 November, 2018). Modeling water balance components using these resolutions may 

not be sufficient to study spatial variability at a sub-field scale. This can be observed in 

Figure 2.3 (a) and 2.3 (b) where a Landsat thermal infrared imagery processed to 30 m 

resolution (USGS, 2018) is shown underlying the experimental plots. The color in the 

plots depicts the values of SAVI. Figure 2.3 (a) is an image of modeled SAVI for 5 

experimental plots and lowest SAVI value observed was 0.57.  

 Figure 2.4 (a) and 2.4 (b) are images of SAVI values computed using UAS 

imagery for same set of plots as in Figures 2.3 (a) and 2.3 (b). The UAS thermal infrared  

  

Figure 2.4. Computed SAVI using Landsat 8 imagery for experimental plots (green and 

yellow) with a Landsat 8 thermal infrared surface temperature image background (a) 

zoomed out view (b) zoomed in view. 
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imagery used a ground resolution of about 1m. The enhanced resolution was useful for 

studying spatial variability closely as depicted in figure 2.4 (b). The UAS thermal 

infrared image clearly demarcates an area of high temperatures which crosses some parts 

of the plots. This could help identify field characteristics more precisely and 

consequently, help to make better prescription maps for VRI. The minimum SAVI value 

presented in Figure 2.3 was 0.3, which was much lower than lowest SAVI value for the 

Landsat case. The maximum computed SAVI values in both Landsat and UAS (0.77 for 

both Landsat and UAS) cases were similar. The relatively coarse Landsat resolution 

smooths the effect of high temperature areas with adjacent cool areas, making it more 

difficult to study variable field characteristics. 

 

Figure 2.5. Computed SAVI using UAS imagery for experimental plots (green and red) with 

a UAS thermal infrared surface temperature image background (a) zoomed out view (b) 

zoomed in view. 

 

2.3.8.2 Temporal Resolution  

 Landsat 7 and 8 pass over a location every 16 days with an offset of 8 days 

between the two satellites. The frequency may be sufficient for irrigation scheduling 

purposes. Landsat images were not usable in the model on days of high cloud cover. In 
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the study for year 2018, no cloud free Landsat images were acquired from the mid-to-late 

season. Another issue with using Landsat 7 is missing data for strips in the imagery from 

the scan line correction problem (USGS, 2018). Missing data in these images was the 

reason for excluding imagery in the study. 

 The problem of missing data could be addressed by using a UAS to capture 

remote sensing images. The UAS can be flown to capture imagery on sunny and calm 

days (Maguire 2018). The UAS data collection was successful for year 2018 and images 

were collected for most weeks during the growing season. This promising aspect of UAS 

imagery could be utilized for reliable VRI management.  

2.3.9 Challenges in Using UAS Thermal Infrared Imagery in the TSEB Model 

2.3.9.1 Updated Relations for Computing TSEB Parameters  

 SETMI used relationships as mentioned in Barker et al. (2018b) for computing 

parameters for TSEB, including fraction of cover, plant height, and leaf area index. These 

coefficients are applicable for Landsat imagery and are specific to crops. New 

relationships have been developed for UAS imagery (Maguire 2018). Future work is 

required to validate TSEB ET using UAS imagery with ground truth data from a direct 

ET measurement, such as eddy covariance flux ET data.  

2.3.9.2 Thermal Infrared Imagery Calibration 

 Thermal imagery from the UAS was not used in the SETMI model due a need for 

higher accuracy in canopy temperature when calculating ET with an energy balance. 

Ongoing efforts are underway to reliably calibrate UAS thermal imagery (Mitch Maguire, 
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personal communication). A few methods of calibration are discussed in Maguire, 2018, 

but each one has its own limitations. Future work needs to be done to develop a good 

methodology to precisely calibrate UAS thermal infrared imagery. In this study, point 

measurements of mounted Apogee SI-111 infrared thermometers (Apogee, 2018) were 

compared to respective pixels in the UAS-collected thermal infrared imagery. The 

mounted infrared thermometers were installed in 12 different locations in the field. A 

comparison of temperatures obtained from the mounted sensors and respective pixels of 

the UAS imagery was done. The comparison showed that temperature from mounted 

sensors was lower than imagery in a majority of cases. The difference between two 

temperatures was averaged on image dates and used to adjust the respective thermal 

infrared images through mean adjustment. Table A.4 is a list of temperature 

measurements from the infrared thermometers and thermal imagery from the UAS at the 

different sensor locations.  

 Ongoing work for calibration of thermal imagery and updating physiological 

relationships for different crops in the model seems to promise use of thermal infrared 

imagery from UAS into the model in coming years.  

2.4 Summary and Conclusions 

 A field study of VRI was conducted at a field producing maize and soybean in 

eastern Nebraska. VRI was evaluated on the basis of pumpage reductions and yield 

potential. Rainfed and uniform irrigation treatments were included along with VRI 

treatments in the study. VRI was managed with the SETMI model, including a hybrid of 

two remote sensing-based models, using Landsat in 2017 and 2018. A new VRI treatment 
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introduced in 2018 included use of Kcbrf based water balance model with UAS 

multispectral imagery. VRI treatments were compared with uniform, and rainfed 

treatments in terms of crop yield and water response.  

 In 2017, significantly lower maize yield was observed in the rainfed treatment 

than both VRI-L and uniform 2 treatments. Mean yields ranged from 11.6 Mg ha-1 to 12.3 

Mg ha-1 for maize. The increase in yields in irrigated treatments versus rainfed crop was 

attributed to irrigation. For soybean, mean yield ranged from 4 Mg ha-1 to 4.1 Mg ha-1. 

No yield increases were found for soybean due to irrigation applications.  In 2018, no 

significant yield different were found among treatments for maize and soybean. In 2017, 

IWUE was highest for the uniform 2 treatment (9.3 kg ha-1 mm-1) and lowest for the 

uniform treatment (6.6 kg ha-1 mm-1) in maize. IWUE in soybean was positive only for 

uniform treatment (0.2 kg ha-1 mm-1). In 2018, IWUE was positive only for the uniform 

treatment (0.1 kg ha-1 mm-1) for maize crop. For soybean, positive IWUE was observed 

for VRI-L (0.5 kg ha-1 mm-1) and VRI-U (0.6 kg ha-1 mm-1). 

 Ip was different among uniform and VRI treatments for soybean in 2017. Ip for 

VRI-L treatment (76 mm) was significantly higher than uniform treatment (51 mm). 

Significant differences were not found for maize. Mean Ip for maize is 77 mm for VRI 

treatment and 76 mm for uniform treatment. In 2018, VRI-L had lower Ip than other 

irrigated treatments in soybean. Ip was not significantly different between uniform and 

VRI-U in maize. It is evident that the VRI treatments were able to produce adequate 

yields as compared with the uniform treatment and VRI-L performed significantly better 

than the rainfed treatment for maize in 2017. We found a significant reduction in Ip for 
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VRI-L treatment in soybean in 2018. Hence, significant water withdrawal reduction was 

observed for one case in the study.  

 The higher temporal and spatial resolution of UAS imagery compared to Landsat 

imagery was beneficial for modeling with newer and finer imagery. The VRI-U treatment 

managed using multispectral UAS imagery produced yield similar to other treatments and 

used similar mean irrigation depth compared to the uniform treatment. This signify that 

VRI-U could adequately manage irrigation and there is scope of improving modeling 

using UAS imagery for future. While UAS thermal imagery is often used to identify 

relative patterns in canopy temperature, using UAS to determine accurate temperatures 

for surface energy balance modeling remains a challenge. Overall, VRI using SETMI 

could be adopted for irrigation management to produce adequate yields in sub-humid 

climates with a reduction in water withdrawals in some scenarios. Further studies are 

required to implement VRI more accurately and present benefits of VRI. 
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CHAPTER 3. GENERAL OBSERVATIONS AND FUTURE WORK 

3.1 Seasonal Depletion for Sample Plots in VRI and Uniform Treatments 

 This section discusses how various inputs in model changed root zone depletion 

for plots under different treatment. Figure 3.1 and 3.2 shows seasonal soil water depletion 

for a plot in uniform and VRI-L treatment, respectively. Rain and precipitation events are 

shown at bottom of figure with orange and blue spikes. The dark blue in the figure 

depicts the seasonal root zone depletion. These graphs were computed from 2017 season. 

In the uniform treatments, model was periodically adjusted using soil water content 

measurements from NP. In most scenarios, the soil water measurement decreased the 

depletion in the model. In other words, measured depletion was lower than modeled 

depletion in most cases. This adjustment reduced model drift that was observed in Barker 

et al. (2018a).  

 Seasonal soil water depletion in VRI plot is depicted using figure 3.2. This 

depletion was adjusted on days of NP measurement and acquisition of remote sensing 

imagery. The thermal infrared imagery was used to run TSEB, which was used to detect 

stress in crop root zone. The TSEB adjustment updated the soil water balance, usually by 

increasing the modeled root zone depletion. 

 In figure 3.2, the TSEB usually resulted in relatively small updates to the soil 

water balance; however, depletion was increased by 50 mm on 30 June, 2017. The TSEB 

ET input on this date in the model mainly caused the large increase in depletion. TSEB 

ET on this date was calculated lower than water balance ET which indicated water stress. 

This corresponded to the stress coefficient term in the crop coefficient decreasing  



65 

 

 

Figure 3.1. Seasonal soil water depletion for a uniform plot for ENREC Maize in 2017. 

Maximum irrigation depth is shown by green dotted line taking reference to MAD (red 

line). 

 

Figure 3.2. Seasonal soil water depletion for a VRI plot for ENREC Maize in 2017. 

Maximum irrigation depth is shown by green dotted line taking reference to MAD (red 

line). 

 

(i.e. less than 1). The lower TSEB ET could possibly be a result of a high temperature 

thermal image compared to ambient air temperature on this day. Conversely on 3 July, 
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2017, the depletion decreased to reach field capacity. This was result of both wetting of 

soil profile by soil water content measurements on 3 July and rain events happening 

between 30 June and 3 July. 

3.2 Catch Can Test for System Evaluation 

 We conducted catch can test at the end of 2017 growing season. The pivot was 

run in a full VRI mode with VRI prescription. The cans were laid out in a grid with 

spacing of 10 feet between adjacent cans. The pivot road was used to lay cans along the 

lateral pipe of center pivot and cans were also set perpendicular to the pivot road to 

capture efficiencies when prescription depth is changed from a zone to another. Figure 

3.3 shows catch can layout and prescription map for the test. The test was done on 3 

November, 2017. 

 The measured depth of water in catch cans was positively correlated with 

prescribed irrigation depth showing promising results. Average percentage difference 

between measured and prescribed irrigation depth was approximately 25 %. The 

percentage difference was calculated using: 

% difference = (prescribed irrigation depth – measured depth in cans) * 100 

    Prescribed irrigation depth 
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Figure 3.3. Catch can layout (shown in dots) and irrigation prescription map for conducting 

end of season catch can evaluation in 2017. 

 

3.3 Future Direction and Recommendations 

 The study of VRI management using spatial ET model could be improved by 

implementing points discussed in this section. Plots were randomized using soil blocks 

based on AWC. Treatments were randomly assignment to different blocks. It was 

observed in the spatial yield maps and plot yield numbers that there were more factors 

that may have affected the yield. These could be topography, soil type, or nutrient 

availability in soils. Consideration of factors like historic yield maps, additional soil 

properties like apparent electrical conductivity, topography etc. while treatment 

assignment to different experimental plots could prove beneficial. This will help to 

remove effects from unknown variables in the results by distributing the variation equally 

among treatments. Additionally, areas where crop does not perform well, areas with 



68 

 

frequent flooding or excessive residue cover, as was observed in this study, should be 

avoided. These areas create bias for some treatments and could affect results. 

Conclusively, analyzing historic yield maps can help identify different field 

characteristics and can help effectively design the study without any bias in any specific 

treatment. 

 Perhaps it is important to determine a more optimum size of experimental plots 

for the study, especially in large scale studies. To compute the results for this study, raw 

results at higher resolution were scaled up to experimental plots size. Scaling up of 

results with mean value may smoothen any spatial patterns that may be present in raw 

results. This can cause significant results to be non-significant. Hence, defining 

appropriate plot size is essential to observe significant results between treatments. 

 Adjustment with soil water content measurements helped improve the model 

accuracy for simulating root zone depletion. We used mean adjustment using soil water 

monitoring at 4 locations. This adjustment was sufficient to improve the model and create 

precise prescriptions. However, spatial adjustment for water content would be leap for the 

study. This could be possible by correlating the thermal infrared image collected from 

UAS with point source soil water measurements.  The correlation could be used to 

spatially adjust the modeled depletion, which could be a potential improvement over 

mean adjustment over the entire image used in the study. It has to be determined whether 

surface soil water content could be a good parameter to compare with thermal 

temperature of the image or deeper soil water contents should also be taken into 

consideration when comparison is made.  
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 The TSEB model using UAS imagery was not ready to be used for adjusting ET 

on remote sensing imagery collection dates. This requires considerable efforts before 

TSEB ET could be included in creating VRI prescriptions. Detailed challenges for the use 

of TSEB ET is discussed in section 3.4. Future work needs to be conducted in this 

direction to be confident about using TSEB ET using UAS imagery.  

 Deep percolation methodology used in our study, in general, could be regarded as 

an improvement over Barker et al. (2018a) methodology. The improvement in the model 

was led by B. Barker and used in 2018 UAS imagery treatments. The new methodology 

allowed soil water content to increase more than FC and reach up to saturation. The soil 

water content higher than FC could now be utilized for evapotranspiration, which was not 

possible earlier. Since, this addition was made in 2018 growing season, more evaluation 

needs to be done to study accuracy of this methodology. This methodology also resulted 

in lower DP due to water being utilized for evapotranspiration. 
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A. APPENDIX:  

A.1 Modeling Accuracy Using the New Method of Deep Percolation Estimation 

 In this section, accuracy of the model when using different methods of estimating 

seasonal depletion, will be discussed. Two methods were different in terms of estimation 

of DP between NP days. The first method used the instantaneous drainage method (DPi), 

where in cases of soil water content present above FC was drained at end of the day. 

Second method included a decaying function for estimation of DP (DPd). This allowed 

soil water content above FC to drain slowly and be used for ET. Water balance was run 

using these two methods and model drift in each case was calculated using measured NP 

depletion. Model drift was referred to the difference between measured depletion from 

NP and modeled depletion. Soil water content measurements corrected model on NP 

measurement days. Root zone used for these model runs was 1.22 m. 

 Two plots in both crops each were selected to model depletion throughout season 

in 2017. In summary, two plots in two crops each and using two different model runs 

were compared. Sum of modeled root zone depletion (Dmo) and measured root zone 

depletion (Dms) at NP measurement days were computed. The difference of these 

depletions was used as a measure to describe model accuracy. This difference was 

computed for all four selected plots.  

 The plots were chosen from different soil groups. Table A.1 provides the sum of 

modeled and measured depletion on NP measurement days. Difference could be used as a 

measure to determine closeness of simulated depletion to measurement. In each case, 

difference was smaller for decaying DP method. This implied that use of decaying DP 
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method improved the ability to model depletion. Figure A.1. shows how Dms and Dmo 

were simulated throughout the season and their closeness to NP measured depletions. DP 

events happened early in the season where different modeled depletion values can be 

observed. Later in the season, there is no difference between modeled depletion values 

because of no DP events. 

 

 

Figure A.1. Seasonal depletion modeled using instantaneous and decaying deep percolation 

(DP) methods for one plot in soybean in 2017. 
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Table A.1. Comparison of two methods of simulating seasonal modeled depletion using 

measured depletion. 

 
 seasonal Dms (mm)  seasonal Dmo (mm) Dmo - Dms (mm) 

Plot 1 Maize 2017 
   

Instantaneous DP 585.2 602.7 17.5 

Decaying DP 585.2 584.1 -1.1 

Plot 2 Maize 2017 
   

Instantaneous DP 446.8 558.9 112.1 

Decaying DP 446.8 512.8 66 

Plot 3 Soybean 2017 
   

Instantaneous DP 435.9 531.3 95.4 

Decaying DP 435.9 513.6 77.7 

Plot 4 Soybean 2017 
   

Instantaneous DP 385.6 537.5 151.9 

Decaying DP 385.6 513.6 128 

 

A.2 Spatial Variability in Depletion Among Plots 

 

Figure A.2. Seasonal depletion for 3 plots in VRI-U for soybean in 2018. These three plots 

belong to different soil blocks (6 blocks for north half plots). Mean manageable allowable 

depletion of these 3 plots is depicted with red line. All values except net rainfall amount (P-

RO) is plotted on left y-axis in reverse direction. Plot 12, 16 and 26 were prescribed with 

total gross irrigation of 117, 91 and 107 mm. Plot 12, 16 and 26 had mean dry yield of 3.8, 

3.1 and 3.1 (Mg ha-1). Depletion for these 3 plots vary from each other throughout season 

and indicates the variability in irrigation management.  
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A.2 Tables and Figures 

 

Figure A.3. Spatial maize yield (bu ac-1) at market moisture planted north of the field in 

2017. 

 
Figure A.4. Spatial soybean yield (bu ac-1) at market moisture in south of the field in 2017. 
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Figure A.5. Plot maize yield (bu ac-1) at market moisture planted north of the field in 2017. 

A denotes treatment VRI-L, B denotes treatment uniform 2, C denotes treatment uniform, 

and D denotes treatment rainfed. 

 

 

Figure A.6. Plot soybean yield (bu ac-1) at market moisture planted south of the field in 

2017. A denotes treatment VRI-L, B denotes treatment uniform 2, C denotes treatment 

uniform, and D denotes treatment rainfed. 
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Table A.2. Summary of multivariate analysis of variance (MANOVA) tests using Wilks's 

Lambda Statistic in 2017 and 2018. 

Site Crop Year Effect 
Wilks' 

Lambda 

F 

Value 

Num 

DF 

Den  

DF 
Pr > F 

Maize 2017 
Treatment 0.13 14.9 12 153.7 <.0001 

Blocking 0.41 3.0 20 193.3 <.0001 

Soybean 2017 
Treatment 0.03 15.8 12 71.7 <.0001 

Blocking 0.54 2.4 8 54 0.0265 
 

 

Table A.3. Summary of univariate analysis of variance (ANOVA) tests for various response 

variables for all fields in 2017 

Var Effect 

Num  

DF 

Den  

DF 

F  

Value Pr > F 

Num  

DF 

Den  

DF 

F  

Value Pr > F 

Maize 2017 Soybean 2017 

ETa 
Trt 3 61 57.03 <0.0001 3 30 9.55 0.0001 

Block 5 61 4.34 0.0019 2 30 0.7 0.0187 

DP 
Trt 3 61 0.33 0.8059 3 30 0.68 0.5704 

Block 5 61 8.04 <0.0001 2 30 6.14 0.0058 

∆SW 
Trt 3 61 3.39 0.0235 3 30 0.88 0.4648 

Block 5 61 4.31 0.002 2 30 0.48 0.6225 

Yield 
Trt 3 61 3.12 0.0325 3 30 0.17 0.918 

Block 5 61 1.04 0.4035 2 30 0.21 0.8096 

 

Table A.4. Temperature (°C) of thermal imagery from UAS and temperature measurements 

from IRT for 29 date-locations in the field. 

Location Date UAS Temp (°C) IRT Temp (°C) 
UAS – IRT 

Temp (°C) 

1 July 2, 2018 25.6 27.6 -2 

2 July 2, 2018 29.6 27.1 2.5 

3 July 2, 2018 27.8 27.4 0.4 

4 July 2, 2018 28.9 28.1 0.8 

5 July 2, 2018 31.1 27.4 3.7 

6 July 2, 2018 30.9 31.6 -0.7 

7 July 2, 2018 34.9 30.6 4.3 

8 July 2, 2018 35.4 29.2 6.2 

9 July 2, 2018 29.3 29.6 -0.3 

10 July 6, 2018 26.4 27.5 -1.1 

11 July 6, 2018 26.2 28.3 -2.1 

12 July 6, 2018 26.6 27.3 -0.7 

1 July 6, 2018 25.6 27.2 -1.6 

2 July 6, 2018 28.5 27.8 0.7 

3 July 6, 2018 30.1 29.6 0.5 

4 July 6, 2018 29.2 29.9 -0.7 

5 July 6, 2018 28.7 27.8 0.9 

6 July 6, 2018 28.1 28.5 -0.4 
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7 July 11, 2018 31.2 32 -0.8 

8 July 11, 2018 33 30.4 2.6 

9 July 11, 2018 32.3 30.4 1.9 

10 July 11, 2018 33.3 30.7 2.6 

11 July 11, 2018 32.4 30.6 1.8 

12 July 11, 2018 31.8 31.1 0.7 

1 July 11, 2018 33.8 34.6 -0.8 

2 July 11, 2018 32.7 31.2 1.5 

3 July 11, 2018 31.6 30.5 1.1 

4 July 11, 2018 32.1 30.9 1.2 

5 July 11, 2018 32 30.2 1.8 
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