

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Gregory Snow Publications

Research Papers in Physics and Astronomy

2010

Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at $\sqrt{s}=7$ TeV

V. Khachatryan Yerevan Physics Institute

Kenneth A. Bloom University of Nebraska - Lincoln, kbloom2@unl.edu

S. Bose University of Nebraska - Lincoln, sbose2@unl.edu

J. Butt University of Nebraska - Lincoln

Daniel R. Claes University of Nebraska - Lincoln, dclaes@unl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/physicssnow

Part of the Physics Commons

Khachatryan, V.; Bloom, Kenneth A.; Bose, S.; Butt, J.; Claes, Daniel R.; Dominguez, Aaron; Eads, Michael; Keller, J.; Kelly, T.; Kravchenko, Ilya; Lazo-Flores, J.; Lundstedt, Carl; Malbouisson, H.; Malik, Sudhir; Snow, Gregory; and CMS Collaboration, "Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at √s=7 TeV" (2010). *Gregory Snow Publications*. 71. https://digitalcommons.unl.edu/physicssnow/71

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Gregory Snow Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

V. Khachatryan, Kenneth A. Bloom, S. Bose, J. Butt, Daniel R. Claes, Aaron Dominguez, Michael Eads, J. Keller, T. Kelly, Ilya Kravchenko, J. Lazo-Flores, Carl Lundstedt, H. Malbouisson, Sudhir Malik, Gregory Snow, and CMS Collaboration

Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in *pp* Collisions at $\sqrt{s} = 7$ TeV

V. Khachatryan *et al.** (CMS Collaboration) (Received 18 May 2010; published 6 July 2010)

Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at $\sqrt{s} = 7$ TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity $dN_{ch}/d\eta|_{|\eta|<0.5} = 5.78 \pm 0.01(\text{stat}) \pm 0.23(\text{syst})$ for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from $\sqrt{s} = 0.9$ to 7 TeV is $[66.1 \pm 1.0(\text{stat}) \pm 4.2(\text{syst})]\%$. The mean transverse momentum is measured to be $0.545 \pm 0.005(\text{stat}) \pm 0.015(\text{syst})$ GeV/c. The results are compared with similar measurements at lower energies.

DOI: 10.1103/PhysRevLett.105.022002

PACS numbers: 13.85.Ni

Introduction.—Measurements of particle yields and kinematic distributions are an essential first step in exploring a new energy regime of particle collisions. Such studies contribute to our understanding of the physics of hadron production, including the relative roles of soft and hard scattering contributions, and help construct a solid foundation for other investigations. In the complicated environment of LHC *pp* collisions [1], firm knowledge of the rates and distributions of inclusive particle production is needed to distinguish rare signal events from the much larger backgrounds of soft hadronic interactions. They will also serve as points of reference for the measurement of nuclear-medium effects in Pb-Pb collisions in the LHC heavy ion program.

The bulk of the particles produced in pp collisions arise from soft interactions, which are modeled only phenomenologically. Experimental results provide the critical guidance for tuning these widely used models and event generators. Soft collisions are commonly classified as elastic scattering, inelastic single-diffractive (SD) dissociation, double-diffractive (DD) dissociation, and inelastic nondiffractive (ND) scattering [2]. (Double-Pomeron exchange is treated as DD in this Letter.) All results presented here refer to inelastic non-single-diffractive (NSD) interactions, and are based on an event selection that retains a large fraction of the ND and DD events, while disfavoring SD events.

The measurements focus on transverse-momentum p_T and pseudorapidity η distributions. The pseudorapidity, commonly used to characterize the direction of particle emission, is defined as $\eta = -\ln \tan(\theta/2)$, where θ is the polar angle of the direction of the particle with respect to the anticlockwise beam direction. The count of primary charged hadrons $N_{\rm ch}$ is defined to include decay products of particles with proper lifetimes less than 1 cm. Products of secondary interactions are excluded, and a percent-level correction is applied for prompt leptons. The measurements reported here are of $dN_{\rm ch}/d\eta$ and $dN_{\rm ch}/dp_T$ in the pseudorapidity range $|\eta| < 2.4$ and closely follow our previous analysis of minimum-bias data at lower center-of-mass energies of $\sqrt{s} = 0.9$ and 2.36 TeV as reported in Ref. [3].

The data for this study are drawn from an integrated luminosity of 1.1 μ b⁻¹ recorded with the Compact Muon Solenoid (CMS) experiment [4] on 30 March 2010, during the first hour of the LHC operation at $\sqrt{s} = 7$ TeV. These results are the highest center-of-mass energy measurements of the $dN_{\rm ch}/d\eta$ and $dN_{\rm ch}/dp_T$ distributions conducted at a particle collider so far and complement the other recent measurements of the ALICE experiment at 7 TeV [5].

Experimental methods.—A detailed description of the CMS experiment can be found in Ref. [4]. The detectors used for the present analysis are the pixel and silicon-strip tracker, covering the region $|\eta| < 2.5$ and immersed in a 3.8 T axial magnetic field. The pixel tracker consists of three barrel layers and two end-cap disks at each barrel end. The forward calorimeter (HF), which covers the region $2.9 < |\eta| < 5.2$, was also used for event selection. The detailed Monte Carlo (MC) simulation of the CMS detector response is based on GEANT4 [6].

The event selection and analysis methods in this Letter are identical to those used in Ref. [3], where more details can be found. The inelastic pp collision rate was about 50 Hz. At these rates, the fraction of events in the data,

^{*}Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

TABLE I. Numbers of events passing the selection cuts. The selection criteria are applied in sequence, i.e., each line includes the selection from the previous ones.

Selection	Number of events
Colliding bunches + one BSC signal	68 512
Reconstructed PV	61 551
HF coincidence	55 113
Beam-halo rejection	55 104
Other beam-background rejection	55 100

where two or more minimum-bias collisions occurred in the same bunch crossing, is estimated to be less than 0.3% and was neglected. Any hit in the beam scintillator counters (BSC, $3.23 < |\eta| < 4.65$) coinciding with colliding proton bunches was used for triggering the data acquisition. A sample mostly populated with NSD events was selected by requiring a primary vertex (PV) to be reconstructed with the tracker, together with at least one HF tower in each end with more than 3 GeV total energy. Beam-halo and other beam-background events were rejected as described in Ref. [3]. The remaining fraction of background events in the data was found to be less than 2×10^{-5} . The numbers of events satisfying the selection criteria are listed in Table I.

The event selection efficiency was estimated with simulated events using the PYTHIA [7,8] and PHOJET [9,10] event generators. The relative event fractions of SD, DD, and ND processes and their respective event selection efficiencies are listed in Table II. The fraction of diffractive events is predicted by the models to decrease as a function of collision energy, while the selection efficiency increases. At $\sqrt{s} = 7$ TeV, the fraction of SD (DD) events in the selected data sample, estimated with PYTHIA and PHOJET, are 6.8% (5.8%) and 5.0% (3.8%), respectively, somewhat higher than at $\sqrt{s} = 0.9$ and 2.36 TeV [3]. With PYTHIA, the overall correction for the selection efficiency of NSD processes and for the fraction of SD events remaining in the data sample lowers the measured charged-particle multiplicity by 6% compared with the uncorrected distribution.

The $dN_{\rm ch}/d\eta$ distributions were obtained, as in Ref. [3], with three methods, based on counting the following quantities: (i) reconstructed clusters in the barrel part of the

pixel detector; (ii) pixel tracklets composed of pairs of clusters in different pixel barrel layers; and (iii) tracks reconstructed in the full tracker volume. The third method also allows a measurement of the $dN_{\rm ch}/dp_T$ distribution. All three methods rely on the reconstruction of a PV [11]. The PV reconstruction efficiency was found to be 98.3% (98.0%) in data (MC), evaluated after all other event selection cuts. In case of multiple PV candidates, the vertex with the largest track multiplicity was chosen. The three methods are sensitive to the measurement of particles down to p_T values of about 30, 50, and 100 MeV/*c*, respectively. Only 0.5, 1.5, and 5% of all charged particles are estimated to be produced below these p_T values, respectively, and these fractions were corrected for.

The measurements were corrected for the geometrical acceptance ($\approx 2\%$), efficiency ($\approx 5\%$ -10%), fake (<1%) and duplicate tracks (<0.5%), low- p_T particles curling in the axial magnetic field (<1%), decay products of longlived hadrons (<2%) and photon conversions (<1%), and inelastic hadronic interactions in the detector material $(\approx 1\% - 2\%)$, where the size of the corrections in parentheses refers to the tracking method. The PYTHIA parameter set from Ref. [8] was chosen to determine the corrections, because it reproduces the $dN_{\rm ch}/d\eta$ and charged-particle multiplicity distributions, as well as other control distributions at 7 TeV, better than other available tuning parameter sets. Although the corrections do not depend significantly on the model used, it is indeed important that the simulated data set contains a sufficient number of high-multiplicity events to determine these corrections with the desired accuracy.

Results.—For the measurement of the dN_{ch}/dp_T distribution, charged-particle tracks with p_T in excess of 0.1 GeV/*c* were used in 12 different $|\eta|$ bins, from 0 to 2.4. The average charged-hadron yields in NSD events are shown in Fig. 1 as a function of p_T and $|\eta|$. The Tsallis parametrization [12–14],

$$E\frac{d^{3}N_{\rm ch}}{dp^{3}} = \frac{1}{2\pi p_{T}}\frac{E}{p}\frac{d^{2}N_{\rm ch}}{d\eta\,dp_{T}} = C\frac{dN_{\rm ch}}{dy}\left(1 + \frac{E_{T}}{nT}\right)^{-n}, \quad (1)$$

where $y = 0.5 \ln[(E + p_z)/(E - p_z)]$, $E_T = \sqrt{m^2 + p_T^2} - m$, and *m* is the charged pion mass, was fitted to the data. The p_T spectrum of charged hadrons, $1/(2\pi p_T)d^2N_{\rm ch}/d\eta dp_T$, measured in the range $|\eta| < 2.4$, is shown in Fig. 2 for data

TABLE II. Fractions of SD, DD, ND, and NSD processes obtained from the PYTHIA and PHOJET event generators before any selection, and the corresponding selection efficiencies determined from the MC simulation.

	PYTHIA		PHOJET	
_	Fractions	Selection efficiencies	Fractions	Selection efficiencies
SD	19.2%	26.7%	13.8%	30.7%
DD	12.9%	33.6%	6.6%	48.3%
ND	67.9%	96.4%	79.6%	97.1%
NSD	80.8%	86.3%	86.2%	93.4%

FIG. 1. Differential yield of charged hadrons in the range $|\eta| < 2.4$ in 0.2-unit-wide bins of $|\eta|$ in NSD events. The solid curves represent fits of Eq. (1) to the data. The measurements with increasing η are successively shifted by six units along the vertical axis.

at 0.9, 2.36, and 7 TeV. The high- p_T reach of the data is limited by the increase of systematic uncertainties with p_T . The fit to the data [Eq. (1)] is mainly used for extrapolations to $p_T = 0$, but is not expected to give a good description of the data in all η bins with only two parameters. The parameter T and the exponent n were found to be T = 0.145 ± 0.005 (syst) GeV and $n = 6.6 \pm 0.2$ (syst). The average p_T , calculated from a combination of the measured data points and the low- and high- p_T contributions as determined from the fit, is $\langle p_T \rangle = 0.545 \pm 0.005$ (stat) \pm 0.015(syst) GeV/c.

Experimental uncertainties related to the trigger and event selection are common to all the analysis methods. The uncertainty related to the presence of SD (DD) events in the final sample was estimated to be 1.4% (1.1%), based on consistency checks between data and simulation for diffractive event candidates. The total event selection uncertainty, which also includes the selection efficiency of the BSC and HF, was found to be 3.5%. Based on studies similar to those presented in Ref. [3], additional 3% and 2% uncertainties were assigned to the tracklet and track reconstruction algorithm efficiencies, respectively. Corrections at the percent level were applied to the final results to extrapolate to $p_T = 0$. The uncertainty on these extrapolation corrections was found to be less than 1%. All other uncertainties are identical to those listed in Ref. [3]. The $dN_{\rm ch}/d\eta$ measurements were repeated on a separate

FIG. 2. Charged-hadron yield in the range $|\eta| < 2.4$ in NSD events as a function of p_T ; the systematic uncertainties are smaller than the symbols. The measurements at $\sqrt{s} = 0.9$ and 2.36 TeV [3] are also shown. The solid lines represent fits of Eq. (1) to the data.

data sample without any magnetic field, for which almost no p_T extrapolation is needed, and gave results consistent within 1.5%. The final systematic uncertainties for the pixel counting, tracklet, and track methods were found to be 5.7%, 4.6%, and 4.3%, respectively, and are strongly correlated.

For the $dN_{\rm ch}/d\eta$ measurements, the results for the three individual layers within the cluster-counting method were found to be consistent within 1.2% and were combined. The three layer pairs in the pixel-tracklet method provided results that agreed within 0.6% and were also combined. Finally, the results from the three different measurement methods, which agree with the combined result within 1% to 4% depending on η , were averaged. The final $dN_{\rm ch}/d\eta$ distributions are shown in Fig. 3 for $\sqrt{s} = 0.9$, 2.36, and 7 TeV. The CMS results are compared with measurements made by other experiments. In the ATLAS Collaboration analysis [15], events and particles were selected in a different region of phase space, which makes a direct comparison difficult. Their results are therefore not included in the figure.

The results can also be compared to earlier experiments as a function of \sqrt{s} . The energy dependence of the average charged hadron p_T can be described by a quadratic function of lns [16]. As shown in Fig. 4, the present measure-

FIG. 3. Distributions of $dN_{\rm ch}/d\eta$, averaged over the three measurement methods and compared with data from UA5 [23] $(p\bar{p}, {\rm with \ statistical \ errors \ only})$ and ALICE [24] (with systematic uncertainties). The shaded band shows systematic uncertainties of the CMS data. The CMS and UA5 data are averaged over negative and positive values of η .

ment follows this trend. The choice of the $|\eta|$ interval can influence the average p_T value by a few percent.

For $|\eta| < 0.5$, the average charged multiplicity density is $dN_{\rm ch}/d\eta = 5.78 \pm 0.01 ({\rm stat}) \pm 0.23 ({\rm syst})$ for NSD events. The \sqrt{s} dependence of the measured $dN_{\rm ch}/$ $d\eta|_{\eta\approx 0}$ is shown in Fig. 5, which includes data from various other experiments. The $dN_{\rm ch}/d\eta$ results reported here show a rather steep increase between 0.9 and 7 TeV, which is measured to be $[66.1 \pm 1.0(\text{stat}) \pm 4.2(\text{syst})]\%$. Using a somewhat different event selection, the ALICE Collaboration has found a similar increase of $[57.6 \pm$ $0.4(\text{stat})^{+3.6}_{-1.8}(\text{syst})$ [5]. The measured charged-particle multiplicity is accurate enough to distinguish among most sets of event-generator tuning parameter values and various models. The measured value at 7 TeV significantly exceeds the prediction of 4.57 from PHOJET [9,10], and the predictions of 3.99, 4.18, and 4.34 from the DW [17], PROQ20 [18], and Perugia0 [19] tuning parameter values of PYTHIA, respectively, while it is closer to the prediction of 5.48 from the PYTHIA parameter set from Ref. [8] and to the recent model predictions of 5.58 and 5.78 from Refs. [20,21]. The measured excess of the number of charged hadrons with respect to the event generators is independent of η and concentrated in the $p_T < 1 \text{ GeV}/c$

FIG. 4. Average p_T of charged hadrons as a function of the center-of-mass energy. The CMS measurements are for $|\eta| < 2.4$. Also shown are measurements from the ISR [25] (*pp*), E735 [26] (*pp̄*), and CDF [27] (*pp̄*) for $|\eta| < 0.5$, and from UA1 [16] (*pp̄*) for $|\eta| < 2.5$. The solid line is a fit of the functional form $\langle p_T \rangle = 0.413 - 0.0171 \ln s + 0.001 43 \ln^2 s$ to the data. The error bars on the CMS data include the systematic uncertainties.

FIG. 5. Average value of $dN_{\rm ch}/d\eta$ in the central η region as a function of center-of-mass energy in pp and $p\bar{p}$ collisions. Also shown are NSD and inelastic measurements from the NAL Bubble Chamber [28] $(p\bar{p})$, ISR [29] (pp), UA1 [16] $(p\bar{p})$, UA5 [23] $(p\bar{p})$, CDF [30] $(p\bar{p})$, STAR [31] (pp), PHOBOS [32] (pp), and ALICE [24] (pp). The curves are second-order polynomial fits for the inelastic (solid) and NSD event selections (dashed). The error bars include systematic uncertainties, when available. Data points at 0.9 and 2.36 TeV are slightly displaced horizontally for visibility.

range. These differences indicate the need for a continued model development and simulation tuning. Work on updated event generators based on LHC data is currently under way.

Summary.-Charged-hadron transverse-momentum and pseudorapidity distributions have been measured in proton-proton collisions at $\sqrt{s} = 7$ TeV. The numerical values of the data presented in this Letter can be found in the HEPDATA database [22]. The combined result for the central pseudorapidity density, from three mutually consistent methods of measurement, is $dN_{\rm ch}/d\eta|_{|\eta|<0.5} =$ 5.78 ± 0.01 (stat) ± 0.23 (syst) for non-single-diffractive events. This value is higher than most predictions and provides new information to constrain ongoing improvements of soft particle production models and event generators. The mean transverse momentum has been measured to be $0.545 \pm 0.005(\text{stat}) \pm 0.015(\text{syst}) \text{ GeV}/c$. These studies are the first steps in the exploration of particle production at the new center-of-mass energy frontier, and contribute to the understanding of the dynamics in soft hadronic interactions.

We congratulate and express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from the following: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Agencies (Switzerland); Funding NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

- [1] L. Evans and P. Bryant, JINST 3, S08001 (2008).
- [2] W. Kittel and E. A. DeWolf, *Soft Multihadron Dynamics* (World Scientic, Singapore, 2005), ISBN 981-256-295-8.
- [3] V. Khachatryan *et al.* (CMS Collaboration), J. High Energy Phys. 02 (2010) 041.

- [4] S. Chatrchyan *et al.* (CMS Collaboration), JINST **3**, S08004 (2008).
- [5] K. Aamodt *et al.* (ALICE Collaboration), arXiv:1004.3514.
- [6] S. Agostinelli *et al.* (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [7] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
- [8] A. Moraes, C. Buttar, and I. Dawson, Eur. Phys. J. C 50, 435 (2007).
- [9] F. W. Bopp, R. Engel, and J. Ranft, arXiv:hepph/9803437.
- [10] R. Engel, J. Ranft, and S. Roesler, Phys. Rev. D 52, 1459 (1995).
- [11] F. Siklér, Nucl. Instrum. Methods Phys. Res., Sect. A (in press).
- [12] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
- [13] G. Wilk and Z. Włodarczyk, Eur. Phys. J. A 40, 299 (2009).
- [14] T. S. Biró, G. Purcsel, and K. Ürmössy, Eur. Phys. J. A 40, 325 (2009).
- [15] G. Aad *et al.* (ATLAS Collaboration), Phys. Lett. B 688, 21 (2010).
- [16] C. Albajar *et al.* (UA1 Collaboration), Nucl. Phys. B335, 261 (1990).
- [17] R. Bernhard *et al.*, in Proceedings of the First International Workshop on Multiple Partonic Interactions at the LHC MPI'08, Perugia, Italy, 2008, edited by P. Bartalini and L. Fanó (arXiv:1003.4220).
- [18] A. Buckley et al., Eur. Phys. J. C 65, 331 (2010).
- [19] P.Z. Skands, arXiv:0905.3418.
- [20] E. Levin and A. H. Rezaeian, arXiv:1005.0631.
- [21] A.K. Likhoded, A.V. Luchinsky, and A.A. Novoselov, arXiv:1005.1827.
- [22] Available at HEPDATA, http://hepdata.cedar.ac.uk/view/ irn8656010.
- [23] G. J. Alner *et al.* (UA5 Collaboration), Z. Phys. C 33, 1 (1986).
- [24] K. Aamodt *et al.* (ALICE Collaboration), arXiv:1004.3034[Eur. Phys. J. C (to be published)].
- [25] A. M. Rossi et al., Nucl. Phys. B84, 269 (1975).
- [26] T. Alexopoulos *et al.* (E735 Collaboration), Phys. Rev. Lett. **60**, 1622 (1988).
- [27] F. Abe *et al.* (CDF Collaboration), Phys. Rev. Lett. **61**, 1819 (1988).
- [28] J. Whitmore, Phys. Rep. 10, 273 (1974).
- [29] W. Thomé *et al.* (Aachen-CERN-Heidelberg-Munich Collaboration), Nucl. Phys. **B129**, 365 (1977).
- [30] F. Abe *et al.* (CDF Collaboration), Phys. Rev. D **41**, 2330 (1990).
- [31] B.I. Abelev *et al.* (STAR Collaboration), Phys. Rev. C **79**, 034909 (2009).
- [32] R. Nouicer *et al.* (PHOBOS Collaboration), J. Phys. G 30, S1133 (2004).

V. Khachatryan,¹ A. M. Sirunyan,¹ A. Tumasyan,¹ W. Adam,² T. Bergauer,² M. Dragicevic,² J. Erö,² C. Fabjan,² M. Friedl,² R. Frühwirth,² V. M. Ghete,² J. Hammer,^{2,b} S. Hänsel,² M. Hoch,² N. Hörmann,² J. Hrubec,² M. Jeitler,² G. Kasieczka,² W. Kiesenhofer,² M. Krammer,² D. Liko,² I. Mikulec,² M. Pernicka,² H. Rohringer,² R. Schöfbeck,²

J. Strauss,² A. Taurok,² F. Teischinger,² W. Waltenberger,² G. Walzel,² E. Widl,² C.-E. Wulz,² V. Mossolov,³ N. Shumeiko,³ J. Suarez Gonzalez,³ L. Benucci,⁴ L. Ceard,⁴ E. A. De Wolf,⁴ M. Hashemi,⁴ X. Janssen,⁴ T. Maes,⁴ L. Mucibello,⁴ S. Ochesanu,⁴ B. Roland,⁴ R. Rougny,⁴ M. Selvaggi,⁴ H. Van Haevermaet,⁴ P. Van Mechelen,⁴ N. Van Remortel,⁴ V. Adler,⁵ S. Beauceron,⁵ S. Blyweert,⁵ J. D'Hondt,⁵ O. Devroede,⁵ A. Kalogeropoulos,⁵ J. Maes,⁵ M. Maes,⁵ S. Tavernier,⁵ W. Van Doninck,⁵ P. Van Mulders,⁵ I. Villella,⁵ E. C. Chabert,⁶ O. Charaf,⁶ B. Clerbaux,⁶ G. De Lentdecker,⁶ V. Dero,⁶ A. P. R. Gay,⁶ G. H. Hammad,⁶ P. E. Marage,⁶ C. Vander Velde,⁶ P. Vanlaer,⁶ J. Wickens,⁶ S. Costantini,⁷ M. Grunewald,⁷ B. Klein,⁷ A. Marinov,⁷ D. Ryckbosch,⁷ F. Thyssen,⁷ M. Tytgat,⁷ L. Vanelderen,⁷ P. Verwilligen,⁷ S. Walsh,⁷ N. Zaganidis,⁷ S. Basegmez,⁸ G. Bruno,⁸ J. Caudron,⁸ J. De Favereau De Jeneret,⁸ C. Delaere,⁸ P. Demin,⁸ D. Favart,⁸ A. Giammanco,⁸ G. Grégoire,⁸ J. Hollar,⁸ V. Lemaitre,⁸ O. Militaru,⁸ S. Ovyn,⁸ D. Pagano,⁸ A. Pin,⁸ K. Piotrzkowski,^{8,b} L. Quertenmont,⁸ N. Schul,⁸ N. Beliy,⁹ T. Caebergs,⁹ E. Daubie,⁹ G. A. Alves,¹⁰ M. E. Pol,¹⁰ M. H. G. Souza,¹⁰ W. Carvalho,¹¹ E. M. Da Costa,¹¹ D. De Jesus Damiao,¹¹ C. De Oliveira Martins,¹¹ S. Fonseca De Souza,¹¹ L. Mundim,¹¹ V. Oguri,¹¹ A. Santoro,¹¹ S. M. Silva Do Amaral,¹¹ A. Sznajder,¹¹ F. Torres Da Silva De Araujo,¹¹ F. A. Dias,¹² M. A. F. Dias,¹² S. M. Silva Do Amaral,¹¹ A. Sznajder,¹¹ F. Torres Da Silva De Araujo,¹¹ F. A. Dias,¹² M. A. F. Dias,¹²
T. R. Fernandez Perez Tomei,¹² E. M. Gregores,¹² F. Marinho,¹² S. F. Novaes,¹² Sandra S. Padula,¹² N. Darmenov,^{13,b}
L. Dimitrov,¹³ V. Genchev,^{13,b} P. Iaydjiev,¹³ S. Piperov,¹³ S. Stoykova,¹³ G. Sultanov,¹³ R. Trayanov,¹³ I. Vankov,¹³
M. Dyulendarova,¹⁴ R. Hadjiiska,¹⁴ V. Kozhuharov,¹⁴ L. Litov,¹⁴ E. Marinova,¹⁴ M. Mateev,¹⁴ B. Pavlov,¹⁴
P. Petkov,¹⁴ J. G. Bian,¹⁵ G. M. Chen,¹⁵ H. S. Chen,¹⁵ C. H. Jiang,¹⁵ D. Liang,¹⁵ S. Liang,¹⁵ J. Wang,¹⁵ J. Wang,¹⁵ J. Wang,¹⁵ J. Zang,¹⁵ Z. Zhang,¹⁵ Y. Ban,¹⁶ S. Guo,¹⁶ Z. Hu,¹⁶ Y. Mao,¹⁶ S. J. Qian,¹⁶
H. Teng,¹⁶ B. Zhu,¹⁶ A. Cabrera,¹⁷ C. A. Carrillo Montoya,¹⁷ B. Gomez Moreno,¹⁷ A. A. Ocampo Rios,¹⁷
A. F. Osorio Oliveros,¹⁷ J. C. Sanabria,¹⁷ N. Godinovic,¹⁸ D. Lelas,¹⁸ K. Lelas,¹⁸ R. Plestina,^{18,c} D. Polic,¹⁸
I. Puljak,¹⁸ Z. Antunovic,¹⁹ M. Dzelalija,¹⁹ V. Brigljevic,²⁰ S. Duric,²⁰ K. Kadija,²⁰ S. Morovic,²⁰ A. Attikis,²¹ R. Fereos,²¹ M. Galanti,²¹ J. Mousa,²¹ C. Nicolaou,²¹ A. Papadakis,²¹ F. Ptochos,²¹ P. A. Razis,²¹ H. Rykaczewski,²¹ D. Tsiakkouri,²¹ Z. Zinonos,²¹ M. Mahmoud,²² A. Hektor,²³ M. Kadastik,²³ K. Kannike,²³ M. Müntel,²³ M. Raidal,²³ L. Rebane,²³ V. Azzolini,²⁴ P. Eerola,²⁴ S. Czellar,²⁵ J. Härkönen,²⁵ A. Heikkinen,²⁵ V. Karimäki,²⁵ R. Kinnunen,²⁵ J. Klem,²⁵ M. J. Kortelainen,²⁵ T. Lampén,²⁵ K. Lassila-Perini,²⁵ S. Lehti,²⁵ T. Lindén,²⁵ P. Luukka,²⁵ T. Mäenpää,²⁵ E. Tuominen,²⁵ J. Tuominiemi,²⁵ E. Tuovinen,²⁵ D. Ungaro,²⁵ L. Wendland,²⁵ K. Banzuzi,²⁶ A. Korpela,²⁶ T. Tuuva,²⁶ D. Sillou,²⁷ M. Besancon,²⁸ M. Dejardin,²⁸ D. Denegri,²⁸ J. Descamps,²⁸ B. Fabbro,²⁸ J. L. Faure,²⁸ F. Ferri,²⁸ S. Ganjour,²⁸ F. X. Gentit,²⁸ A. Givernaud,²⁸ P. Gras,²⁸ G. Hamel de Monchenault,²⁸ P. Jarry,²⁸ E. Locci,²⁸ J. Malcles,²⁸ M. Marionneau,²⁸ L. Millischer,²⁸ J. Rander,²⁸ A. Rosowsky,²⁸ D. Rousseau,²⁸ M. Titov,²⁸ P. Verrecchia,²⁸ S. Baffioni,²⁹ L. Bianchini,²⁹ M. Bluj,^{29,d} C. Broutin,²⁹ P. Busson,²⁹ C. Charlot,²⁹ L. Dobrzynski,²⁹ S. Elgammal,²⁹ R. Granier de Cassagnac,²⁹ M. Haguenauer,²⁹ A. Kalinowski,²⁹ P. Miné,²⁹ P. Paganini,²⁹ D. Sabes,²⁹ S. Elgammal, K. Gramer de Cassagnac, M. Haguenauer, A. Kannowski, T. Ivinic, T. Fagamm, D. Sades, Y. Sirois,²⁹ C. Thiebaux,²⁹ A. Zabi,²⁹ J.-L. Agram,³⁰ A. Besson,³⁰ D. Bloch,³⁰ D. Bodin,³⁰ J.-M. Brom,³⁰ M. Cardaci,³⁰ E. Conte,³⁰ F. Drouhin,³⁰ C. Ferro,³⁰ J.-C. Fontaine,³⁰ D. Gelé,³⁰ U. Goerlach,³⁰ S. Greder,³⁰ P. Juillot,³⁰ M. Karim,³⁰ A.-C. Le Bihan,³⁰ Y. Mikami,³⁰ J. Speck,³⁰ P. Van Hove,³⁰ F. Fassi,³¹ D. Mercier,³¹ C. Baty,³² N. Beaupere,³² M. Bedjidian,³² O. Bondu,³² G. Boudoul,³² D. Boumediene,³² H. Brun,³² N. Chanon,³² A. Chanon,³² A. C. Chanon,³² A. C. Chanon,³² A. Bedjidian,³³ C. Bondu,³⁴ G. Boudoul,³⁴ D. Boumediene,³⁴ H. Brun,³⁵ N. Chanon,³⁴ A. C. Antonio and A. C. Chanon,³⁵ A. C. Bondu,³⁶ G. Boudoul,³⁶ D. Boumediene,³⁶ H. Brun,³⁶ A. C. Chanon,³⁶ A. C. Baty,³⁶ A. Bedjidian,³⁶ A. Bendu,³⁷ G. Boudoul,³⁶ D. Boumediene,³⁷ H. Brun,³⁶ A. Chanon,³⁷ A. C. Baty,³⁶ A. C. Baty,³⁶ A. C. Baty,³⁷ A. C. Bondu,³⁶ G. Boudoul,³⁷ D. Boumediene,³⁷ H. Brun,³⁷ A. C. Chanon,³⁷ A. C. Baty,³⁷ A. C. Baty,³⁸ A. Bedjidian,³⁹ A. C. Bondu,³⁹ G. Boudoul,³⁹ D. Boumediene,³⁹ H. Brun,³⁹ A. C. Chanon,³⁹ A. C. Bondu,³⁹ A. C. Bondu,³⁹ A. C. Boudoul,³⁹ D. Boumediene,³⁹ H. Brun,³⁹ A. C. Baty,³⁹ A. C. Boudoul,³⁹ B. Boumediene,³⁹ H. Brun,³⁹ A. C. Baty,³⁹ A. C. Boudoul,³⁹ B. C. Boudoul,³⁹ B. Boumediene,³⁹ H. Brun,³⁹ A. C. Baty,³⁹ A. C. Boudoul,³⁹ B. Boudoul,³⁹ B. Boumediene,³⁹ H. Brun,³⁹ A. C. Baty,³⁹ A. C. Boudoul,³⁹ B. C. Boudoul,³⁹ B. C. Boudoul,³⁹ A. C. Boudoul,³⁹ B. Boudoul,³⁹ B. Boudoul,³⁹ A. C. Baty,³⁹ A. C. Boudoul,³⁹ B. C. Boudoul,³⁹ B. Boudoul,³⁹ C. Baty,³² N. Beaupere,³² M. Bedjidian,³² O. Bondu,³² G. Boudoul,³² D. Boumediene,³² H. Brun,³² N. Chanon,³² R. Chierici,³² D. Contardo,³² P. Depasse,³² H. El Mamouni,³² J. Fay,³² S. Gascon,³² B. Ille,³² T. Kurca,³² T. Le Grand,³² M. Lethuillier,³² L. Mirabito,³² S. Perries,³² S. Tosi,³² Y. Tschudi,³² P. Verdier,³² H. Xiao,³² V. Roinishvili,³³ G. Anagnostou,³⁴ M. Edelhoff,³⁴ L. Feld,³⁴ N. Heracleous,³⁴ O. Hindrichs,³⁴ R. Jussen,³⁴ K. Klein,³⁴ J. Merz,³⁴ N. Mohr,³⁴ A. Ostapchuk,³⁴ A. Perieanu,³⁴ F. Raupach,³⁴ J. Sammet,³⁴ S. Schael,³⁴ D. Sprenger,³⁴ H. Weber,³⁴ M. Weber,³⁴ B. Wittmer,³⁴ O. Actis,³⁵ M. Ata,³⁵ W. Bender,³⁵ P. Biallass,³⁵ M. Erdmann,³⁵ J. Frangenheim,³⁵ T. Hebbeker,³⁵ A. Hinzmann,³⁵ K. Hoepfner,³⁵ C. Hof,³⁵ M. Kirsch,³⁵ T. Klimkovich,³⁵ P. Kreuzer,^{35,b} D. Lanske,^{35,a} C. Magass,³⁵ M. Merschmeyer,³⁵ A. Meyer,³⁵ P. Papacz,³⁵ H. Pieta,³⁵ H. Reithler,³⁵ S. A. Schmitz,³⁵ L. Sonnenschein,³⁵ M. Sowa,³⁵ J. Steggemann,³⁶ M. Giffala,³⁶ W. Hai Ahmed³⁶ M. Bontenackels,³⁶ M. Davids,³⁶ M. Duda,³⁶ G. Flügge,³⁶ H. Geenen,³⁶ M. Giffels,³⁶ W. Haj Ahmad,³⁶ D. Heydhausen,³⁶ T. Kress,³⁶ Y. Kuessel,³⁶ A. Linn,³⁶ A. Nowack,³⁶ L. Perchalla,³⁶ O. Pooth,³⁶ P. Sauerland,³⁶ A. Stahl,³⁶ M. Thomas,³⁶ D. Tornier,³⁶ M. H. Zoeller,³⁶ M. Aldaya Martin,³⁷ W. Behrenhoff,³⁷ U. Behrens,³⁷ A. Stahl, M. Holnas, D. Tolniei, M. H. Zoener, M. Aldaya Matuh, W. Benemion, C. Benemis, M. Bergholz,³⁷ K. Borras,³⁷ A. Campbell,³⁷ E. Castro,³⁷ D. Dammann,³⁷ G. Eckerlin,³⁷ A. Flossdorf,³⁷ G. Flucke,³⁷ A. Geiser,³⁷ J. Hauk,³⁷ H. Jung,³⁷ M. Kasemann,³⁷ I. Katkov,³⁷ C. Kleinwort,³⁷ H. Kluge,³⁷ A. Knutsson,³⁷ E. Kuznetsova,³⁷ W. Lange,³⁷ W. Lohmann,³⁷ R. Mankel,³⁷ M. Marienfeld,³⁷ I.-A. Melzer-Pellmann,³⁷ A. B. Meyer,³⁷ J. Mnich,³⁷ A. Mussgiller,³⁷ J. Olzem,³⁷ A. Parenti,³⁷ A. Raspereza,³⁷ R. Schmidt,³⁷ T. Schoerner-Sadenius,³⁷ N. Sen,³⁷ M. Stein,³⁷ J. Tomaszewska,³⁷ D. Volyanskyy,³⁷ C. Wissing,³⁷ C. Autermann,³⁸

J. Draeger, ³⁸ D. Eckstein, ³⁸ H. Enderle, ³⁸ U. Gebbert, ³⁸ K. Kaschube, ³⁸ G. Kaussen, ³⁸ R. Klanner, ³⁸ B. Mura, ³⁸ S. Naumann-Emme, ³⁸ F. Nowak, ³⁸ C. Sander, ³⁸ H. Schettler, ³⁸ P. Schleper, ³⁸ M. Schröder, ³⁸ T. Schum, ³⁸ J. Schwandt, ³⁸ H. Stadie, ³⁶ G. Steinbrick, ³⁸ J. Thomsen, ³⁶ R. Wolf, ³⁸ J. Bauer, ³⁰ V. Buege, ³⁰ A. Cakir, ³⁰ T. Chwalek, ³⁰ D. Daeuwel, ³⁰ W. De Boer, ³⁰ A. Dierlamm, ³⁰ G. Dirkes, ³⁰ M. Feindt, ³⁰ J. Gruschke, ³⁰ C. Hackstein, ³⁰ F. Hartmann, ³⁰ M. Heinrich, ³⁰ H. Held, ³⁰ K. H. Hoffmann, ³⁰ S. Hone, ³⁰ T. Kuhr, ³⁰ D. Martschei, ³⁰ S. Mueller, ³⁰ T. Müller, ³⁰ M. Niegel, ³⁰ O. Oberst, ³⁰ A. Ochler, ³⁰ J. Ott, ³⁰ T. Peiffer, ³⁰ D. Piparo, ³⁰ G. Quast, ³⁰ K. Rabbertz, ³⁰ F. Ratnikov, ³⁰ M. Renz, ³⁰ A. Sabellek, ³⁰ C. Saout, ³⁰ A. Scheurer, ³⁰ P. Schieferdecker, ³⁰ F. P. Schilling, ³⁰ G. Schott, ³⁰ H. J. Simonis, ³⁰ F. M. Stober, ³⁰ D. Toendle, ³⁰ J. Wagner-Kuhr, ³⁰ M. Zeise, ³⁰ V. Zhukov, ⁴⁰ C. Markou, ⁴⁰ C. Marvonmatis, ⁴⁰ T. Geralis, ⁴⁰ A. Kyriakis, ⁴⁰ D. Loukas, ⁴⁰ I. Manolakos, ⁴⁰ A. Markou, ⁴⁰ C. Marvonmatis, ⁴⁰ E. Petrakou, ⁴⁰ L. Gouskos, ⁴¹ P. Katsas, ⁴¹ A. Panagiotou, ^{41,b} I. Evangelou, ⁴² P. Kokkas, ⁴² N. Manthos, ⁴² I. Papadopoulos, ⁴² V. Patras, ⁴² F. A. Triantis, ⁴² A. Aranyi, ⁴³ G. Bencze, ⁴³ L. Boldizsar, ⁴³ G. Debreczeni, ⁴³ C. Hajdu, ^{43,b} D. Horvath, ^{43,4} A. Kapusi, ⁴⁴ K. Krajczar, ⁴³ A. Laszlo, ⁴⁷ F. Sikler, ⁴³ G. Vesztergombi, ⁴³ N. Beni, ⁴⁴ J. Molnar, ⁴⁴ J. Palinkas, ⁴⁴ Z. Szillasi, ^{44,b} V. Veszpremi, ⁴⁴ P. Raics, ⁴⁵ Z. L. Trocsanyi, ⁴⁵ B. Ujvari, ⁴⁵ S. Bansal, ⁴⁶ S. B. Beri, ⁴⁶ V. Bhatnagar, ⁴⁶ M. J. B. Singh, ⁴⁶ S. P. Singh, ⁴⁶ S. Ahuja, ⁴⁷ R. K. Shivpuri, ⁴⁷ R. K. Choudhury, ⁴⁸ D. Dutta, ⁴⁸ S. Kailas, ⁴⁸ S. K. Kataria, ⁴⁸ A. K. Mohanti, ⁴⁶ M. Z. Mehta, ⁴⁶ N. Musha, ⁴⁶ I. K. Saini, ⁴⁶ A. Sharma, ⁴⁶ K. Sharma, ⁴⁶ K. Sudhakar, J. Draeger,³⁸ D. Eckstein,³⁸ H. Enderle,³⁸ U. Gebbert,³⁸ K. Kaschube,³⁸ G. Kaussen,³⁸ R. Klanner,³⁸ B. Mura,³⁸ F. Fabori, A. Fahrani, D. Fasanella, P. Giacomelli, ^{53a} M. Giunta, ^{53a,5} C. Grandi, ^{53a} S. Marcellini, ^{53a} G. Masetti, ^{53a,53b} A. Montanari, ^{53a} F. L. Navarria, ^{53a,53b} F. Odorici, ^{53a} A. Perrotta, ^{53a} A. M. Rossi, ^{53a,53b} T. Rovelli, ^{53a,53b} G. Siroli, ^{53a,53b} R. Travaglini, ^{53a,53b} S. Albergo, ^{54a,54b} G. Cappello, ^{54a,54b} M. Chiorboli, ^{54a,54b} S. Costa, ^{54a,54b} A. Tricomi, ^{54a,54b} C. Tuve, ^{54a} G. Barbagli, ^{55a} G. Broccolo, ^{55a,55b} V. Ciulli, ^{55a,55b} C. Civinini, ^{55a} R. D'Alessandro, ^{55a,55b} E. Focardi, ^{55a,55b} S. Frosali, ^{55a,55b} E. Gallo, ^{55a} C. Genta, ^{55a,55b} P. Lenzi, ^{55a,55b} D. M. Meschini, ^{55a} S. Paoletti, ^{55a} G. Sguazzoni, ^{55a} A. Tropiano, ^{55a} L. Benussi, ⁵⁶ S. Bianco, ⁵⁶ S. Colafranceschi, ⁵⁶
F. Fabbri, ⁵⁶ D. Piccolo, ⁵⁶ P. Fabbricatore, ⁵⁷ R. Musenich, ⁵⁷ A. Benaglia, ^{58a,58b} G. B. Cerati, ^{58a,58b,5} F. De Guio, ^{58a,58b}
L. Di Matteo, ^{58a,58b} A. Ghezzi, ^{58a,58b,5} P. Govoni, ^{58a,58b} M. Malberti, ^{58a,58b} S. Malvezzi, ^{58a} A. Martelli, ^{58a,58b,58}
A. Massironi, ^{58a,58b} D. Menasce, ^{58a} V. Miccio, ^{58a,58b} L. Moroni, ^{58a} P. Negri, ^{58a,58b} M. Paganoni, ^{58a,58b} D. Pedrini, ^{58a,58b}
S. Ragazzi, ^{58a,58b} N. Redaelli, ^{58a} S. Sala, ^{58a} R. Salerno, ^{58a,58b} T. Tabarelli de Fatis, ^{58a,58b} V. Tancini, ^{58a,58b}
S. Taroni, ^{58a,58b} S. Buontempo, ^{59a} A. Cimmino, ^{59a,59b,50} A. De Cosa, ^{59a,59b,50} M. De Gruttola, ^{59a,59b,5b} F. Fabozzi, ^{59a} A. O. M. Iorio, ^{59a} L. Lista, ^{59a} P. Noli, ^{59a,59b} P. Paolucci, ^{59a} P. Azzi, ^{60a} N. Bacchetta, ^{60a} P. Bellan, ^{60a,60b,50}
M. Bellato, ^{60a} M. Biasotto, ^{60a} A. T. Meneguzzo, ^{60a,60b} P. Checchia, ^{60a} M. De Mattia, ^{60a,60b} T. Dorigo, ^{60a} F. Fanzago, ^{60a} F. Gasparini, ^{60a,60b} P. Giubilato, ^{60a,60b} A. Gresele, ^{60a,60c} S. Lacaprara, ^{60a} I. Lazzizzera, ^{60a,60c} M. Margoni, ^{60a,60b} F. Simonetto, ^{60a,60b} E. Torassa, ^{60a} M. Nespolo, ^{60a} L. Perrozzi, ^{60a} N. Pozzobon, ^{60a,60b} P. Baesso, ^{61a,61b} U. Berzano, ^{61a} C. Riccardi, ^{61a,61b} P. Torre, ^{61a,61b} P. Vitulo, ^{61a,61b} C. Viviani, ^{61a,61b} M. Biasini, ^{62a,62b} M. Menichelli, ^{62a} A. Nappi, ^{62a,62b} L. Fanò, ^{62a} P. Lariccia, ^{62a,62b} A. Lucaroni, ^{62a,62b} G. Mantovani, ^{62a,62b} M. Menichelli, ^{62a} A. Nappi, ^{62a,62b} A. Santocchia, ^{62a,62b} L. Servoli, ^{62a} M. Valdata, ^{62a} R. Volpe, ^{62a,62b,b} P. Azzurri, ^{63a,63c} G. Bagliesi, ^{63a} J. Bernardini, ^{63a,63b,b} T. Boccali, ^{63a} R. Castaldi, ^{63a} R. T. Dagnolo, ^{63a,63c} R. Dell'Orso, ^{63a} F. Fiori, ^{63a,63b} L. Foò, ^{63a} A. Gassi, ^{63a} A. Kraan, ^{63a} F. Ligabue, ^{63a,63c} T. M. Meschini,^{55a} S. Paoletti,^{55a} G. Sguazzoni,^{55a} A. Tropiano,^{55a} L. Benussi,⁵⁶ S. Bianco,⁵⁶ S. Colafranceschi,⁵⁶ R. Tenchini, ^{63a,b} G. Tonelli, ^{63a,63b,b} A. Venturi, ^{63a} P.G. Verdini, ^{63a} L. Barone, ^{64a,64b} F. Cavallari, ^{64a,64b} D. Del Re, ^{64a,64b} E. Di Marco, ^{64a,64b} M. Diemoz, ^{64a} D. Franci, ^{64a,64b} M. Grassi, ^{64a} E. Longo, ^{64a,64b} G. Organtini, ^{64a,64b} A. Palma, ^{64a,64b} F. Pandolfi, ^{64a,64b} R. Paramatti, ^{64a,b} S. Rahatlou, ^{64a,64b,b} N. Amapane, ^{65a,65b}

R. Arcidiacono, ^{65a,65b} S. Argiro, ^{65a,65b} M. Arneodo, ^{65a,65c} C. Biino, ^{65a} C. Botta, ^{65a,65b} N. Cartiglia, ^{65a}
R. Castello, ^{65a,65b} M. Costa, ^{65a,65b} N. Demaria, ^{65a} A. Graziano, ^{65a,65b} C. Mariotti, ^{65a} M. Marone, ^{65a,65b} S. Maselli, ^{65a}
E. Migliore, ^{65a,65b} G. Mila, ^{65a,65b} V. Monaco, ^{65a,65b} M. Musich, ^{65a,65b} M. M. Obertino, ^{65a,65c} N. Pastrone, ^{65a}
M. Pelliccioni, ^{65a,65b} A. Romero, ^{65a,65b} M. Ruspa, ^{65a,65c} R. Sacchi, ^{65a,65b} A. Solano, ^{65a,65b} A. Staiano, ^{65a}
D. Trocino, ^{65a,65b} A. Vilela Pereira, ^{65a,65b,b} F. Ambroglini, ^{66a,66b} S. Belforte, ^{66a} F. Cossuti, ^{66a} G. Della Ricca, ^{66a,66b} B. Gobbo, ^{66a} D. Montanino, ^{66a} A. Penzo, ^{66a} S. Chang, ⁶⁷ J. Chung, ⁶⁷ D. H. Kim, ⁶⁷ G. N. Kim, ⁶⁷ J. E. Kim, ⁶⁷ D. J. Kong, ⁶⁷ H. Park, ⁶⁷ D. C. Son, ⁶⁷ Zero Kim, ⁶⁸ J. Y. Kim, ⁶⁸ S. Song, ⁶⁸ B. Hong, ⁶⁹ H. Kim, ⁶⁹ J. H. Kim, ⁶⁹ T. J. Kim, ⁶⁹ K. S. Lee, ⁶⁹ D. H. Moon, ⁶⁹ S. K. Park, ⁶⁹ H. B. Rhee, ⁶⁹ K. S. Sim, ⁶⁹ M. Choi, ⁷⁰ S. Kang, ⁷⁰ H. Kim, ⁷⁰ C. Park, ⁷⁰ I. C. Park, ⁷⁰ S. Choi, ⁷¹ Y. Choi, ⁷¹ Y. K. Choi, ⁷¹ J. Goh, ⁷¹ J. Lee, ⁷¹ S. Lee, ⁷¹ H. Seo, ⁷¹ I. Yu, ⁷¹ M. Janulis,⁷² D. Martisiute,⁷² P. Petrov,⁷² T. Sabonis,⁷² H. Castilla Valdez,^{73,b} E. De La Cruz Burelo,⁷³
 R. Lopez-Fernandez,⁷³ A. Sánchez Hernández,⁷³ L. M. Villaseñor-Cendejas,⁷³ S. Carrillo Moreno,⁷⁴ H. A. Salazar Ibarguen,⁷⁵ E. Casimiro Linares,⁷⁶ A. Morelos Pineda,⁷⁶ M. A. Reyes-Santos,⁷⁶ P. Allfrey,⁷⁷ D. Krofcheck,⁷⁷ J. Tam,⁷⁷ T. Aumeyr,⁷⁸ P. H. Butler,⁷⁸ T. Signal,⁷⁸ J. C. Williams,⁷⁸ M. Ahmad,⁷⁹ I. Ahmed,⁷⁹
M. I. Asghar,⁷⁹ H. R. Hoorani,⁷⁹ W. A. Khan,⁷⁹ T. Khurshid,⁷⁹ S. Qazi,⁷⁹ M. Cwiok,⁸⁰ W. Dominik,⁸⁰ K. Doroba,⁸⁰
M. Konecki,⁸⁰ J. Krolikowski,⁸⁰ T. Frueboes,⁸¹ R. Gokieli,⁸¹ M. Górski,⁸¹ M. Kazana,⁸¹ K. Nawrocki,⁸¹ M. Szleper,⁸¹ G. Wrochna,⁸¹ P. Zalewski,⁸¹ N. Almeida,⁸² A. David,⁸² P. Faccioli,⁸² P. G. Ferreira Parracho,⁸² M. Gallinaro,⁸² G. Mini,⁸² P. Musella,⁸² A. Nayak,⁸² L. Raposo,⁸² P. Q. Ribeiro,⁸² J. Seixas,⁸² P. Silva,⁸² D. Soares,⁸² J. Varela,^{82,b} H. K. Wöhri,⁸² I. Altsybeev,⁸³ I. Belotelov,⁸³ P. Bunin,⁸³ M. Finger,⁸³ M. Finger, Jr.,⁸³ I. Golutvin,⁸³ A. Kamenev,⁸³ V. Karjavin,⁸³ G. Kozlov,⁸³ A. Lanev,⁸³ P. Moisenz,⁸³ V. Palichik,⁸³ V. Perelygin,⁸³ S. Shmatov,⁸³ V. Smirnov,⁸³ A. Volodko,⁸³ A. Zarubin,⁸³ N. Bondar,⁸⁴ V. Golovtsov,⁸⁴ Y. Ivanov,⁸⁴ V. Kim,⁸⁴ P. Levchenko,⁸⁴ I. Smirnov,⁸⁴ V. Sulimov,⁸⁴ L. Uvarov,⁸⁴ S. Vavilov,⁸⁴ A. Vorobyev,⁸⁴ Yu. Andreev,⁸⁵ S. Gninenko,⁸⁵ N. Golubev,⁸⁵ M. Kirsanov, ⁸⁵ N. Krasnikov, ⁸⁵ V. Matveev, ⁸⁵ A. Pashenkov, ⁸⁵ A. Toropin, ⁸⁵ S. Troitsky, ⁸⁵ V. Epshteyn, ⁸⁶ V. Gavrilov, ⁸⁶ N. Ilina, ⁸⁶ V. Kaftanov, ⁸⁶ A. Kossov, ⁸⁶, ^b A. Krokhotin, ⁸⁶ S. Kuleshov, ⁸⁶ A. Oulianov, ⁸⁶ G. Safronov, ⁸⁶ S. Semenov, ⁸⁶ I. Shreyber, ⁸⁶ V. Stolin, ⁸⁶ E. Vlasov, ⁸⁶ A. Zhokin, ⁸⁶ E. Boos, ⁸⁷ M. Dubinin, ⁸⁷, ¹⁰ L. Dudko, ⁸⁷ A. Ershov, ⁸⁷ A. Gribushin, ⁸⁷ O. Kodolova, ⁸⁷ I. Lokhtin, ⁸⁷ S. Obraztsov, ⁸⁷ S. Petrushanko, ⁸⁷ L. Dudko,⁸⁷ A. Ershov,⁸⁷ A. Gribushin,⁸⁷ O. Kodolova,⁸⁷ I. Lokhtin,⁸⁷ S. Obraztsov,⁸⁷ S. Petrushanko,⁸⁷
L. Sarycheva,⁸⁷ V. Savrin,⁸⁷ A. Snigirev,⁸⁷ V. Andreev,⁸⁸ I. Dremin,⁸⁸ M. Kirakosyan,⁸⁸ S. V. Rusakov,⁸⁸
A. Vinogradov,⁸⁸ I. Azhgirey,⁸⁹ S. Bitioukov,⁸⁹ K. Datsko,⁸⁹ V. Grishin,^{89,b} V. Kachanov,⁸⁹ D. Konstantinov,⁸⁹
V. Krychkine,⁸⁹ V. Petrov,⁸⁹ R. Ryutin,⁸⁹ S. Slabospitsky,⁸⁹ A. Sobol,⁸⁹ A. Sytine,⁸⁹ L. Tourtchanovitch,⁸⁹
S. Troshin,⁸⁹ N. Tyurin,⁸⁹ A. Uzunian,⁸⁹ A. Volkov,⁸⁹ P. Adzic,⁹⁰ M. Djordjevic,⁹⁰ D. Krpic,⁹⁰ D. Maletic,⁹⁰
J. Milosevic,⁹⁰ J. Puzovic,⁹⁰ M. Aguilar-Benitez,⁹¹ J. Alcaraz Maestre,⁹¹ P. Arce,⁹¹ C. Battilana,⁹¹ E. Calvo,⁹¹
M. Cepeda,⁹¹ M. Cerrada,⁹¹ M. Chamizo Llatas,⁹¹ N. Colino,⁹¹ B. De La Cruz,⁹¹ C. Diez Pardos,⁹¹
C. Fernandez Bedoya,⁹¹ J. P. Fernández Ramos,⁹¹ A. Ferrando,⁹¹ J. Flix,⁹¹ M. C. Fouz,⁹¹ P. Garcia-Abia,⁹¹
O. Gonzalez Lopez,⁹¹ S. Goy Lopez,⁹¹ J. M. Hernandez,⁹¹ M. I. Josa,⁹¹ G. Merino,⁹¹ J. Puerta Pelayo,⁹¹
I. Redondo,⁹¹ L. Romero,⁹¹ J. Santaolalla,⁹¹ C. Willmott,⁹¹ C. Albajar,⁹² J. F. de Trocóniz,⁹² J. Cuevas,⁹³
J. Fernandez Menendez,⁹³ I. Gonzalez Caballero,⁹⁴ C. Diez Gonzalez,⁹⁴ J. Duarte Campderros,⁹⁴ M. Fernandez,⁹⁴
G. Gomez,⁹⁴ J. Gonzalez Sanchez,⁹⁴ R. Gonzalez Suarez,⁹⁴ C. Jorda,⁹⁴ P. Lobelle Pardo,⁹⁴ A. Lopez Virto,⁹⁴
J. Marco,⁹⁴ R. Marco,⁹⁴ C. Martinez Rivero,⁹⁴ P. Martinez Ruiz del Arbol,⁹⁴ F. Matorras,⁹⁴ T. Rodrigo,⁹⁴ G. Gomez,⁹⁴ J. Gonzalez Sanchez,⁹⁴ R. Gonzalez Suarez,⁹⁴ C. Jorda,⁹⁴ P. Lobelle Pardo,⁹⁴ A. Lopez Virto,⁹⁴ J. Marco,⁹⁴ R. Marco,⁹⁴ C. Martinez Rivero,⁹⁴ P. Martinez Ruiz del Arbol,⁹⁴ F. Matorras,⁹⁴ T. Rodrigo,⁹⁴ A. Ruiz Jimeno,⁹⁴ L. Scodellaro,⁹⁴ M. Sobron Sanudo,⁹⁴ I. Vila,⁹⁴ R. Vilar Cortabitarte,⁹⁴ D. Abbaneo,⁹⁵ E. Auffray,⁹⁵ P. Baillon,⁹⁵ A. H. Ball,⁹⁵ D. Barney,⁹⁵ F. Beaudette,^{95,c} A. J. Bell,⁹⁵ R. Bellan,⁹⁵ D. Benedetti,⁹⁵ C. Bernet,^{95,c} W. Bialas,⁹⁵ P. Bloch,⁹⁵ A. Bocci,⁹⁵ S. Bolognesi,⁹⁵ H. Breuker,⁹⁵ G. Brona,⁹⁵ K. Bunkowski,⁹⁵ T. Camporesi,⁹⁵ E. Cano,⁹⁵ A. Cattai,⁹⁵ G. Cerminara,⁹⁵ T. Christiansen,⁹⁵ J. A. Coarasa Perez,⁹⁵ R. Covarelli,⁹⁵ B. Curé,⁹⁵ T. Dahms,⁹⁵ A. De Roeck,⁹⁵ A. Elliott-Peisert,⁹⁵ W. Funk,⁹⁵ A. Gaddi,⁹⁵ S. Gennai,⁹⁵ H. Gerwig,⁹⁵ D. Giordano,⁹⁵ F. Glege,⁹⁵ R. Gomez-Reino Garrido,⁹⁵ S. Gowdy,⁹⁵ L. Guiducci,⁹⁵ M. Hansen,⁹⁵ C. Hartl,⁹⁵ J. Harvey,⁹⁵ B. Hegner,⁹⁵ C. Leonidopoulos,⁹⁵ A. Macpherson,⁹⁵ T. Mäki,⁹⁵ L. Malgeri,⁹⁵ M. Mannelli,⁹⁵ E. Nesvold,^{95,6} L. Orsini,⁹⁵ E. Perez,⁹⁵ A. Petrilli,⁹⁵ A. Pfeiffer,⁹⁵ M. Pierini,⁹⁵ M. Pimiä,⁹⁵ A. Racz,⁹⁵ G. Rolandi,⁹⁵ F. Sovelli,⁹⁵ A. Perez,⁹⁵ A. Petrilli,⁹⁵ A. Pfeiffer,⁹⁵ M. Pierini,⁹⁵ M. Pimiä,⁹⁵ A. Racz,⁹⁵ G. Rolandi,⁹⁵ F. Neigers,⁹⁵ S. Mersi,⁹⁵ F. Senderson,⁹⁵ T. Mäki,⁹⁵ L. Segoni,⁹⁵ A. Sharma,⁹⁵ C. Rovelli, ^{95,j} M. Rovere, ⁹⁵ V. Ryjov, ⁹⁵ H. Sakulin, ⁹⁵ C. Schäfer, ⁹⁵ C. Schwick, ⁹⁵ I. Segoni, ⁹⁵ A. Sharma, ⁹⁵ P. Siegrist, ⁹⁵ M. Simon, ⁹⁵ P. Sphicas, ^{95,k} D. Spiga, ⁹⁵ M. Spiropulu, ^{95,i} F. Stöckli, ⁹⁵ P. Traczyk, ⁹⁵ P. Tropea, ⁹⁵ A. Tsirou, ⁹⁵ G. I. Veres, ⁹⁵ P. Vichoudis, ⁹⁵ M. Voutilainen, ⁹⁵ W. D. Zeuner, ⁹⁵ W. Bertl, ⁹⁶ K. Deiters, ⁹⁶ W. Erdmann, ⁹⁶

K. Gabathuler,⁹⁶ R. Horisberger,⁹⁶ Q. Ingram,⁹⁶ H. C. Kaestli,⁹⁶ S. König,⁹⁶ D. Kotlinski,⁹⁶ U. Langenegger,⁹⁶ F. Meier,⁹⁶ D. Renker,⁹⁶ T. Rohe,⁹⁶ J. Sibille,^{96,1} A. Starodumov,^{96,m} L. Caminada,^{97,n} Z. Chen,⁹⁷ S. Cittolin,⁹⁷ G. Dissertori,⁹⁷ M. Dittmar,⁹⁷ J. Eugster,⁹⁷ K. Freudenreich,⁹⁷ C. Grab,⁹⁷ A. Hervé,⁹⁷ W. Hintz,⁹⁷ P. Lecomte,⁹⁷ W. Lustermann,⁹⁷ C. Marchica,^{97,n} P. Meridiani,⁹⁷ P. Milenovic,^{97,o} F. Moortgat,⁹⁷ A. Nardulli,⁹⁷ F. Nessi-Tedaldi,⁹⁷ L. Pape,⁹⁷ F. Pauss,⁹⁷ T. Punz,⁹⁷ A. Rizzi,⁹⁷ F. J. Ronga,⁹⁷ L. Sala,⁹⁷ A. K. Sanchez,⁹⁷ M.-C. Sawley,⁹⁷ D. Schinzel,⁹⁷ V. Sordini,⁹⁷ B. Stieger,⁹⁷ L. Tauscher,^{97,a} A. Thea,⁹⁷ K. Theofilatos,⁹⁷ D. Treille,⁹⁷ M. Weber,⁹⁷ L. Wehrli,⁹⁷ J. Weng,⁹⁷ C. Amsler,⁹⁸ V. Chiochia,⁹⁸ S. De Visscher,⁹⁸ M. Ivova Rikova,⁹⁸ B. Millan Mejias,⁹⁸ C. Regenfus,⁹⁸ P. Robmann,⁹⁸ T. Rommerskirchen,⁹⁸ A. Schmidt,⁹⁸ D. Tsirigkas,⁹⁸ L. Wilke,⁹⁸ Y. H. Chang,⁹⁹ K. H. Chen,⁹⁹ W. T. Chen,⁹⁹ A. Go,⁹⁹ C. M. Kuo,⁹⁹ S. W. Li,⁹⁹ W. Lin,⁹⁹ M. H. Liu,⁹⁹ Y. J. Lu,⁹⁹ J. H. Wu,⁹⁹ S. S. Yu,⁹⁹ P. Bartalini,¹⁰⁰ P. Chang,¹⁰⁰ Y. H. Chang,¹⁰⁰ Y. W. Chang,¹⁰⁰ Y. Chao,¹⁰⁰ K. F. Chen,¹⁰⁰ W.-S. Hou,¹⁰⁰ Y. Hsiung,¹⁰⁰ M. Wang,¹⁰⁰ J. T. Wei,¹⁰⁰ A. Adiguzel,¹⁰¹ A. Ayhan,¹⁰¹ M. N. Bakirci,¹⁰¹ S. Cerci,¹⁰¹ Z. Demir,¹⁰¹ C. Dozen,¹⁰¹ I. Dumanoglu,¹⁰¹ E. Eskut,¹⁰¹ S. Girgis,¹⁰¹ G. Gökbulut,¹⁰¹ Y. Güler,¹⁰¹ E. Gurpinar,¹⁰¹ I. Hos,¹⁰¹ E. E. Kangal,¹⁰¹ T. Karaman,¹⁰¹ A. Kayis Topaksu,¹⁰¹ A. Nart,¹⁰¹ G. Önengüt,¹⁰¹ M. Ozdemir,¹⁰² M. Deniz,¹⁰² H. Gamsizkan,¹⁰² A. M. Guler,¹⁰² M. Guler,¹⁰² H. Gamsizkan,¹⁰² A. M. Guler,¹⁰² A. M. Guler,¹⁰² S. Bilmis,¹⁰² M. Deniz,¹⁰² H. Gamsizkan,¹⁰² A. M. Guler,¹⁰² A. M. Dumanoglu, "D. Eskut." S. Gurgs, "J. Cokbulut, "Y. Y. Guler, "D. E. Gurpinar, "D. H. Ney, "D. P. Eskut, "S. Spatial, "D. Karaman, "D. A. Kayi STopaks, "D. Cokbulut, "D. Y. Guler, "D. S. Ozturk, "D. A. Polatiz, "D. S. Sahin, "D. S. Sun, "D. S. Sun, "D. S. Zurk, "D. A. Polatiz, "D. S. Zurk, "D. A. Polatiz, "D. S. Zurk, "D. A. Polatiz, "D. C. Zorbilmez, "D. I. V. Akin, "Oz. T. Aliev, "D. S. Bilmis, "D. M. Deniz, "D. H. Gansizkan, "D. M. Vergii, "D. M. Vergii, "D. K. Colan, "D. A. M. Guler, "D. C. Zorbilmez, "D. I. V. Akin, "Oz. T. Aliev, "D. S. Bilmis, "D. M. Deniz, "D. H. Gansizkan, "D. M. Deliomeroglu, "D. Sommez, "D. L. Everkuk, "D. H. Halu, "D. B. Sildak, "D. M. Naya, "D. O. Kaya, "D. M. Deliomeroglu, "D. Leverhuk, "D. Hell, "D. F. Heath, "D. T. H. Heath, "D. C. Hill, "D. B. Huckvale, "B. J. Ackson, "D. J. Goldstein, "D. M. Hansen, "D. G. Heath, "D. H. Heath, "D. C. Hill, "D. B. Huckvale, "B. J. Ackson, "D. L. Kreczko, "D. K. Mackay, "B. S. Metson, "D. D. Newbold, "D. K. Miruppong, "D. V. J. Smith, "D. S. Ward, "D. A. Belyaev, "D. D. Newbold, "D. B. C. amari," (D. J. A. Cockerill, "D. A. Belyaev, "D. C. Brew, "D. R. M. Brown, "D. B. C. amari," G. B. J. A. Cockerill, "D. A. Belyaev, "D. B. W. Kennedy, "D. E. Olaiya, "D. B. C. Radburn-Smith, "D. C. H. Shepherd-Themistocleous, "D. J. R. Tomalin, "D. M. Wenneller, "D. M. Cripps, "D. M. Cutajar," G. Davies, "D. M. Della Negra," "G. G. Karapostoj, "D. Lucher, "D. D. Luyan, "D. A. Guneratine Bryer, "D. G. Hadl, "J. J. Haberell, "D. B. Bakato, "D. J. A. Cockerill, "D. Rompoti, "D. A. Bayaev, "D. G. Bos, "D. G. Karapostoj, "D. J. Lycon," D. A.-M. Magman, "D. J. Marrouche, "G. R. Modi, "J. Nash, "D. A. Nikitenko, "G. M. Arapageorgiou, "D. M. Pesaresi, "D. K. Petridis, "D. M. Pioppi, "D. A. Madi, "J. Nash, "D. A. Nikitenko, "G. M. A. Rose, "D. J. J. New, "D. S. Sarawato, "D. Lazie, "B. J. Reid, "D. K. Harder, "D. C. Lough, "D. A. Hondon, "M. P. Sarawator, "D. Lazie, "B. J. Reid, "D. K. Harder, "J. W. K. Hondon, "D. Lazie, "B. J. Reid, "D. A. Nikitenko, "D. A 105, 022002 (2010) PHYSICAL REVIEW LETTERS
 9 JULY 2010
 J. Russ,¹¹⁷ N. Terentyev,¹¹⁷ H. Vogel,¹¹⁷ I. Vorobiev,¹¹⁷ J. P. Cumalat,¹¹⁸ M. E. Dinardo,¹¹⁸ B. R. Drell,¹¹⁸
 W. T. Ford,¹¹⁸ B. Heyburn,¹¹⁸ E. Luiggi Lopez,¹¹⁸ U. Nauenberg,¹¹⁸ J. G. Smith,¹¹⁸ K. Stenson,¹¹⁸ K. A. Ulmer,¹¹⁸ S. R. Wagner,¹¹⁸ S. L. Zang,¹¹⁸ L. Agostino,¹¹⁹ J. Alexander,¹¹⁹ F. Blekman,¹¹⁹ A. Chatterjee,¹¹⁹ S. Das,¹¹⁹ N. Eggert,¹¹⁹ L. J. Fields,¹¹⁹ L. K. Gibbons,¹¹⁹ B. Heltsley,¹¹⁹ W. Hopkins,¹¹⁹ A. Khukhunaishvili,¹¹⁹ B. Kreis,¹¹⁹ V. Kuznetsov,¹¹⁹ G. Nicolas Kaufman,¹¹⁹ J. R. Patterson,¹¹⁹ D. Puigh,¹¹⁹ D. Riley,¹¹⁹ A. Ryd,¹¹⁹ X. Shi,¹¹⁹ W. Sun,¹¹⁹ W. D. Teo,¹¹⁹ J. Thom,¹¹⁹ J. Thompson,¹¹⁴ J. Vaughan,¹¹⁹ Y. Weng,¹¹⁹ P. Wittich,¹¹⁶ A. Biselli,¹²⁰ G. Cirino,¹²⁰ D. Winn,¹²⁰ S. Abdullin,¹²¹ M. Albrow,¹²¹ J. Anderson,¹²¹ G. Apollinari,¹²¹ M. Atac,¹²¹ J. A. Bakeen,¹²¹ S. Banerjee,¹²¹ L. A. T. Bauerdick,¹²¹ A. Beretvas,¹²¹ J. Berryhill,¹²¹ P. C. Bhat,¹²¹ I. Bloch,¹²¹ F. Borcherding,¹²¹ K. Burkett,¹²¹ J. N. Butler,¹²¹ V. Chetluru,¹²¹ H. Jensen,¹²¹ M. Johnson,¹²¹ U. Joshi,¹²¹ O. Gutschel,¹²¹ J. Halon,¹²¹ R. M. Harris,¹²¹ E. James,¹²¹ H. Jensen,¹²¹ M. Johnson,¹²¹ U. Joshi,¹²¹ R. Khuiwada,¹²¹ B. Kilminster,¹²¹ B. Kilminster,¹²¹ J. M. Marraffino,¹²¹ D. Mason,¹²¹ P. McBride,¹²¹ T. McCauley,¹²¹ R. Miarafino,¹²¹ S. Kunori,¹²¹ S. Kuan,¹²¹ R. Sopescu,¹²¹ R. Pordes,¹²¹ M. Johnson,¹²¹ V. O'Dell,¹²¹ S. Mearening,¹²¹ K. Masehima,¹²¹ J. Taylor,¹²¹ S. Takazyk,¹²¹ L. Uplegger,¹²¹ R. Sonia,¹²¹ R. Sopescu,¹²¹ R. Profes,¹²² G. P. Di Giovanni,¹²² D. Dobur,¹²² S. Takazyk,¹²¹ L. Uplegger,¹²¹ R. Sonia,¹²¹ R. Sopescu,¹²¹ S. Kuonj,¹²² J. Bertyhilt,¹²¹ A. Soha,¹²¹ R. Vorofyev,¹²² K. Matchev,¹²² J. Konigsberg,¹²² A. Korytov,¹²² K. Kotov,¹²² A. Kropivnitskaya,¹²² J. Gartner,¹²² G. P. Di Giovanni,¹²² D. Dobur,¹²¹ S. Hagopian,¹²⁴ W. Hagopian,¹²⁴ M. Jenkins,¹²⁴ K. F. Johnson,¹²⁴ H. Prosper,¹²⁴ S. Sekmen,¹²⁴ V. Veeraraghavan,¹²⁴ M. M. Baarmand,¹²⁵ S. Guragain,¹²⁵ M. Hohlmann,¹²⁵ H. Kalakhety,¹²⁵ H. Mermerkaya,¹²⁵ R. Ralich,¹²⁵ I. Vodopiyanov,¹²⁵ M. R. Adams,¹²⁶ I. M. Anghel,¹²⁶ L. Apanasevich,¹²⁶ V. E. Bazterra,¹²⁶ R. R. Betts,¹²⁶ J. Callner,¹²⁶ R. Cavanaugh,¹²⁶ C. Dragoiu,¹²⁶ E. J. Garcia-Solis,¹²⁶ D. Strom,¹²⁶ N. Varelas,¹²⁶ U. Akgun,¹²⁷ E. A. Albayrak,¹²⁷ B. Bilki,¹²⁷ K. Cankocak,¹²⁷ W. Clarida,¹²⁷ F. Duru,¹²⁷ C. K. Lae,¹²⁷ E. McCliment,¹²⁷ J.-P. Merlo,¹²⁷ A. Mestvirishvili,¹²⁷ A. Moeller,¹²⁷ J. Vacthina,¹²⁷ C. R. Newson,¹²⁷ E. Norbeck,¹²⁷ J. Olson,¹²⁷ Y. Onel,¹²⁷ E. Ozok,¹²⁷ S. Sen,¹²⁷ J. Wetzel,¹²⁷ J. Vetxin,¹²⁷ K. Yi,¹²⁷ B. A. Barnett,¹²⁸ B. Blumenfeld,¹²⁸
A. Bonato,¹²⁸ C. Eskew,¹²⁸ D. Fehling,¹²⁸ G. Giurgiu,¹²⁸ A. V. Gritsan,¹²⁸ Z. J. Guo,¹²⁸ G. Hu,¹²⁸ P. Maksimovic,¹²⁸ S. Rappoccio,¹²⁸ M. Swartz,¹²⁸ N. V. Tran,¹²⁸ A. Whitbeck,¹²⁸ P. Baringer,¹²⁹ A. Bean,¹²⁹ G. Benelli,¹²⁹ O. Grachov,¹²⁹ M. Murray,¹²⁹ V. Radicci,¹²⁹ S. Sanders,¹²⁹ J. S. Wood,¹²⁹ V. Zhukova,¹²⁹ D. Bandurin,¹³⁰ J. Grachov,¹²⁹ M. Murray,¹³⁰ K. Kaadze,¹³⁰ Y. Maravin,¹³⁰ S. Shrestha,¹³⁰ I. Svintradze,¹³⁰ Z. Wan,¹³⁰ J. Gronberg,¹³¹ D. Lange,¹³¹ D. Wright,¹³¹ D. Baden,¹³² K. Rossato,¹³² P. Rumerio,¹³² F. Santanastasio,¹³² R. G. Kellogg,¹³² M. Kirn,¹³³ A. Kimj,¹³³ M. Shute,¹³³ P. Everaerts,¹³³ G. Gomez Ceballos,¹³³ W. Busza,¹³³ E. Butz,¹³³ H. Arris,¹³³ Y. Kim,¹³³ M. Klute,¹³³ Y. Yilmaz,¹³³ G. Gomez Ceballos,¹³³ M. Goncharov,¹³³ K. A. Hahn,¹³³ C. Paus,¹³³ C. Roland,¹³³ M. Rudolph,¹³³ G. S. F. Stephans,¹³⁴ J. Haupt,¹³⁴ K. Sung,¹³³ E. A. Wenger,¹³³ B. Wyslouch,¹³³ G. Roland,¹³³ M. Rudolph,¹³³ G. S. F. Stephans,¹³⁴ J. Haupt,¹³⁴ K. Kuapetke,¹³⁴ Y. Kubota,¹³⁴ J. Bendavid,¹³³ P. Ocole,¹³⁴ S. 1. Cooper,¹³⁴ P. Cushman,¹ K. Lannon, ¹⁴⁰ S. Lynch, ¹⁴⁰ N. Marinelli, ¹⁴⁰ D. M. Morse, ¹⁴⁰ R. Ruchti, ¹⁴¹ J. Slaunwhite, ¹⁴⁰ N. Valls, ¹⁴⁰ J. Warchol, ¹⁴⁰ M. Wayne, ¹⁴⁰ J. Ziegler, ¹⁴⁰ B. Bylsma, ¹⁴¹ L. S. Durkin, ¹⁴¹ J. Gu, ¹⁴¹ P. Killewald, ¹⁴¹ T. Y. Ling, ¹⁴¹ G. Williams, ¹⁴¹ N. Adam, ¹⁴² E. Berry, ¹⁴² P. Elmer, ¹⁴² D. Gerbaudo, ¹⁴² V. Halyo, ¹⁴² A. Hunt, ¹⁴² J. Jones, ¹⁴² J. Jones, ¹⁴² L. Laird, ¹⁴² D. Lopes Pegna, ¹⁴² D. Marlow, ¹⁴² T. Medvedeva, ¹⁴² M. Mooney, ¹⁴² A. Hunt, ¹⁴³ J. Jones, ¹⁴² J. Stickland, ¹⁴² C. Tully, ¹⁴² J. Swerner, ¹⁴² A. Zuranski, ¹⁴³ J. G. Acosta, ¹⁴³ X. T. Huang, ¹⁴³ A. Lopez, ¹⁴³ H. Mendez, ¹⁴³ S. Oliveros, ¹⁴³ J. E. Ramirez Vargas, ¹⁴³ A. Zatzerklyaniy, ¹⁴³ E. Alagoz, ¹⁴⁴ V. E. Barnes, ¹⁴⁴ G. Bolla, ¹⁴⁴ L. Borrello, ¹⁴⁴ D. Bortoletto, ¹⁴⁴ A. Everett, ¹⁴⁴ A. F. Garfinkel, ¹⁴⁴ Z. Gecse, ¹⁴⁴ L. Gutay, ¹⁴⁴ M. Jones, ¹⁴⁴ O. Koybasi, ¹⁴⁴ A. T. Laasanen, ¹⁴⁴ N. Leonardo, ¹⁴⁴ C. Liu, ¹⁴⁴ V. Maroussov, ¹⁴⁴ P. Merkel, ¹⁴⁴ D. H. Miller, ¹⁴⁴ N. Neumeister, ¹⁴⁴ K. Potamianos, ¹⁴⁴ I. Shipsey, ¹⁴⁴ D. Silvers, ¹⁴⁴ H. D. Yoo, ¹⁴⁴ J. Zablocki, ¹⁴⁴ Y. Zheng, ¹⁴⁴ P. Jindal, ¹⁴⁵ N. Parashar, ¹⁴⁵ V. Cuplov, ¹⁴⁶ B. Betchart, ¹⁴⁷ A. Bodek, ¹⁴⁷ Y. S. Chung, ¹⁴⁷ P. de Barbaro, ¹⁴⁷ R. Demina, ¹⁴⁷ H. Flacher, ¹⁴⁷ A. Garcia-Bellido, ¹⁴⁷ Y. Gotra, ¹⁴⁷ J. Han, ¹⁴⁷ A. Harel, ¹⁴⁷ D. C. Miner, ¹⁴⁷ D. Orbaker, ¹⁴⁷ G. Petrillo, ¹⁴⁷ D. Vishnevskiy, ¹⁴⁸ M. Yan, ¹⁴⁸ O. Atramentov, ¹⁴⁹ Y. Gershtein, ¹⁴⁹ R. Gray, ¹⁴⁹ E. Halkiadakis, ¹⁴⁹ D. Hits, ¹⁴⁹ A. Lath, ¹⁴⁹ N. Rose, ¹⁴⁹ S. Sonnalwar, ¹⁴⁹ R. Gray, ¹⁴⁹ E. Halkiadakis, ¹⁴⁹ G. Cerizza, ¹⁵⁰ M. Hollingsworth, ¹⁵⁰ S. Spanier, ¹⁵⁰ Z. C. Yang, ¹⁵⁰ A. York, ¹⁵¹ J. Asafonov, ¹⁵¹ J. Fivarski, ¹⁵¹ M. Weinberger, ¹⁵¹ N. Akchurin, ¹⁵² C. Bardak, ¹⁵² J. Damagov, ¹⁵² C. Jeong, ¹⁵² K. Kovitanggoon, ¹⁵² S. W. Lee, ¹⁵² P. Mane, ¹⁵² Y. Roh, ¹⁵² A. Sill, ¹⁵¹ M. Sonan, ¹⁵³ P. Kurt,

(CMS Collaboration)

¹Yerevan Physics Institute, Yerevan, Armenia
 ²Institut für Hochenergiephysik der OeAW, Wien, Austria
 ³National Centre for Particle and High Energy Physics, Minsk, Belarus
 ⁴Universiteit Antwerpen, Antwerpen, Belgium
 ⁵Vrije Universiteit Brussel, Brussel, Belgium
 ⁶Université Libre de Bruxelles, Bruxelles, Belgium
 ⁷Ghent University, Ghent, Belgium
 ⁸Université Catholique de Louvain, Louvain-la-Neuve, Belgium
 ⁹Université de Mons, Mons, Belgium
 ¹⁰Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

¹¹Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

¹²Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

¹³Institute for Nuclear Research and Nuclear Energy. Sofia. Bulgaria

¹⁴University of Sofia, Sofia, Bulgaria

¹⁵Institute of High Energy Physics, Beijing, China

¹⁶State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

¹⁷Universidad de Los Andes, Bogota, Colombia

¹⁸Technical University of Split, Split, Croatia

¹⁹University of Split, Split, Croatia

²⁰Institute Rudjer Boskovic, Zagreb, Croatia

²¹University of Cyprus, Nicosia, Cyprus

²²Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics,

Cairo, Egypt

²³National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

²⁴Department of Physics, University of Helsinki, Helsinki, Finland

²⁵Helsinki Institute of Physics, Helsinki, Finland ²⁶Lappeenranta University of Technology, Lappeenranta, Finland ²⁷Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France ²⁸DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France ²⁹Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France ³⁰Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France ³¹Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France ³²Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France ³³E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia ³⁴RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany ³⁵RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany ³⁶RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany ³⁷Deutsches Elektronen-Synchrotron, Hamburg, Germany ³⁸University of Hamburg, Hamburg, Germany ³⁹Institut für Experimentelle Kernphysik, Karlsruhe, Germany ⁴⁰Institute of Nuclear Physics "Demokritos," Aghia Paraskevi, Greece ⁴¹University of Athens, Athens, Greece ⁴²University of Ioánnina, Ioánnina, Greece ⁴³KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary ⁴⁴Institute of Nuclear Research ATOMKI, Debrecen, Hungary ⁴⁵University of Debrecen, Debrecen, Hungary ⁴⁶Panjab University, Chandigarh, India ⁴⁷University of Delhi, Delhi, India ⁴⁸Bhabha Atomic Research Centre, Mumbai, India ⁴⁹Tata Institute of Fundamental Research–EHEP, Mumbai, India ⁵⁰Tata Institute of Fundamental Research–HECR, Mumbai, India ⁵¹Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran ^{52a}INFN Sezione di Bari, Bari, Italy ^{52b}Università di Bari, Bari, Italy ⁵²cPolitecnico di Bari, Bari, Italy ^{53a}INFN Sezione di Bologna, Bologna, Italy ^{53b}Università di Bologna, Bologna, Italy ^{54a}INFN Sezione di Catania, Catania, Italy ^{54b}Università di Catania, Catania, Italy ⁵⁵aINFN Sezione di Firenze, Firenze, Italy ^{55b}Università di Firenze, Firenze, Italy ⁵⁶INFN Laboratori Nazionali di Frascati, Frascati, Italy ⁵⁷INFN Sezione di Genova, Genova, Italy ^{58a}INFN Sezione di Milano-Biccoca, Milano, Italy ^{58b}Università di Milano-Bicocca, Milano, Italy ^{59a}INFN Sezione di Napoli, Napoli, Italy ^{59b}Università di Napoli "Federico II," Napoli, Italy ^{60a}INFN Sezione di Padova, Padova, Italv ^{60b}IUniversità di Padova, Padova, Italy ^{60c}Università di Trento (Trento), Padova, Italy ^{61a}INFN Sezione di Pavia, Pavia, Italy ^{61b}Università di Pavia, Pavia, Italy ^{62a}INFN Sezione di Perugia, Perugia, Italy ^{62b}Università di Perugia, Perugia, Italy ^{63a}INFN Sezione di Pisa, Pisa, Italy ^{63b}Università di Pisa, Pisa, Italy ^{63c}Scuola Normale Superiore di Pisa, Pisa, Italy ^{64a}INFN Sezione di Roma, Roma, Italy ^{64b}Università di Roma "La Sapienza,", Roma, Italy ^{65a}INFN Sezione di Torino, Torino, Italy ^{65b}Università di Torino, Torino, Italy ⁶⁵*c*Università del Piemonte Orientale (Novara), Torino, Italy ^{66a}INFN Sezione di Trieste, Trieste, Italy ^{66b}Università di Trieste, Trieste, Italy ⁶⁷Kyungpook National University, Daegu, Korea

⁶⁸Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea ⁶⁹Korea University, Seoul, Korea ⁷⁰University of Seoul, Seoul, Korea ⁷¹Sungkyunkwan University, Suwon, Korea ⁷²Vilnius University, Vilnius, Lithuania ⁷³Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico ⁷⁴Universidad Iberoamericana, Mexico City, Mexico ⁷⁵Benemerita Universidad Autonoma de Puebla, Puebla, Mexico ⁷⁶Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico ⁷⁷University of Auckland, Auckland, New Zealand ⁷⁸University of Canterbury, Christchurch, New Zealand ⁷⁹National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan ⁸⁰Institute of Experimental Physics, Warsaw, Poland ⁸¹Soltan Institute for Nuclear Studies, Warsaw, Poland ⁸²Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal ⁸³Joint Institute for Nuclear Research, Dubna, Russia ⁸⁴Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
⁸⁵Institute for Nuclear Research, Moscow, Russia ⁸⁶Institute for Theoretical and Experimental Physics, Moscow, Russia ⁸⁷Moscow State University, Moscow, Russia ⁸⁸P.N. Lebedev Physical Institute, Moscow, Russia ⁸⁹State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia ⁹⁰Vinca Institute of Nuclear Sciences, Belgrade, Serbia ⁹¹Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ⁹²Universidad Autónoma de Madrid, Madrid, Spain ⁹³Universidad de Oviedo, Oviedo, Spain ⁹⁴Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ⁹⁵CERN, European Organization for Nuclear Research, Geneva, Switzerland ⁹⁶Paul Scherrer Institut, Villigen, Switzerland ⁹⁷Institute for Particle Physics, ETH Zurich, Zurich, Switzerland ⁹⁸Universität Zürich, Zurich, Switzerland 99National Central University, Chung-Li, Taiwan ¹⁰⁰National Taiwan University (NTU), Taipei, Taiwan ¹⁰¹Cukurova University, Adana, Turkey ¹⁰²Physics Department, Middle East Technical University, Ankara, Turkey ¹⁰³Department of Physics, Bogaziçi University, Istanbul, Turkey ¹⁰⁴National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine ¹⁰⁵University of Bristol, Bristol, United Kingdom ¹⁰⁶Rutherford Appleton Laboratory, Didcot, United Kingdom ¹⁰⁷Imperial College, University of London, London, United Kingdom ¹⁰⁸Brunel University, Uxbridge, United Kingdom ¹⁰⁹Boston University, Boston, Massachusetts 02215, USA ¹¹⁰Brown University, Providence, Rhode Island 02912, USA ¹¹¹University of California, Davis, Davis, California 95616, USA ¹¹²University of California, Los Angeles, Los Angeles, California 90095, USA ¹¹³University of California, Riverside, Riverside, California 92521, USA ¹¹⁴University of California, San Diego, La Jolla, California 92093, USA ¹¹⁵University of California, Santa Barbara, Santa Barbara, California 93106, USA ¹¹⁶California Institute of Technology, Pasadena, California 91125, USA ¹¹⁷Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA ¹¹⁸University of Colorado at Boulder, Boulder, Colorado 80309, USA ¹¹⁹Cornell University, Ithaca, New York 14853-5001, USA ¹²⁰Fairfield University, Fairfield, Connecticut 06824, USA ¹²¹Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA ¹²²University of Florida, Gainesville, Florida 32611-8440, USA ¹²³Florida International University, Miami, Florida 33199, USA ¹²⁴Florida State University, Tallahassee, Florida 32306-4350, USA ¹²⁵Florida Institute of Technology, Melbourne, Florida 32901, USA ¹²⁶University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA ¹²⁷The University of Iowa, Iowa City, Iowa 52242-1479, USA ¹²⁸Johns Hopkins University, Baltimore, Maryland 21218, USA

022002-13

¹²⁹The University of Kansas, Lawrence, Kansas 66045, USA ¹³⁰Kansas State University, Manhattan, Kansas 66506, USA ¹³¹Lawrence Livermore National Laboratory, Livermore, California 94720, USA ¹³²University of Maryland, College Park, Maryland 20742, USA ¹³³Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ¹³⁴University of Minnesota, Minneapolis, Minnesota 55455, USA ¹³⁵University of Mississippi, University, Mississippi 38677, USA ¹³⁶University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0111, USA ¹³⁷State University of New York at Buffalo, Buffalo, New York 14260-1500, USA ¹³⁸Northeastern University, Boston, Massachusetts 02115, USA ¹³⁹Northwestern University, Evanston, Illinois 60208-3112, USA ¹⁴⁰University of Notre Dame, Notre Dame, Indiana 46556, USA ¹⁴¹The Ohio State University, Columbus, Ohio 43210, USA ¹⁴²Princeton University, Princeton, New Jersey 08544-0708, USA ¹⁴³University of Puerto Rico, Mayaguez, Puerto Rico 00680 ¹⁴⁴Purdue University, West Lafayette, Indiana 47907-1396, USA ¹⁴⁵Purdue University Calumet, Hammond, Indiana 46323, USA ¹⁴⁶Rice University, Houston, Texas 77251-1892, USA ¹⁴⁷University of Rochester, Rochester, New York 14627-0171, USA ¹⁴⁸The Rockefeller University, New York, New York 10021-6399, USA ¹⁴⁹Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8019, USA ¹⁵⁰University of Tennessee, Knoxville, Tennessee 37996-1200, USA ¹⁵¹Texas A&M University, College Station, Texas 77843-4242, USA ¹⁵²Texas Tech University, Lubbock, Texas 79409-1051, USA ¹⁵³Vanderbilt University, Nashville, Tennessee 37235, USA ¹⁵⁴University of Virginia, Charlottesville, Virginia 22901, USA ¹⁵⁵Wayne State University, Detroit, Michigan 48202, USA

¹⁵⁶University of Wisconsin, Madison, Wisconsin 53706, USA

^aDeceased.

^bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

^cAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

^dAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.

^eAlso at Moscow State University, Moscow, Russia.

^fAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

^gAlso at University of California, San Diego, La Jolla, CA, USA.

^hAlso at Tata Institute of Fundamental Research–HECR, Mumbai, India.

ⁱAlso at California Institute of Technology, Pasadena, CA, USA.

^jAlso at INFN Sezione di Roma, Università di Roma "La Sapienza," Roma, Italy.

^kAlso at University of Athens, Athens, Greece.

¹Also at The University of Kansas, Lawrence, KS, USA.

^mAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.

ⁿAlso at Paul Scherrer Institut, Villigen, Switzerland.

^oAlso at Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

^pAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.

^qAlso at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

^rAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

^sAlso at Institute for Nuclear Research, Moscow, Russia.