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MoS2/MX2 heterobilayers: bandgap engineering via
tensile strain or external electrical field†

Ning Lu,‡ab Hongyan Guo,‡bc Lei Li,b Jun Dai,b Lu Wang,cd Wai-Ning Mei,d

Xiaojun Wu*ce and Xiao Cheng Zeng*be

We have performed a comprehensive first-principles study of the electronic and magnetic properties of

two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M ¼ Mo, Cr, W,

Fe, V; X ¼ S, Se). For M ¼ Mo, Cr, W; X ¼ S, Se, all heterobilayers show semiconducting characteristics

with an indirect bandgap with the exception of the WSe2/MoS2 heterobilayer which retains the direct-

bandgap character of the constituent monolayer. For M ¼ Fe, V; X ¼ S, Se, the MX2/MoS2 heterobilayers

exhibit metallic characters. Particular attention of this study has been focused on engineering the

bandgap of the TMD heterobilayer materials via application of either a tensile strain or an external

electric field. We find that with increasing either the biaxial or uniaxial tensile strain, the MX2/MoS2 (M ¼
Mo, Cr, W; X ¼ S, Se) heterobilayers can undergo a semiconductor-to-metal transition. For the WSe2/

MoS2 heterobilayer, a direct-to-indirect bandgap transition may occur beyond a critical biaxial or uniaxial

strain. For M (¼Fe, V) and X (¼S, Se), the magnetic moments of both metal and chalcogen atoms are

enhanced when the MX2/MoS2 heterobilayers are under a biaxial tensile strain. Moreover, the bandgap of

MX2/MoS2 (M ¼ Mo, Cr, W; X ¼ S, Se) heterobilayers can be reduced by the vertical electric field. For two

heterobilayers MSe2/MoS2 (M ¼ Mo, Cr), PBE calculations suggest that the indirect-to-direct bandgap

transition may occur under an external electric field. The transition is attributed to the enhanced

spontaneous polarization. The tunable bandgaps in general and possible indirect–direct bandgap

transitions due to tensile strain or external electric field make the TMD heterobilayer materials a viable

candidate for optoelectronic applications.

Introduction

Two dimensional transition-metal dichalcogenides (TMDs)
have attracted intensive interest recently owing to their novel
electronic and catalytic properties that differ from their bulk
counterparts.1–3 For example, as a representative of 2D TMD
materials, the 2D molybdenum disulde (MoS2) monolayer
possesses a direct bandgap of 1.8–1.9 eV while the MoS2 bilayer
possesses an indirect bandgap of�1.53 eV; the MoS2 transistors
exhibit a high on/off ratio of 1 � 108 at room temperature.

Moreover, the MoS2-based integrated circuits have been fabri-
cated and reported in the literature.4–7

Tunable electronic properties of 2D TMD materials are
crucial for their applications in optoelectronics. Hetero-
structures have been widely used in conventional semi-
conductors for achieving tunable electronic properties. For the
development of future 2D materials, the van der Waals hetero-
structures have been recognized as one of the most promising
candidates8 and the TMD-based hybrid multilayered structures
are prototype van der Waals heterostructures. Recently, the
vertical eld-effect transistor and memory cell made of TMD/
graphene heterostructures have been reported.9–12 The Moíre
pattern of the nanometer-scale MoS2/MoSe2 heterobilayer has
been theoretically studied.13 Note however that although many
MX2 (e.g., MoS2 and MoSe2) monolayers are direct-gap semi-
conductors, their bilayers are indirect-gap semiconductors.
Recent theoretical studies suggest that the direct-bandgap
character can be retained only in several heterobilayer struc-
tures14,15 and the heterobilayers are more desirable for opto-
electronic applications.16,17 To achieve tunable bandgaps for 2D
materials, two widely used engineering strategies are the
application of either an external electric eld or a tensile
strain.18–31 Previous theoretical studies have also shown that the
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bandgap of the MoS2 monolayer is insensitive to the external
electric eld, whereas the indirect bandgap of the MoS2 bilayer
decreases with the increase of the vertical electric eld.18,19 The
MoS2 or MoSe2 trilayer exhibits similar bandgap behavior as the
bilayer counterpart when under the external electric eld.20 On
the other hand, previous theoretical studies show that the
monolayer of TMDs can undergo the direct-to-indirect bandgap
transition under the increasing tensile strain, a promising way
to tune the bandgap of TMD monolayers.21,23 Photo-
luminescence spectroscopy measurements have conrmed that
the optical bandgap of the MoS2 monolayer and bilayer
decreases with the uniaxial strain and exhibits a direct-to-indi-
rect transition.25 Moreover, ultra high strain tenability has been
demonstrated in trilayer MoS2 sheets.26 Also, under the tensile
strain, the nonmagnetic NbS2 and NbSe2 layers can be changed
to ferromagnetic.24

To date, most studies of TMD heterostructures are con-
cerned about the Mo and W systems. In view of successful
synthesis of nanosheets of V, Nb, Ti, and Cu systems,32–35 it is
timely to examine the electronic properties of TMD hetero-
structures and the effect of the external electric eld or tensile
strain on their bandgaps.36,37 In this study, our focus is placed
on numerous MoS2-based heterobilayers, including CrS2/MoS2,
CrSe2/MoS2, MoSe2/MoS2, WS2/MoS2, WSe2/MoS2, VS2/MoS2,
and VSe2/MoS2. For these heterobilayer systems, the lattice
mismatch is typically less than 5%.We nd that under a vertical
electric eld the indirect-to-direct bandgap transition may
occur for two heterobilayers. A direct-to-indirect bandgap
transition may occur only for the WSe2/MoS2 heterobilayer
under an increasing tensile strain. In general, either the vertical
electric eld or the tensile strain can notably affect the bandgap
of the TMD heterobilayers.

Computational methods

All calculations are performed within the framework of spin-
polarized plane-wave density functional theory (PW-DFT),
implemented in the Vienna ab initio simulation package
(VASP).38,39 The generalized gradient approximation (GGA) with

the Perdew–Burke–Ernzerhof (PBE) functional and projector
augmented wave (PAW) potentials are used.40–42 The effect of
van der Waals interaction is accounted for using a dispersion-
corrected PBE method.43,44 More specically, we adopt a 1 � 1
unit cell for the investigation. The vacuum size is larger than
15 Å between two adjacent images. An energy cutoff of 500 eV is
adopted for the plane-wave expansion of the electronic wave
function. Geometry structures are relaxed until the force on
each atom is less than 0.01 eV Å�1 and the energy convergence
criteria of 1 � 10�5 eV are met. The 2D Brillouin zone integra-
tion using the G-center scheme is sampled with a 9 � 9 � 1 grid
for geometry optimization and a 15 � 15 � 1 grid for static
electronic structure calculations. For each heterobilayer system,
the unit cell is optimized to obtain the lattice parameters at the
lowest total energy.

Biaxial tensile strain is applied to all MX2/MoS2 hetero-
bilayers in a symmetric manner while a uniaxial tensile strain is
applied in either x- or y-direction (see Fig. 1). The direction of
the external electric eld is normal to the plane of hetero-
bilayers, and in VASP, the external uniform eld is treated by
adding an articial dipole sheet (i.e., dipole correction) in the
unit cell.45 The geometries are kept xed when applying the
external electric eld to neglect the geometric distributions to
the electronic structures. The Bader's atom in molecule (AIM)
method (based on charge density topological analysis) is used
for the charge population calculation.46 For a few systems, the
hybrid HSE06 functional is also used to conrm the trend of
bandgap change.47 In particular, theWSe2/MoS2 heterobilayer is
treated as a special system for which both the HSE06 calculation
and the PBE calculation including the spin–orbit (SO) coupling
effect48 are reported.

Results and discussion
1. Heterobilayers of MX2/MoS2

It is known that monolayer MX2 exhibits two possible struc-
tures, namely, H or T phase. The H structure is only considered
here because it is more stable than T for most of the MX2

structures considered in this study.36 Moreover, following a

Fig. 1 Atomic models of the MX2/MoS2 heterobilayer with four different types of layer-on-layer stacking: (a) AA stacking, (b) C7 stacking, (c) C27
stacking and (d) T stacking. For each stacking configuration, the left and right panels display the side and top views, respectively. The ds�x denotes
the interlayer height difference between X (top-layer) and S (lower-layer) atoms. (e) The tensile strain can be applied along x- or/and y-directions.
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previous study,17 we consider four different types of bilayer
stacking, namely, AA, C7, C27, and T stacking, to describe how a
H–MX2 monolayer is superimposed on the 2H–MoS2 monolayer
(see Fig. 1). A testing calculation suggests that the electronic
structure is more or less the same for the four different stack-
ings, consistent with a previous study.17 Therefore, only the C7
stacking that gives rise to the lowest energy in most hetero-
bilayer systems is reported for the electronic structure calcula-
tions. The optimized cell parameters and the vertical height
differences between interlayer X and S atoms (ds�x, as shown in
Fig. 1(a)) are listed in ESI Table S1.† The ds�x of X and S atoms in
different MX2/MoS2 heterobilayers is less than 3.2 Å due to van
der Waals interaction between MX2 and MoS2 layers.

The computed electronic bandgaps of MX2 monolayers,
bilayers, and MX2/MoS2 heterobilayers, as well as the binding
energies per unit cell of MX2/MoS2 heterobilayers are listed in
Table 1. The binding energies are dened as Eb ¼ E(MX2/MoS2
heterobilayer) � E(MX2 monolayer) � E(MoS2 monolayer),
where E(MX2/MoS2 heterobilayer) is the total energy of the MX2/
MoS2 heterobilayer and E(MX2 monolayer) is the total energy of
the MX2 monolayer. For M ¼ Mo, W, Cr, the MX2 monolayers
are direct semiconductors with the conduction band minimum
(CBM) and valence bandmaximum (VBM) being located at the K
point (ESI Fig. S1†). However, their corresponding bilayers
become indirect semiconductors. For example, the MoS2
monolayer is a direct semiconductor with a computed bandgap
of 1.67 eV (PBE), while the bilayer is an indirect semiconductor

with a bandgap of 1.25 eV (PBE). As shown in Fig. 2, the VBM of
the bilayer structures relocates to the G point from the K point
(for the monolayer). The partial charge density at the G point is
contributed from both monolayers, and it exhibits a strong
upward shi, overtaking the energy at the K point.14 For MoS2,
WS2, CrS2, and CrSe2 bilayers, their CBM is still located at the K
point. For MoSe2, the CBMmoves to theL point (Fig. 2), and the
energy at the L point is 5 meV below that at the K point. The
WSe2 bilayer has a nearly degenerate energy for the two valleys.

As shown in Fig. 3, most MX2/MoS2 heterobilayers are indi-
rect semiconductors, whereas only theWSe2/MoS2 heterobilayer
possesses a direct bandgap of 0.57 eV. Different from their own
bilayers, the CBM of heterostructures is all located at the K
point, while the VBM is located at the G point. For the WSe2/
MoS2 heterobilayer, however, the VBM is still located at the K
point, resulting in a direct-bandgap semiconductor (PBE). The
VBM of MoSe2/MoS2 at the G point (V1, Fig. 3(a)) shows amixing
of densities from both monolayers. The CBM (C1, Fig. 3(a)) and
the valence band edge (PBE, V2, Fig. 3(a)) at the K point are
localized for MoSe2 and MoS2, respectively. The CBM and VBM
positions of MX2 monolayers are shown in ESI Fig. S2.† One can
see that the band structures of WS2/MoS2, WSe2/MoS2, and
CrS2/MoS2 are similar to those of MoSe2/MoS2, showing type II
alignment of the band edges, which may be of advantageous for
the separation of electron–hole pairs.14

For CrSe2/MoS2, the VBM at the G point is over that at the K
point by 67 meV (Fig. 3(b)), and the VBM at the G point is mainly
due to the CrSe2 layer with little contribution from the MoS2
layer. However, different from other heterobilayers, the CBM
and VBM at the K point are both due to CrSe2, which exhibit the
type I alignment. For MX2 (M ¼ Fe, V), the monolayer, bilayer,
and MX2/MoS2 heterobilayers all exhibit metallic character,
while the ferromagnetism is still kept by the heterobilayer. As
shown in Table 1, the binding energies of all the MX2 and MoS2
heterobilayers are in the range of �0.31 to �0.14 eV, further
supporting the weak van der Waals interaction between theMX2

and MoS2 layers.

2. Tunable bandgaps via tensile strain

Strain modulation has been commonly used in low-dimen-
sional systems to tune the electronic structures. For TMD

Table 1 Computed bandgap Eg1 (in eV) of the MX2 monolayer, bilayer
Eg2, and MX2/MoS2 heterobilayer Eg3, as well as the binding energies
per unit cell Eb (in eV) of the MX2/MoS2 heterobilayers

Eg1 (eV) Eg2 Eg3 Eb (eV)

MoS2 1.67 Direct 1.25 Indirect — —
MoSe2 1.46 Direct 1.20 Indirect 0.74 Indirect �0.16
WS2 1.81 Direct 1.43 Indirect 1.16 Indirect �0.22
WSe2 1.55 Direct 1.38 Indirect 0.57 Direct �0.16
CrS2 0.93 Direct 0.68 Indirect 0.39 Indirect �0.14
CrSe2 0.74 Direct 0.60 Indirect 0.69 Indirect �0.22
FeS2 Metal Metal Metal �0.31
VS2 Metal Metal Metal �0.23
VSe2 Metal Metal Metal �0.16

Fig. 2 Computed band structures (PBE) of the homogeneous bilayer of (a) MoS2, (b) MoSe2, (c) WS2, (d) WSe2, (e) CrS2, and (f) CrSe2. All bilayers
show an indirect bandgap.

This journal is © The Royal Society of Chemistry 2014 Nanoscale, 2014, 6, 2879–2886 | 2881
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monolayers, the strain-induced bandgap modication has been
predicted from recent rst-principles calculations.21,22,24 The
photoluminescence spectroscopy measurement has further
conrmed the strain effect on the electronic structure of both
monolayer and bilayer TMD systems. Hence, it is of both
fundamental and practical interest to examine the effect of
tensile strains on the electronic properties of MX2/MoS2 heter-
obilayers. As such, rst, we have applied in-plane tensile strain
by stretching the hexagonal cell biaxially,24 and the biaxial strain
is dened as 3 ¼ Da/a0, where a0 is unstrained cell parameters
and Da + a0 is strained cell parameters.

As mentioned above, among the heterobilayers considered
in this study, only the WSe2/MoS2 heterobilayer exhibits the
direct-bandgap character (Fig. 3(d)). Nevertheless, we nd that a
1% biaxial strain can turn the heterobilayer into an indirect
semiconductor as the VBM is relocated from the K to the G

point. The latter is 16 meV higher than that of the K point. The
CBM is still located at the K point regardless of the strain. As the
energy difference between the valence band at the K point and
the G point is just 100 meV for the unstrained WSe2/MoS2 het-
erobilayer, the mixing feature of the G point renders it more
easily affected by the tensile strain. Hence, even a relatively
small strain (1%) can result in higher G point than the K point
in the energy diagram, leading to an indirect bandgap. On
further increasing the biaxial strain, the energy difference
between the valence band edges at these two points becomes
greater. And the indirect bandgap decreases with the biaxial
tensile strain, as shown in Fig. 4.

The computed electronic bandgaps of the semiconducting
MX2/MoS2 (M ¼ Mo, W, Cr; X ¼ S, Se) heterobilayers as a

function of the biaxial tensile strain are shown in Fig. 4. For the
unstrained MoSe2/MoS2 heterobilayer, it is an indirect semi-
conductor with a bandgap of 0.74 eV. With the 2% biaxial
tensile strain, the bandgap is reduced to 0.39 eV but still indi-
rect. When the tensile strain increases to 4%, the bandgap is
further reduced to 0.045 eV. Eventually the MoSe2/MoS2 heter-
obilayer turns into a metal when the biaxial strain reaches 6%.
For the WS2/MoS2 heterobilayer, it turns into a metal when the
biaxial tensile strain reaches 8%.

As shown in Fig. 4, the bandgaps of MX2/MoS2 (M ¼ Mo, W,
Cr; X ¼ S, Se) generally decrease with the biaxial tensile strain,
and undergo a semiconductor-to-metal transition at certain
critical strains. To gain more insight into this transition, we
have analyzed the band structures and partial density of states
(PDOS) of the unstrained and strained MX2/MoS2 hetero-
bilayers. Here, we use the PDOS of the WS2/MoS2 heterobilayer
as an example (see Fig. 5). The unstrained WS2/MoS2 hetero-
bilayer is an indirect semiconductor with a bandgap of 1.16 eV.
The VBM is mainly contributed by the d orbital of W in the WS2
layer, while the CBM is mainly contributed by the d orbital of
Mo in the MoS2 layer. With a 4% biaxial tensile strain, the CBM
is shied toward the Fermi level, resulting in a reduced (indi-
rect) bandgap (0.36 eV) for the WS2/MoS2 heterobilayer. With an
8% biaxial tensile strain, the shi of the CBM leads to the
semiconductor-to-metal transition (see the bottom panel of
Fig. 5).

For the semiconducting CrS2/MoS2 heterobilayer, the PBE
calculation suggests that it becomes a metal with a 4% biaxial
tensile strain. Here, a 2 � 2 supercell is used. Under a 2%
biaxial tensile strain the CrS2/MoS2 heterobilayer undergoes a
nonmagnetic-to-antiferromagnetic transition. When the biaxial
tensile strain increases to 10%, the CrS2/MoS2 heterobilayer
turns into a strong antiferromagnetic coupling metal. Bader
charge analysis suggests that the charge transfer between CrS2
and MoS2 layers is nearly zero under the 0% strain, and

Fig. 3 Computed band structures (PBE) and partial charge density of
C1, V1, and V2 states of the heterobilayer: (a) MoSe2/MoS2 and (b)
CrSe2/MoS2. The isosurface value in (a) and (b) is 0.02 e Å�3. Computed
band structures (PBE) of heterobilayer: (c) WS2/MoS2, (d) WSe2/MoS2,
and (e) CrS2/MoS2. Only the WSe2/MoS2 heterobilayer exhibits a direct
bandgap.

Fig. 4 Computed electronic bandgaps (PBE) of MX2/MoS2 (M ¼ Mo,
W, Cr) heterobilayers versus the biaxial tensile strain, ranging from
0 to 8%.

2882 | Nanoscale, 2014, 6, 2879–2886 This journal is © The Royal Society of Chemistry 2014
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increases to 0.1 e under the 10% strain, indicating that the
charge transfer between CrS2 and MoS2 layers increases with
increasing tensile strain, leading to spontaneous polarization
between CrS2 and MoS2 layers. In stark contrast, the CrS2
monolayer cannot become magnetic even under a tensile strain
as high as 15%. These results indicate that the charge transfer
between MoS2 and CrS2 layers plays a key role in the nonmag-
netic-to-antiferromagnetic transition.

Note also that several metallic heterobilayers MX2/MoS2
(M ¼ Fe, V; X ¼ S, Se) still maintain their metallic character
under the biaxial tensile strain. Nevertheless, we nd that the
magnetic moment of M and X atoms increases with the increase
of the biaxial tensile strain from 0% to 10% (see Table 2). A close
examination of the PDOS of the VS2/MoS2 heterobilayer with
0%, 4% or 8% biaxial tensile strain (Fig. 6(a)) reveals that the
state corresponding to the Fermi level is mainly contributed by
d-states of V, which becomes more localized with increasing
strain. As shown in Fig. 6(b), the spin charge density of the VS2/
MoS2 heterobilayer with a 4% biaxial tensile strain suggests that
the magnetism is mainly contributed by the V atom (0.98 mB)
while the S atoms of VS2 carry a small magnetic moment of
�0.06 mB, consistent with the analysis based on PDOS. As a
result, nano-mechanical modulation of strain can turn the

nonmagnetic CrS2/MoS2 heterobilayer into antiferromagnetic.
The strain can also enhance the spin polarization of the MX2/
MoS2 (M ¼ Fe, V; X ¼ S, Se) heterobilayers. This feature may be
exploited in spintronic applications such as mechanical nano-
switch for spin-polarized transport.

Besides biaxial tensile strains, we also investigate effects of a
uniaxial tensile strain in either x- or y-direction (Fig. 1(e)). Our
calculations suggest that the bandgaps in both cases are
reduced with increasing strain, as shown in Fig. 7. As
mentioned above, MoSe2 (WS2, CrSe2, CrS2)/MoS2 hetero-
bilayers are indirect semiconductors. Under a uniaxial tensile
strain these heterobilayers remain indirect semiconductors, the
same behavior as under a biaxial tensile strain. However, the
WSe2/MoS2 heterobilayer is predicted to be a direct semi-
conductor based on the PBE calculation. With a 2% uniaxial
tensile strain along either x- or y-direction, the heterobilayer
still remains a direct semiconductor, which is very different
from that under the biaxial tensile strain for which the heter-
obilayer becomes an indirect semiconductor under only 1%
biaxial tensile strain. When the uniaxial tensile strain increases
to 4%, the WSe2/MoS2 heterobilayer turns into an indirect
semiconductor.

Since the WSe2/MoS2 heterobilayer is the only system here
showing a direct bandgap (Fig. 3(d)), additional PBE calcula-
tions including the spin-orbit coupling effects are presented in
ESI Fig. S3–S5.† Under either the biaxial or uniaxial tensile
strain, the bandgap is still direct but much smaller. Moreover,
the direct-to-indirect transition is not seen with increasing
strain. Nevertheless, the bandgap still decreases with increasing
strain and exhibits a semiconductor-to-metal transition,
consistent with the PBE results. Moreover, HSE06 calculations
are also performed for the WSe2/MoS2 heterobilayer. Although
HSE06 tends to overestimate the bandgap (see ESI Fig. S6† for a
test calculation with the bilayer MoS2), the overall trend in
bandgap reduction with increasing strain is the same as that
predicted from the PBE calculations (see ESI Fig. S3–S5†).
However, the direct-to-indirect transition does not occur until
4% biaxial strain (ESI Fig. S3(l)†) or 6% uniaxial strain
(ESI Fig. S4 and S5†).

Fig. 5 Computed partial density of states (PDOS) of the WS2/MoS2
heterobilayer under 0%, 4%, or 8% biaxial tensile strain. The vertical
dashed line represents the Fermi level.

Table 2 Calculated magnetic moment m (mB) of the M and X atoms in
MX2/MoS2 (M¼ Fe, V; X¼ S, Se) heterobilayers. The magnetic moment
of X atoms is from MX2

Strain

FeS2 VS2 VSe2

Fe S V S V Se

0% 1.05 �0.03 0.91 �0.04 1.02 �0.05
2% 1.50 �0.04 0.94 �0.05 1.05 �0.06
4% 1.60 �0.06 0.98 �0.06 1.08 �0.07
6% 1.72 �0.07 1.01 �0.07 1.11 �0.08
8% 1.84 �0.09 1.14 �0.08 1.15 �0.09
10% 1.98 �0.10 1.19 �0.09 1.18 �0.10

Fig. 6 (a) Computed PDOS of the VS2/MoS2 heterobilayer under 0%,
4% or 8% biaxial tensile strain. The vertical dashed line represents the
Fermi level. (b) The spin charge density of the VS2/MoS2 heterobilayer
with a 4% biaxial tensile strain. The isosurface value is 0.01 e Å�3. The
blue indicates the positive values.

This journal is © The Royal Society of Chemistry 2014 Nanoscale, 2014, 6, 2879–2886 | 2883
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3. External electric eld in the normal direction

MX2 (M ¼ Mo, W, Cr; X ¼ S, Se) monolayers are direct-bandgap
semiconductors, whereas their homogeneous bilayers are
indirect-gap semiconductors. Importantly, among the TMD
heterobilayers considered, only the WSe2/MoS2 heterobilayer is
a direct-bandgap semiconductor, while the MoSe2/MoS2 heter-
obilayer possesses a quasi-direct bandgap with only 0.1 eV
difference between the direct and indirect bandgap (Fig. 3(a)),
consistent with the previous study.15 Note that the HSE06
calculation suggests that the MoSe2/MoS2 heterobilayer is a
direct bandgap semiconductor (ESI Fig. S6(b)†). Previous
studies also predicted direct-bandgap characters of WS2/WSe2
and MoTe2/MoS2 heterobilayers.14,15 We have computed the
dipole moments of WSe2/MoS2 and MoSe2/MoS2 heterobilayers,
and found that the dipole moments of both systems are about
0.01 e Å greater than those of the MS2/MoS2 (M ¼ Mo, W, Cr)
systems, suggesting that the stronger spontaneous polarization
in the MSe2/MoS2 systems is responsible for the underlying

direct-bandgap or quasi-direct-bandgap characters. This large
difference in spontaneous polarization may stem from the
electronegativity difference between S and Se. Assuming this
explanation is valid, one could ask if a vertical electric eld is
applied to the system to increase the spontaneous polarization
in MoSe2/MoS2, will the system undergo an indirect-to-direct
bandgap transition? Our test calculation shows that the answer
to this question is yes. As shown in Fig. 8(b), the applied 0.1 V
Å�1 electric eld can induce the indirect-to-direct bandgap
transition in the MoSe2/MoS2 heterobilayer. Indeed, the VBM is
moved from the G point to the K point, and the direct transition
of K–K is 0.03 eV narrower than the indirect transition of G–K.
Further increasing the external eld will reduce the direct
bandgap more signicantly than the indirect bandgap
(Fig. 8(a)). Results of a Bader charge population analysis are
presented in ESI Table S2.† One can see that the charge transfer
between the MoS2 and MoSe2 layers indeed increases with the
external electric eld. We have also examined the bandgaps of

Fig. 7 Computed bandgaps of MX2/MoS2 (M ¼ Mo, W, Cr) heterobilayers versus the uniaxial tensile strain in the (a) x- or (b) y-direction, ranging
from 0 to 8%.

Fig. 8 (a) Computed bandgaps (PBE) of MX2/MoS2 (M ¼ Mo, W, Cr; X ¼ S, Se) heterobilayers versus the applied electric field in the normal
direction, whose strength varies from 0 to 0.6 V Å�1. ED indicates the direct bandgap of K–K transition, EI indicates the indirect bandgap of G–K
transition. A crossover of the ED and EI curves for the heterobilayer (MoSe2/MoS2 and CrSe2/MoS2) indicates an indirect-direct bandgap transition.
The WSe2/MoS2 heterobilayer is always a direct-bandgap semiconductor for field strength <0.6 V Å�1. (b) Computed band structures of the
MoSe2/MoS2 heterobilayer under an electric field of 0.1 V Å�1 or 0.6 V Å�1.
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the MoSe2/MoS2 heterobilayer with the geometry optimized
under different electric elds; the results are nearly the same as
those without the geometric optimization under the electric
eld (see ESI Table S3†).

We have also examined the spontaneous polarization in the
CrSe2/MoS2 heterobilayer which possesses a dipole moment of
0.005 e Å. Under an external eld of 0.5 V Å�1, an indirect-to-
direct bandgap transition is predicted. The WSe2/MoS2 hetero-
bilayer always retains the direct-bandgap feature under the
external electric eld (Fig. 8(a)), and its direct bandgap exhibits
a steeper reduction with the increase of external electric eld.
Finally, although the indirect-to-direct bandgap transition is
not observed for WS2/MoS2 and CrS2/MoS2 heterobilayers, their
indirect bandgaps exhibit a nearly linear reduction with
increase of the electric eld. In summary, it appears that the
external electric eld not only can modify bandgaps of these
heterobilayers but also can induce an indirect-to-direct
bandgap semiconducting transition beyond a critical eld.

Conclusion

We have performed a systematic study of electronic and
magnetic properties of MX2/MoS2 (M ¼ Mo, W, Cr, Fe, V; X ¼ S,
Se) heterobilayers. Our PBE calculations suggest that MX2/MoS2
(M ¼ Mo, W, Cr; X ¼ S, Se) heterobilayers are indirect-bandgap
semiconductors with the exception of the WSe2/MoS2 hetero-
bilayer which can retain the direct-bandgap semiconducting
character. Either a vertical electric eld or a tensile strain can
induce modulation of the bandgaps for these systems. Typi-
cally, an increase of the tensile strain decreases the bandgap of
heterobilayers. Beyond a critical strain, the semiconductor-to-
metal transition may occur. For the WSe2/MoS2 heterobilayer, a
direct-to-indirect bandgap transition may occur beyond a crit-
ical biaxial or uniaxial strain; however, its bandgap is always
direct regardless of the strength of the external electric eld
(<0.6 V Å�1). Moreover, unusual antiferromagnetism is observed
in the CrS2/MoS2 system with a 2% biaxial tensile strain. The
magnetic moment of M and X atoms (M ¼ Fe, V; X ¼ S, Se)
increases with increase of the biaxial tensile strain for the MX2/
MoS2 heterobilayers. The spontaneous polarization in the S/Se
interface is more enhanced than the S/S interface. When an
electric eld is applied in the same direction as the spontaneous
polarization, the indirect-to-direct bandgap semiconducting
transition can be observed in two heterobilayers (MoSe2/MoS2
and CrSe2/CrS2). These theoretical predictions suggest that
TMD heterobilayer materials are very promising for optoelec-
tronic applications due to their tunable bandgaps by applying
tensile strain or vertical electric eld, possible direct-to-indirect
bandgap transition in the WSe2/MoS2 heterobilayer by the
strain, and possible indirect-to-direct bandgap transition in
MoSe2/MoS2 and CrSe2/CrS2 by the vertical electric eld.
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Electronic Supplementary Information 
 

 

Figure S1. Computed electronic band structures of (a) MoS2, (b) MoSe2, (c) WS2, (d) 
WSe2, (e) CrS2, and (f) CrSe2 monolayer, based on PBE functional. All monolayers 
exhibits a direct bandgap. 
 
 
 
 

 
Figure S2. Computed positions of CBM and VBM of TMD monolayers, respectively, 
using PBE functional. The vacuum level is set to zero. 
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S2 
 

 
Figure S3. Computed electronic band structures (PBE) of WSe2/MoS2 heterobilayer 
with (a) 0%, (b) 1%, (c) 2%, and (d) 4% biaxial strain. Computed band structure (PBE) 
of WSe2/MoS2 with inclusion of spin-orbit coupling (SOC) effect and with (e) 0%, (f) 
1%, (g) 2%, and (h) 4% biaxial strain. Computed band structures (HSE06) of 
WSe2/MoS2 with (i) 0%, (j) 1%, (k) 2%, and (l) 4% biaxial strain. 
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Figure S4. Computed electronic band structures (PBE) of WSe2/MoS2 heterobilayer 
with (a) 2%, (b) 4%, and (c) 6% strain along the x-direction. Computed band structures 
of WSe2/MoS2 with inclusion of SOC effect and with (d) 2%, (e) 4%, and (f) 6% strain 
along x-direction.  Calculated band structures (HSE06) of WSe2/MoS2 with (g) 2%, (h) 
4%, and (i) 6% strain along x-direction. 
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Figure S5. Computed electronic band structures (PBE) of WSe2/MoS2 heterobilayer 
with (a) 2%, (b) 4%, and (c) 6% strain along the y-direction. Computed band structures 
of WSe2/MoS2 with inclusion of SOC effect and with (d) 2%, (e) 4%, and (f) 6% strain 
along y-direction. Calculated band structures (HSE06) of WSe2/MoS2 with (g) 2%, (h) 
4%, and (i) 6% strain along y-direction. 
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Figure S6. (a) Computed electronic band structures (HSE06) of MoS2 bilayer. Note that 
the measured indirect bandgap of MoS2 bilayer is about 1.53 eV (Ref. 25). So the 
computed HSE06 indirect bandgap (1.77 eV) overestimates the bandgap of MoS2 bilayer. 
(b) Computed band structures (HSE06) of MoSe2/MoS2 heterobilayer. The MoSe2/MoS2 
heterobilayer exhibits a direct bandgap. PBE calculation suggests MoSe2/MoS2 
heterobilayer possesses a quasi-direct bandgap (Figure 3(a)). 

 

 
 
Table S1.Cell parameter a in Å and the distance dS-X in Å between the two TMD 
heterobilayers. 

Heterobilayer a dS-X 

MoSe2/MoS2 3.26 3.12 

WS2/MoS2 3.19 3.10 

WSe2/MoS2 3.26 3.11 

CrS2/MoS2 3.13 3.18 

CrSe2/MoS2 3.21 3.16 

FeS2/MoS2 3.17 3.12 

VS2/MoS2 3.19 3.08 

VSe2/MoS2 3.26 3.14 
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Table S2.Computed Bader charge transfer between MoSe2 and MoS2 layer under different 
external electric field (normal to the plane of the bilayer). 

 
Electric 

field (V/ Å) 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Charge (e) 0.0099 0.0125 0.0149 0.0172 0.0201 0.0216 0.0272 

 
 
 
Table S3. Computed bandgap (PBE) of the MoSe2/MoS2 heterobilayer with and without 
geometric optimization under the electric field. 

 

Electric 

field (V/ Å) 

0.1 0.2 0.3 0.4 0.5 

Direct gap 0.67  0.58  0.49  0.42  0.34  
Indirect gap 0.70  0.65  0.59  0.54  0.49  

Direct gap 

after 

geometric 

optimization 

0.67  0.58  0.49  0.43  0.31  

Indirect gap 

after 

geometric 

optimization 

0.70  0.65  0.59  0.55  0.47  
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