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Abstract

Oligoamide 1, consisting of two H-bonding units linked by a trimethylene linker, was previously 

found to form a very stable, folded dimer. In this work, replacing the side chains and end groups of 

1 led to derivatives that show the surprising impact of end groups on the folding and dimer-chain 

equilibria of the resultant molecules.

The folding and unfolding of biomacromolecules have profound impact on their ability to 

engage in intermolecular interactions such as molecular recognition, intermolecular 

association and self-assembly into higher-order structures. For example, the Trp repressor 

shows that the recognition helix of its helix–turn–helix motif undergoes a conformational 

stabilization upon binding to cognate DNA.1 The bZIP domains of leucine zippers2 turn 

from random coil to an α-helical conformation upon binding to the target DNA molecules.2 

The water-soluble monomer of α-hemolysin changes conformation and assembles into a 

membrane-spanning heptamer with a hydrophobic outer surface.3 The misfolding of 

amyloid β-peptides (Aβs) from an α-helix to β-sheet conformational transition is suggested 

for the dysfunctions, fibrillization, and subsequent amyloid deposits in Alzheimer’s disease.4 

In contrast to the abundance of biological systems that reflect the conformational change, 

e.g., the folding or unfolding, of their molecular components on the resultant intermolecular 

association and supramolecular assembly, synthetic self-assembling systems based on 

designed molecules have mainly focused on stably folded oligomers, i.e., foldamers,5 or on 

adjusting the specificity and strength of intermolecular association.6,7 Few examples that 
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show altered supramolecular outcomes due to conformational change of molecular 

components are known.

As part of our long-term interest in developing foldamers and in controlling intermolecular 

association,8,9 we previously reported results from a study on H-bond-mediated association 

of a series of bifunctional molecular building blocks.10 Compound 1, consisting of two 

unsymmetrical 4-H-bonded units11,12 covalently linked in a head-to-head fashion, represents 

one such design of this series. If adopting an extended conformation, a molecule of 1 could 

only partially overlap with another one via four intermolecular H-bonds, and would thus 

lead to linear H-bonded polymers.

In our previous study,10 examining the assembly of 1 and that of another analogous pair of 

oligoamide strands having different 4-H-bonded units revealed a surprising outcome. Instead 

of forming extended polymeric aggregates, compound 1 and its analogs formed H-bonded 

dimers, which we dubbed “duplex foldamers”, in which the component oligoamide strands 

folded into a conformation that (Fig. 1) led to the formation highly stable 8-H-bonded 

dimers. The presence of highly stable dimers of 1 and its analogs were shown by the 

presence of well-resolved and sharp 1H NMR signals, extensive cross-strand NOEs, and also 

by results from mass spectrometry and vapor-pressure osmometry.

The 1H NMR signals of the methylene protons L1 and L2 of 1 in CDCl3 and DMSO-d6 

provided diagnostic indicators for the folded and open-chain conformations of this molecule 

and its analogs. The signals of L1 and L2 were found to appear at 2.50 and 2.81 ppm in 

CDCl3 (5 mM), consistent with the constraining of the trimethylene linker due to the folding 

of 1. In DMSO-d6 that completely interrupts the intermolecular H-bonding of 1, the signals 

of L1 and L2 merged into one peak at 2.36 ppm, which indicated an open-chain 

conformation in which the trimethylene linker becomes more flexible. These observations 

suggested that the folding and dimerization of 1 were closely coupled.

Thus, instead of undergoing the initially expected polymerization, oligoamide 1 was found 

to adopt a folded conformation that favors the formation of a highly stable, discrete dimer. 

Such a folded H-bonded dimer previously uncovered by us integrates the folding and 

dimerization of the molecular components, which provides a molecular and supramolecular 

structural motif that may lead to many possibilities such as the development of highly stable 

H-bonded association units. In addition, the dimer of folded 1 is in fact a supramolecular 

macrocycle that could undergo ring-opening, leading to H-bond-mediated polymerization 

under conditions such as high concentration where linear polymeric chains become 

dominant. Unfortunately, probing the ring-chain equilibrium of 1 has been hampered by the 

limited solubility of this compound in chloroform and other solvents that promote H-

bonding.

In this study, the side chains (i.e., R1 and R2 groups) and R′ end groups of 1 were modified, 

leading to oligoamide strands 2, 3 and 4 (Fig. 1) that were found to have drastically 

enhanced solubilities in chloroform and other solvents, which allowed their concentration-

dependent behavior to be examined. We report herein the surprising effects of remote 
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structural tuning on the folding and unfolding, and the shift of ring-chain equilibrium of 

these derivatives of 1.

Compound 2, which differs from1 in its R1 and R2 side chains, gave 1H NMR signals that 

remain sharp and well-resolved over a wide range of concentrations (from 0.03 mM to 122 

mM) in CDCl3, suggesting that 2 remains folded and exists as dimers (Fig. S1, ESI†). The 

dimerization of 2 is further supported by 2D NOESY which revealed numerous cross-strand 

NOEs (Fig. S9, ESI†). That the two signals of protons L1 and L2 at 2.46 ppm and 2.72 ppm 

remain unchanged at concentrations up to 122 mM confirms the high stability of the dimer 

of folded 2 (Fig. 2a). The lack of open-chain conformation and thus higher aggregates 

suggest that 2, similar to 1,must have a high critical concentration below which only the H-

bonded dimers consisting of folded molecules exist. Therefore, changing side chains R1 and 

R2 of 1 did not have any detectable effect on the ring-chain equilibrium of the resultant 2 
within the concentration range examined.

Replacing one of the two H atoms of each of the terminal primary amide groups of 2 with a 

methyl group leads to 3. The 1H NMR spectra of 3 recorded at concentrations from 0.3 mM 

to 45 mM in CDCl3 reveal a trend that is very different from what observed for 2. The 

signals of protons L1 and L2 undergo noticeable change with increasing concentration of 3 
(Fig. 2b). Appearing at 2.48 and 2.93 ppm at low (<1 mM) concentrations, the two separate 

signals of protons L1 and L2 of 3 start to merge into a new peak at 2.72 ppm at 1 mM and 

higher concentrations, which is accompanied by the appearance of new broad peaks in the 

region (from 6 to 11 ppm) corresponding to the signals of amide and aromatic protons (Fig. 

S3, ESI†). Thus, in comparison to the high critical concentration of 2, that of 3 seems to 

have been lowered considerably, which allows folded dimeric and open-chain conformations 

to co-exist in the concentration range of the 1H NMR experiments.

That replacing two terminal amide H atoms of 2 with methyl groups led to the observed 

conformational change and thus the shift of ring-chain equilibrium for 3 is surprising. 

Previously, similar tuning on the ring-chain shift of bifunctional H-bonding molecules was 

achieved by imposing conformational bias on the linker moieties connecting adopted H-

bonding units.13

To further probe the effect of end (R′) groups on ring-chain equilibrium, compound 4, which 

shares the same R1 and R2 side chains with 1 but has n-hexyl groups attached to its two 

termini, was prepared. Being very soluble in CDCl3, the concentration-dependent 1H NMR 

spectra of 4 in CDCl3 reveal that even at 0.5 mM, protons L1 and L2 give the merged signal 

at 2.67 ppm, and the separate signals at 2.45 and 2.94 ppm (Fig. 2c), which indicates the 

simultaneous presence of the extended and folded conformations. With increasing 

concentration, the intensity of the merged signal at 2.67 ppm also increases, which becomes 

dominant at 10 mM and higher concentrations. Increasing the concentration of 4 is also 

accompanied by the appearance of new broad peaks in the region corresponding to the 

signals of amide and aromatic protons (Fig. S3, ESI†).

In the 1H NMR spectra of 3 and 4, the merging of the otherwise split signals of L1 and L2, 

along with the appearance of additional broadened signals at high concentrations, indicates 
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the unfolding and further aggregation of these molecules, i.e., the folded dimers undergo 

ring-opening, shifting the dimer-chain equilibrium of either compound from dimers to 

oligomers and polymers as concentration increases.

Compounds 2, 3, and 4, with their different propensities for adopting the folded 

conformation that promotes dimerization, and open-chain conformation that results in 

oligomerization or polymerization, were further probed with ion-mobility spectrometry-

mass spectrometry (IMS-MS). Species ranging from monomers to decamers were monitored 

for all three compounds under the condition of the IMS-MS experiments, which revealed 

different distributions of the measured species (Fig. S4, S5 and Table S1, ESI†). Consistent 

with the conclusion based on results from 1H NMR, the dimer of compound 2 was found to 

be the most abundant (>25%) species among other oligomers, while pentamer and trimer 

were detected as the major oligomers for 3 and 4, respectively. Thus, compounds 3 and 4, 

with their end methyl and hexyl groups, indeed have stronger preferences for forming 

oligomers higher than dimers.

The concentration-dependent shift of the dimer-chain equilibrium of 4 toward higher 

aggregates was also demonstrated by diffusion-ordered NMR spectroscopy (DOSY). In 

CDCl3 at 25 °C, the apparent translational diffusion coefficient (D4) of 4 decreased 

considerably as concentrations increased from 25 mM to 141 mM (Table S2 and Fig. S6, 

ESI†). Ratio DTMS/D4, which equals to R4/RTMS, the ratio of the hydrodynamic radii of the 

aggregates (assuming spherical shapes) of 4 and that of TMS, provides viscosity-

independent assessment14 on the extent of aggregation of 4. DTMS/D4 increased from 5.95 to 

9.26 as the concentration of 4 changed from 25 mM to 70 mM. Using the solvent signal 

(CHCl3) as the internal standard revealed the same trend: DCHCl3/D4 increased from 6.57 at 

0.6 mM to 43.48 at 141 mM. Data from DOSY thus indicate that 4 experiences a transition 

from mainly discrete dimers at low concentration to polymeric aggregates at high 

concentration.

Consistent with its concentration-dependent shift of dimer-chain equilibrium, in CHCl3, 

compound 4 showed high viscosities at high concentrations, and low viscosities at low 

concentrations. Plotting the specific viscosity (ηsp) vs. concentration (Fig. 3a) reveals that, at 

low concentrations, the viscosity-concentration plot has a slope of 0.0072 ± 0.0004 cP 

mM−1 and, above 42 mM, the plot curves upward to a much larger slope of 0.0306 ± 0.0027 

cPmM−1. These results indicate that the aggregation of 4 involves two stages, which, in 

combination with 1H NMR data, can be attributed to the dominance of dimeric species at 

low concentrations, and the prevalence of polymeric aggregates at high concentrations.

Compound 3 was found to exhibit similar concentration-dependent, two-stage change in 

viscosities (Fig. S7, ESI†). The viscosity is low at concentrations below 63 mM, above 

which a much more rapid increase in viscosity is evident as shown by the change of slope in 

the viscosity-concentration plot.

In contrast to 3 and 4, compound 2, which remains dimeric at up to 122 mM based on 1H 

NMR, displays a linear correlation of viscosity and concentration (Fig. 3b). This further 

demonstrates that compound 2 remains dimerized and does not engage in concentration-
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dependent change of its folded conformation. Given that the end hexyl groups of 4 are more 

effective in shifting the dimer-chain equilibrium than the methyl groups of 3, while the 

primary amide groups of 2 exert no influence, the effects of the end alkyl groups seem to be 

due to steric interaction between the introduced end groups with the trimethylene linkers of 

these molecules. The dimers of 2, 3, and 4 optimized at the level of B3LYP/6-31G(d) are 

consistent with the role of steric interaction, with the dimer of 2 being the most compact and 

those of 3 and 4 becoming more twisted (Fig. 4). Out of the eight intermolecular hydrogen 

bonds of each dimer, the number of those with H…O bond lengths longer than 2 Å changed 

from 0, 2, and 3, and those with N–H…O bond angles smaller than 170° changed from 0, 5, 

and 6, for compounds 2, 3, and 4, respectively, indicating that the intermolecular H-bonds 

are weakened as the end groups become increasingly bulky (Fig. S8, ESI†).

In summary, compound 1, which was found to adopt a folded conformation and form a very 

stable H-bonded dimer, was structurally modified to give compounds 2, 3, and 4 with 

drastically increased solubilities in chloroform. Compound 2 behaves similarly with 1 and 

remains dimeric in a wide range of concentrations, which demonstrates that changing R1 and 

R2 side chains does not alter the dimerization of these molecules to any noticeable extent. In 

contrast, modifying the end primary amide groups of 1 led to a surprising shift in the dimer-

chain equilibrium of the resultant 3 or 4. Further study based on this discovery should 

establish a new strategy for controlling the ring-chain equilibria of bi-functional H-bonding 

molecules.
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Fig. 1. 
Oligoamide 1 was previously found to adopt a folded conformation which leads to an 8-H-

bonded, folded dimer. In this study, compounds 2, 3, and 4, derived from 1 by modifying 

side chain R1 and R2 and end groups R′, showed greatly enhance solubilities which allowed 

the concentration-dependent folding–unfolding and the corresponding assembly of these 

molecules to be probed.
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Fig. 2. 
Stacked partial 1H NMR spectra of 2 (left), 3 (middle) and 4 (right) in CDCl3 as a function 

of concentration. (Blue arrow: merged signals of L1 and L2; brown arrow: separated signals 

of L1/L2).
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Fig. 3. 
Specific viscosity of (a) 4, and (b) 2 versus concentration measured in CHCl3 at 298 K.
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Fig. 4. 
CPK representations of dimers of (a) 2, (b) 3, and (c) 4 optimized at the at the level of 

B3LYP/6-31G(d). (Top view: along the long axis; bottom view: from the side of the dimer 

with one molecule placing in front of the other). The R1 and R2 side chains are replaced with 

methyl groups before each dimer was subjected to optimization.
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1. Materials and Methods 

All reagents were purchased from commercial sources (Fisher Scientific, Acros, 

Alfa Aesar and Aldrich) and were used as received unless otherwise noted. Silica gel 

column chromatography was carried out with silica gel 60 (mesh 230-400) and products 

were detected as single spots by thin-layer chromatography (precoated 0.25 mm silica 

plates from Sorbent). All 1H NMR and 13C NMR data were recorded on Varian Inova 500 

(or 400) Spectrometers (500 MHz or 400 MHz) and Varian Mercury 300 Spectrometer 

(300 MHz). NMR chemical shifts are reported in ppm relative to internal standard TMS, 

and coupling constant, J, is reported in Hertz (Hz). For the 1H NMR experiments, CDCl3 

(99.8% D), DMF-d7(99.5%) and DMSO-d6 (99.8% D) were purchased from Carmbridge 

Isotope Laboratory and used without further purification. Low-resolution electrospray 

ionization (LRESI) mass spectra were obtained on a Bruker Esquire 3000 plus mass 

spectrometer (Bruker-Franzen Analytik GmbH, Bremen, Germany) equipped with an ESI 

interface and an ion trap analyzer.  
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2. Syntheses 

OR

O2N
O

O

OR

O2N
O

NH2

NH3  H2O

O
OR = 2a  

Compound 2a: Ammonium hydroxide (18 mL) was added to a methanol solution (9 mL) of 

methyl 2-(2-(2-(isopentyloxy)ethoxy)ethoxy)-5-nitrobenzoate 1(1.62 g, 4.56 mmol). The reaction 

mixture was allowed to react at 40˚C overnight. Most of the solvent is removed in a reduced 

pressure. Water and dichloromethane were added. The aqueous layer was extracted with 

dichloromethane three times. Organic layer was combined and solvent was removed in vaccum, 

White powder was obtained as the product (1.24g, 80%). 1H NMR (500 MHz, DMSO-d6) δ 8.61 

(d, J = 3.0 Hz, 1H), 8.34 (dd, J = 9.1, 3.0 Hz, 1H), 7.89 (s, 1H), 7.71 (s, 1H), 7.40 (d, J = 9.2 Hz, 

1H), 4.43 – 4.37 (m, 2H), 3.87 – 3.81 (m, 2H), 3.59 (m, 2H), 3.47 (m, 2H), 3.36 (t, J = 6.8 Hz, 

2H), 1.57 (m, 1H), 1.32 (m, 2H), 0.90 – 0.71 (m, 6H). 13C NMR (126 MHz, DMSO-d6) δ 164.55, 

161.78, 141.21, 128.30, 126.93, 123.96, 114.88, 70.21, 69.95, 69.53, 69.16, 68.68, 38.46, 25.00, 

22.91. ESI MS: calculated 363.4, found 363.3 (M + Na)+. 

OR

O2N
O

OH

OR

O2N
O

H
N

EDC, HOBt

O
O

2bR =

HCl  H2NCH2COOEt O

O NaOH OR

O2N
O

H
N

2c

OH

O

 

Compound 2b: 2b was prepared following a reported method.2 1H NMR (300 MHz, CDCl3) δ 

9.05 (d, J = 2.8 Hz, 1H), 8.49 (s, 1H), 8.29 (dd, J = 9.1, 2.8 Hz, 1H), 7.07 (d, J = 9.1 Hz, 1H), 

4.39 (m, 2H), 4.29 – 4.15 (m, 4H), 4.07 – 3.91 (m, 2H), 3.75 – 3.61 (m, 2H), 3.59 – 3.48 (m, 2H), 

3.43 (t, J = 6.9 Hz, 2H), 1.61 (m, 1H), 1.42 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H), 0.85 (m, 6H). 13C 

NMR (75 MHz, CDCl3) δ 169.81, 163.01, 161.28, 141.92, 128.45, 128.10, 122.19, 112.96, 70.75, 

70.02, 69.92, 69.32, 68.69, 61.39, 42.08, 38.29, 25.05, 22.58, 14.17. ESI MS: calculated 449.5, 

found 449.3 (M + Na)+. 

Compound 2c: 2c was prepared following a reported method.2 1H NMR (300 MHz, CDCl3) δ 

9.09 (d, J = 2.9 Hz, 1H), 8.61 (t, J = 4.5 Hz, 1H), 8.35 (dd, J = 9.1, 2.9 Hz, 1H), 7.09 (d, J = 9.1 

Hz, 1H), 4.49 – 4.38 (m, 2H), 4.32 (m, 2H), 4.03 – 3.95 (m, 2H), 3.79 – 3.69 (m, 2H), 3.69 – 3.62 

(m, 2H), 3.55 (t, J = 7.1 Hz, 2H), 1.77 – 1.57 (m, 1H), 1.52 (m, 2H), 1.01 – 0.81 (m, 6H). 13C 

NMR (75 MHz, CDCl3) δ 172.05, 163.51, 161.30, 141.91, 128.34, 121.81, 112.99, 70.71, 70.12, 

70.03, 69.36, 68.71, 42.23, 38.01, 25.03, 22.56. ESI MS: calculated 399.4, found 399.1(M + H)+. 
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O
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OR

NH2

O

1. Pd/C, H2

2. Glutaryl dichloride, TEA
2

 

Compound 2d: A solution of 2a (0.60 g, 1.76 mmol) in dichloromethane /methanol was shaken in 

the presence of Pd/C (10%) under a hydrogen atmosphere for 2 hours, and then catalyst was 

filtered. The filtrate was evaporated in vacuum, yielding the corresponding amine. To a solution 

2c (0.70 g, 1.76 mmol), EDC (0.38 g, 2.47 mmol) and HOBt (0.26 g, 1.94 mmol) in CH2Cl2 (20 

mL), the CH2Cl2 solution (6 mL) of freshly prepared amine was added. The reaction was allowed 

to proceed for 4 hours at room temperature. The mixture was then washed with diluted HCl and 

solvent was removed in vacuum. Purification was accomplished by chromatography on silica gel 

using chloroform/methanol to afford 2d (0.64 g, 78%) as a light yellow solid. 1H NMR (500 MHz, 

DMSO-d6) δ 10.13 (s, 1H), 8.71 – 8.64 (m, 2H), 8.36 (dd, J = 9.1, 2.9 Hz, 1H), 8.05 (d, J = 2.8 

Hz, 1H), 7.79 (dd, J = 8.7, 2.8 Hz, 1H), 7.74 (s, 1H), 7.53 (s, 1H), 7.44 (d, J = 9.1 Hz, 1H), 7.12 

(d, J = 8.9 Hz, 1H), 4.49 – 4.41 (m, 2H), 4.24 – 4.18 (m, 2H), 4.16 (m, 2H), 3.93 – 3.87 (m, 2H), 

3.80 – 3.74 (m, 2H), 3.63 – 3.58 (m, 2H), 3.58 – 3.55 (m, 2H), 3.50 – 3.45 (m, 2H), 3.46 – 3.41 

(m, 2H), 3.38 (t, J = 6.8 Hz, 2H), 3.32 – 3.26 (m, 2H), 1.64 – 1.55 (m, 1H), 1.55 – 1.46 (m, 1H), 

1.34 (q, J = 6.9 Hz, 2H), 1.27 (q, J = 6.7 Hz, 2H), 0.82 (d, J = 6.6 Hz, 6H), 0.76 (d, J = 6.6 Hz, 

6H). 13C NMR (126 MHz, DMSO-d6) δ 167.16, 165.96, 163.15, 161.90, 153.02, 141.28, 132.74, 

128.53, 126.99, 123.93, 122.96, 122.91, 122.60, 115.03, 114.60, 70.34, 70.17, 70.12, 69.93, 69.89, 

69.16, 69.09, 69.00, 68.80, 68.72, 48.70, 48.68, 43.88, 38.48, 38.43, 25.01, 24.97, 22.93, 22.87. 

ESI MS: calculated 713.8, found 713.5 (M + Na)+. 

Compound 2: A solution of 2d (0.28 g, 0.41 mmol) in dichloromethane /methanol was shaken in 

the presence of Pd/C (10%) under a hydrogen atmosphere for 2 hours, and catalyst was then 

filtered. The filtrate was evaporated in vacuum, yielding the corresponding amine. The amine and 

triethylamine (0.05 g, 0.49 mmol) were dissolved in dry dichloromethane (10 mL), followed by a 

solution of glutaryl dichloride (34.8 mg, 0.20 mmol) in dichloromethane (5 mL). The resulting 

mixture was allowed to react overnight at room temperature. The crude was washed with diluted 

HCl and then solvent was removed in vacuum. Purification was accomplished by 

chromatography on silica gel using chloroform/methanol to afford 2 (0.21 g, 71%) as a pale 

yellow solid. 1H NMR (300 MHz, DMF-d7) δ 10.15 (s, 2H), 10.02 (s, 2H), 8.88 (t, J = 5.0 Hz, 

2H), 8.30 (dd, J = 9.3, 2.4 Hz, 4H), 7.99 – 7.91 (m, 8H), 7.44 (s, 2H), 7.22 (d, J = 8.7 Hz, 2H), 

7.18 (d, J = 9.0 Hz, 2H), 4.32 (m, 12H), 4.00 – 3.93 (m, 4H), 3.93 – 3.85 (m, 4H), 3.76 – 3.58 (m, 

8H), 3.58 – 3.51 (m, 8H), 3.45 (t, J = 6.7 Hz, 4H), 3.39 (t, J = 6.8 Hz, 4H), 2.47 (t, J = 7.2 Hz, 
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4H), 2.10 – 1.96 (m, 2H), 1.75 – 1.49 (m, 4H), 1.37 (m, 8H), 0.86 (d, J = 6.7 Hz, 12H), 0.81 (d, J 

= 6.6 Hz, 12H). 13C NMR (75 MHz, DMF-d7) δ 170.86, 167.59, 165.75, 164.60, 153.19, 153.01, 

133.72, 133.05, 123.87, 123.75, 122.89, 122.79, 122.32, 122.07, 114.23, 114.19, 70.38, 70.23, 

69.97, 69.32, 69.17, 69.14, 69.07, 69.02, 68.83, 43.75, 38.49, 38.45, 35.84, 24.93, 22.20, 21.46. 

ESI MS: calculated 1418.7, found 1418.5 (M + H)+. 
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O

OH

OR

O2N
O
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N
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O
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O
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N

3b

N
H

O1. Pd/C, H2

2. EDC, HOBt, 2c

OR
H
N

O

1. Pd/C, H2

2. Glutaryl dichloride, TEA
3

 

Compound 3a: The product was prepared following the procedure reported previously.2 1H NMR 

(500 MHz, DMSO-d6) δ 8.56 (d, J = 3.0 Hz, 1H), 8.30 (dd, J = 9.0, 2.5 Hz, 1H), 8.29 – 8.09 (m, 

1H), 7.38 (d, J = 9.1 Hz, 1H), 4.47 – 4.35 (m, 2H), 3.92 – 3.80 (m, 2H), 3.69 – 3.58 (m, 2H), 3.55 

– 3.44 (m, 2H), 3.36 (t, J = 6.7 Hz, 2H), 2.83 (d, J = 4.6 Hz, 3H), 1.55 (m, 1H), 1.31 (m, 2H), 

0.84 – 0.77 (m, 6H). 13C NMR (75 MHz, DMSO-d6) δ 164.29, 162.20, 141.89, 128.68, 127.26, 

124.67, 115.49, 71.04, 70.68, 70.28, 69.82, 69.33, 39.12, 27.45, 25.63, 23.50. ESI MS: calculated 

355.5, found 355.3 (M + H)+. 

Compound 3b: The product was prepared following the procedure reported previously.2 1H NMR 

(300 MHz, DMSO-d6) δ 10.16 (s, 1H), 8.68 (s, 2H), 8.37 (d, J = 9.1 Hz, 1H), 8.23 (d, J = 3.4 Hz, 

1H), 8.02 (s, 1H), 7.78 (d, J = 8.6 Hz, 1H), 7.45 (d, J = 9.1 Hz, 1H), 7.14 (d, J = 9.1 Hz, 1H), 4.61 

– 4.35 (m, 2H), 4.35 – 4.09 (m, 4H), 3.90 (s, 2H), 3.79 (s, 2H), 3.66 – 3.54 (m, 4H), 3.54 – 3.31 

(m, 8H), 2.81 (s, 3H), 1.70 – 1.38 (m, 2H), 1.38 – 1.15 (m, 4H), 0.96 – 0.67 (m, 12H). 13C NMR 

(75 MHz, DMSO-d6) δ 167.19, 165.06, 163.17, 161.91, 152.69, 141.28, 132.92, 128.55, 126.98, 

123.59, 123.10, 122.92, 122.19, 115.04, 114.92, 70.34, 70.12, 70.01, 69.88, 69.15, 69.08, 68.96, 

68.71, 43.87, 38.47, 38.42, 26.65, 24.98, 22.91, 22.87. ESI MS: calculated 705.8, found 705.4 

(M+H)+. 

Compound 3: The product was prepared following the procedure reported previously.2 The crude 

product was purified using flash column chromatography to yield a pale powder (0.11g, 62%).  
1H NMR (300 MHz, DMSO-d6) δ 10.12 (s, 2H), 9.93 (s, 1H), 8.70 (s, 2H), 8.23 (m, 2H), 8.13 – 

7.93 (m, 3H), 7.80 (m, 3H), 7.68 (s, 1H), 7.24 (s, 3H), 7.12 (d, J = 8.5 Hz, 3H), 4.37 – 4.04 (m, 

12H), 3.94 – 3.81 (m, 4H), 3.81 – 3.70 (m, 4H), 3.64 – 3.54 (m, 12H), 3.47 (m, 8H), 3.41 – 3.31 

(m, 6H), 2.81 (m, 6H), 2.75 – 2.62 (m, 4H), 2.33 (m, 4H), 2.06 – 1.90 (m, 2H), 1.89 – 1.74 (m, 

2H), 1.57 (m, 4H), 1.38 – 1.22 (m, 8H), 0.87 – 0.68 (m, 24H). 13C NMR (75 MHz, DMSO-d6) δ 

173.32, 170.74, 167.47, 165.06, 164.37, 156.55, 152.64, 133.60, 133.02, 131.94, 129.47, 123.58,	
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123.05, 122.18, 114.87, 114.42, 70.34, 70.29, 70.00, 69.88, 69.31, 69.13, 69.04, 68.96, 51.68, 

43.83, 38.43, 35.56, 33.08, 32.85, 26.63, 24.98, 22.88, 20.86, 16.99. ESI MS: calculated 1446.7, 

found 1446.9 (M + H)+. 
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Compound 4a: To a solution of 2-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-5-nitrobenzoic acid 2 

(1.0 g, 3.04 mmol), EDC (0.57 g, 3.65 mmol) and HOBt (0.45 g, 3.34 mmol) in CH2Cl2 (20 mL) 

was added the CH2Cl2 solution (3 mL) of hexylamine (0.32 g, 3.19 mmol). The reaction was 

allowed to proceed for 6 hours at room temperature. The mixture was then washed with diluted 

HCl and solvent was removed in vacuum. Purification was accomplished by chromatography on 

silica gel using hexane/acetone to afford 4a (1.09 g, 87%) as a light yellow solid. 1H NMR (300 

MHz, CDCl3) δ 9.02 (s, 1H), 8.25 (d, J = 8.8 Hz, 1H), 7.92 (s, 1H), 7.03 (d, J = 9.0 Hz, 1H), 4.42 

– 4.27 (m, 2H), 3.94 (m, 2H), 3.80 – 3.55 (m, 6H), 3.52 – 3.36 (m, 4H), 3.37 – 3.25 (m, 3H), 1.71 

– 1.49 (m, 2H), 1.45 – 1.09 (m, 6H), 0.97 – 0.73 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 162.82, 

160.85, 141.96, 128.33, 127.60, 123.24, 112.69, 71.85, 70.65, 70.60, 68.82, 58.99, 40.15, 31.53, 

29.47, 26.75, 22.59, 14.03. ESI MS: calculated 413.5, found 413.4 (M + Na)+. 

Compound 4b: A solution of 4a (1.09 g, 2.84 mmol) in dichloromethane /methanol was shaken in 

the presence of Pd/C (10%) under a hydrogen atmosphere for 2 hours, and then catalyst was 

filtered. The filtrate was evaporated in vacuum, yielding the corresponding amine. To a solution 

of 2-(5-nitro-2-(octyloxy)benzamido)acetic acid 2(1.0 g, 2.84 mmol), EDC (0.48 g, 3.09 mmol) 

and HOBt (0.42 g, 3.09 mmol) in CH2Cl2 (45 mL) was added the CH2Cl2 solution (5 mL) of 

freshly prepared amine. The reaction was allowed to proceed for 4 hours at room temperature. 

The mixture was then washed with diluted HCl and solvent was removed in vacuum. Purification 

was accomplished by chromatography on silica gel using chloroform/methanol to afford 4b (1.44 

g, 71%) as a light yellow solid. 1H NMR (300 MHz, DMSO-d6) δ 10.16 (s, 1H), 8.65 (d, J = 3.1 

Hz, 2H), 8.33 (dd, J = 9.2, 3.0 Hz, 1H), 8.21 (t, J = 5.6 Hz, 1H), 7.99 (d, J = 2.8 Hz, 1H), 7.80 (dd, 

J = 8.9, 2.8 Hz, 1H), 7.39 (d, J = 9.3 Hz, 1H), 7.10 (d, J = 9.0 Hz, 1H), 4.28 (t, J = 6.4 Hz, 2H), 

4.23 – 4.13 (m, 4H), 3.85 – 3.71 (m, 2H), 3.64 – 3.57 (m, 2H), 3.56 – 3.44 (m, 4H), 3.42 – 3.35 

(m, 2H), 3.31 – 3.22 (m, 2H), 3.20 (s, 3H), 1.96 – 1.74 (m, 2H), 1.57 – 1.12 (m, 18H), 0.95 – 0.69 

(m, 6H). 13C NMR (75 MHz, DMSO-d6) δ 167.07, 164.35, 163.12, 161.99, 152.62, 140.95, 

132.79, 128.48, 126.86, 123.47, 123.09, 122.86, 122.22, 114.48, 114.33, 71.69, 70.79, 70.27, 
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70.09, 69.09, 68.74, 58.48, 43.91, 39.55, 31.69, 31.49, 29.53, 29.20, 29.13, 28.69, 26.63, 26.03, 

22.53, 14.36. ESI MS: calculated 739.9, found 739.6 (M + Na)+. 

Compound 1: A solution of 4b (0.12 g, 0.17 mmol) in dichloromethane /methanol was shaken in 

the presence of Pd/C (10%) under a hydrogen atmosphere for 2 hours, and catalyst was then 

filtered. The filtrate was evaporated in vacuum, yielding the corresponding amine. The amine and 

triethylamine (0.18 g, 1.8 mmol) were dissolved in dry dichloromethane (20 mL), followed by a 

solution of glutaryl dichloride (14.8 mg, 0.08 mmol) in dichloromethane (5 mL). The resulting 

mixture was allowed to react overnight at room temperature. The crude was washed with diluted 

HCl and then solvent was removed in vacuum. Purification was accomplished by 

chromatography on silica gel using chloroform/methanol to afford 1 (0.17 g, 66%) as a pale 

yellow solid. 1H NMR (500 MHz, CF3COOH/D2O) δ 9.88 (s, 1H), 9.78 (s, 1H), 9.68 (s, 1H), 9.57 

(s, 1H), 8.74 (d, J = 2.2 Hz, 1H), 8.61 (d, J = 2.4 Hz, 1H), 8.14 (dd, J = 9.0, 2.9 Hz, 1H), 8.07 (dd, 

J = 9.0, 2.2 Hz, 1H), 7.60 (d, J = 9.2 Hz, 1H), 7.55 (d, J = 9.1 Hz, 1H), 4.96 – 4.90 (m, 4H), 4.86 

– 4.80 (m, 4H), 4.45 – 4.38 (m, 4H), 4.29 – 4.23 (m, 8H), 4.22 – 4.16 (m, 4H), 4.13 – 4.06 (m, 

4H), 3.90 (s, 6H), 3.26 (t, J = 6.8 Hz, 4H), 2.73 – 2.61 (m, 2H), 2.35 – 2.26 (m, 2H), 2.21 – 2.10 

(m, 2H), 1.90 – 1.53 (m, 36H), 1.28 – 1.13 (m, 12H). 13C NMR (126 MHz, 30%DMSO-

d6/70%CDCl3) δ 171.08, 167.16, 164.82, 164.39, 153.26, 152.76, 151.17, 132.89, 124.48, 123.94, 

123.00, 122.93, 122.80, 121.55, 113.77, 113.24, 71.82, 70.48, 69.87, 69.23, 68.70, 58.63, 48.70, 

36.04, 31.66, 31.46, 29.51, 29.19, 29.06, 26.66, 26.13, 22.46, 14.03. MS-MALDI: calculated 

1491.9, found 1491.5 (M + Na)+. 
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3. 1H and 13C NMR spectra 
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4. 1H NMR Spectra Recorded at Different Concentrations 
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Figure S1. Concentration-dependent 1H NMR experiment of 2 (400 MHz, CDCl3, 298K). 
All the 1H NMR signals remain sharp and well dispersed. The two signals of protons L1 
and L2 remain unchanged with increasing concentrations.  
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Figure S2. Concentration-dependent 1H NMR experiment of 3 in CDCl3 (400 MHz, 
298K). One of the two signals of L1 and L2 overlaps with that of the end methyl groups, 
making it difficult to discern the merged peak (indicated) at ~2.7 ppm. Another 
observation is that the end methyl groups of the folded dimer give one signal, while an 
extra peak at 3.1 ppm becomes more and more prominent with increasing concentration, 
indicating the oligomers/polymers formation.   
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Figure S3. Concentration-dependent NMR spectra of compound 4 (500 MHz, CDCl3, 
298 K). Backbone signals of aggregates higher than dimer are marked with “*”. Those 
aggregates are clearly observed at the concentration as low as 1 mM. The line-broadening 
of oligomers is probably due to fast exchange among assembled structures. For dimer, 
protons L1 and L2 show two peaks at 2.9 and 2.5 ppm respectively. The signals of L1 and 
L2 merge into a new peak at 2.7 ppm. The intensity of this new peak increases with 
increasing concentration. 
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5. IMS-MS Instrumental Analysis 
	
Analysis of the samples of 2, 3 and 4 was performed using an in-house PNNL built 

IMS-MS instrument which has previously been described.3 Briefly, this instrumental 
platform couples a 1-m IMS separation with an Agilent 6224 TOF MS upgraded to a 1.5 
meter flight tube providing resolution of ~25,000. Sample solutions were directly injected 
into the instrument using a chemically etched fused-silica emitter (20 µm I.D./150 µm 
O.D., at a potential of 2.6 kV)4 and transported through a heated capillary inlet (0.43 mm 
I.D. x 64 mm at 120oC).5 Once through the heated capillary, the ions were transmitted 
into the IMS drift cell via ion funnels. Following IMS separation, the ions were refocused 
using a rear ion funnel and transmitted into the TOF MS, which was set to collect data 
from 50-14300 m/z for each sample. The signal from the TOF detector was routed to 8-bit 
Analog-to-Digital converter (ADC) (AP240, Agilent Technologies, Switzerland) and 
processed using a custom control-software written in C#.6 

	

	

 

Figure S4. Partial IMS-MS spectra of (a) 2, (b) 3, and (c) 4 (NH4
+

 adducts). 
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Table S1. The Ten Most Abundant Complexes with NH4
+

 Adducts 

Compound 2 Pk Area % 
 

Compound 3 Pk Area % 
  

Compound 4 Pk Area % 

1-mer + NH4 (1+) 450244 4.97 
 

1-mer + NH4 (1+) 826770 5.97 
  1-mer + NH4 (1+) 281433 5.81 

2-mer + 2 NH4 (2+) 2293357 25.29 
 

2-mer + 2 NH4 (2+) 1258813 9.09 
  2-mer + 2 NH4 (2+) 468164 9.66 

3-mer + 3 NH4 (3+) 1709768 18.86 
 

3-mer + 3 NH4 (3+) 1791863 12.94 
  3-mer + 3 NH4 (3+) 1147577 23.68 

4-mer + 3 NH4 (3+) 1574243 17.36 
 

4-mer + 3 NH4 (3+) 2453069 17.71 
  4-mer + 3 NH4 (3+) 870718 17.96 

5-mer + 4 NH4 (4+) 1125114 12.41 
 

5-mer + 4 NH4 (4+) 3512411 25.36 
  5-mer + 4 NH4 (4+) 831246 17.15 

6-mer + 4 NH4 (4+) 758415 8.36 
 

6-mer + 4 NH4 (4+) 1524561 11.01 
  6-mer + 4 NH4 (4+) 548115 11.31 

7-mer + 5 NH4 (5+) 451474 4.98 
 

7-mer + 5 NH4 (5+) 1144799 8.27 
  7-mer + 5 NH4 (5+) 276366 5.70 

8-mer + 5 NH4 (5+) 446606 4.93 
 

8-mer + 5 NH4 (5+) 604358 4.36 
  8-mer + 5 NH4 (5+) 204080 4.21 

9-mer + 6 NH4 (6+) 131772 1.45 
 

9-mer + 6 NH4 (6+) 422315 3.05 
  9-mer + 6 NH4 (6+) 117315 2.42 

10-mer + 6 NH4 (6+) 125851 1.39 
 

10-mer + 6 NH4 (6+) 311961 2.25 
  10-mer + 6 NH4 (6+) 101972 2.10 

Total 9066844 100 
 

Total 13850920 100 
  Total 4846986 100 
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(b) 

	

(c) 

 

Figure S5. The relative abundance of the oligomeric aggregates of (a) 2, (b) 3 and (c) 
4 with ammonium adducts. The numbers on the vertical axes are shown in percentage. 
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6. Diffusion-Ordered Spectroscopy (DOSY) 

Diffusion-ordered spectroscopy (DOSY) experiments were performed on a Varian 
Inova 500 MHz spectrometer under regulated temperature (298 K), with a 5 mm probe. 
The pulse sequence employed was a bipolar pulse pair simulated echo (BPPSTE). 
Additional parameters: gradient strength array has 15 increments from 3% to 66% of the 
maximum gradient strength in a linear ramp, diffusion gradient length is set to 2 ms, and 
diffusion delay is 100 ms. 
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Table	S2.	DOSY	results	of	4	in	CDCl3	at	298K	

Concentration	 of	
4	(hexyl terminals)	

D4	
(Î10-10 m2/s) 

DTMS	
(Î10-10 m2/s)	

DTMS/D4	 DCHCl3	
(Î10-10 m2/s)	

DCHCl3/D4	

141	mM	 0.24 	 N/A a	 ------	 10.4	 43.48	
70			mM	 1.11	 10.3	 9.26	 15. 5	 13.89	
35			mM	 2.20	 17.3		 8.00	 19.7	 9.00	
25			mM	 2.29	 17.1		 7.46	 20.6	 9.00	
12			mM	 2.70	 18.5	 6.85	 20.7	 7.69	
0.5		mM	 3.28	 19.5	 5.95	 21.6 6.57	
	
aValue can not be measured accurately.  
D4: averaged diffusion coefficient of 4. 
DTMS: diffusion coefficient of TMS. 
DCHCl3: diffusion coefficient of CHCl3. 
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(a) 																																												 	 (b)	

	

																												(c)																																												 	 (d)	

	 	

																												(e)																																												 	 (f)	

Figure S6. Partial DOSY spectra of 4 in CDCl3 (a) 0.5 mM, (b) 12 mM, (c) 25 mM, (d) 
35 mM, (e) 70 mM, and (f) 141 mM. 
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7. Viscosity Measurements 

Viscosity measurements were carried out at ambient temperature (298K) on a 
Brookfield DV2+Pro Viscometer with a thermostat attached. The sample solutions in 
CHCl3 were filtered through a 0.45 µm filter to remove dust and debris. The resulting 
solution was left to stand for 1 hour before measurements.  

	

20 40 60 80 100 120 140
0.5

1.0

1.5

2.0

2.5

3.0

η
sp

Concentration (mM)
	

Figure S7. Specific viscosity of 3 versus concentration in CHCl3. The results suggest that 
there are two-stage aggregations. Combined with NMR data, dimeric assembly dominates 
at low concentrations, while larger aggregates are favored at high concentrations. The 
slopes are 0.0063 ± 0.0004 cP/mM at low concentrations and 0.0506 ± 0.0020 cP/mM at 
high concentrations, respectively.  
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8. Computational Study 

B3LYP/6-31G(d) optimizations were performed on the dimers of compounds 2, 3, 
and 4 (with all R1 and R2 groups being replaced by methyl groups) in Gaussian 09 
software package. The three dimers with eight intermolecular hydrogen bonds are 
obtained after optimizations both shown in Figures S9 and S10. 

 

Figure S8. Optimized structures of the dimers of compounds (a) 2, (b) 3, and (c) 4. The bond 
lengths and bond angles of the eight intermolecular hydrogen bonds (HB) of each dimers are listed. 
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9. 2D-NOESY Spectra 

 

O

N
O

N
H

R

O
O

N
O

N
O

R

H
H H

H

O

N
O

H
N

R

O
O

N
O

N
O

R

H
HH

H
O

N
O

H
N

R

O O

N
O

N
O

R

H
H H

H

O

N
O

N
H

R

OO

N
O

N
O

R

H
HH

H

H
H

H H

L1 L2 a d

b c
e

f g j

h
i

l

k

L1 L2a
df

g
jl

k e
hi c b

R= -(CH2CH2O)2CH2CH2CH(CH3)2 

	 	

(a) (b)	

 

Figure S9. Partial NOESY spectra of 2 in CDCl3 (500MHz, 298K, 3 mM). 
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