View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UNL | Libraries

University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Xiao Cheng Zeng Publications Published Research - Department of Chemistry

8-22-2002

Bulk and interfacial properties of quadrupolar fluids

V.B. Warshavsky
University of Nebraska-Lincoln

Xiao Cheng Zeng
University of Nebraska-Lincoln, xzeng1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/chemzeng

b Part of the Chemistry Commons

Warshavsky, V.B. and Zeng, Xiao Cheng, "Bulk and interfacial properties of quadrupolar fluids" (2002).
Xiao Cheng Zeng Publications. 40.
https://digitalcommons.unl.edu/chemzeng/40

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Xiao Cheng Zeng
Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.


https://core.ac.uk/display/188138791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/chemzeng
https://digitalcommons.unl.edu/chemistryresearch
https://digitalcommons.unl.edu/chemzeng?utm_source=digitalcommons.unl.edu%2Fchemzeng%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.unl.edu%2Fchemzeng%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/chemzeng/40?utm_source=digitalcommons.unl.edu%2Fchemzeng%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages

JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 8 22 AUGUST 2002

Bulk and interfacial properties of quadrupolar fluids

V. B. Warshavsky and X. C. Zeng
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

(Received 5 April 2002; accepted 31 May 2002

We extend Teixeira and Telo da Gama’s density-functional apprghdPhys.: Condens. Matt8y

111 (199))] to study the vapor—liquid phase equilibria and planar interfacial properties of
quadrupolar fluids. The density profile, surface ordering, surface polarization, and surface tension of
quadrupolar fluids are evaluated. Particular attention is given to the temperature and
quadrupole-strength dependence. It is found that the interfacial molecular ordering can arise entirely
due to the quadrupole—quadrupole interaction. It is also found that the bulk-phase properties of the
quadrupolar fluids satisfy the law of correspondence states. The reduced surface potential and
surface tension can be well correlated by power laws of the scaled temperatlireT/T.., where

T. is the critical temperature of the fluids. @002 American Institute of Physics.

[DOI: 10.1063/1.1495841

I. INTRODUCTION surface. This prediction is in qualitative agreement with the
molecular dynami¢MD) simulation?®
Quadrupolar molecules such as,,ON,, and CQ Since the eighties, density functional theorid3FT)

abound in natureand thus quadrupolar fluids are of both have been widely used for the study of interfacial properties
fundamental and practical importance. In the past two deef molecular fluids. The DFT allows one to calculate both
cades many model fluids with embedded point quadrupolstructural(density and orientational profileand thermody-
have been studied using liquid-state theories and molecularamical(surface tensionproperties in a self-consistent fash-
simulations. These include, for example, quadrupolar hardion. An important input required in the DFT is the correlation
sphere fluids, quadrupolar Lennard-Jofied fluids, quadru-  function which can be obtained either from the integral equa-
polar hard diatomic molecular fluids, and idépbint) qua-  tion theorie$~?* or by using some approximations. The
drupolar two-center LJ fluids. Special attention has beernodified mean field approximatiofMMF) proposed by
given to the bulk-phase properties such as the vapor—liquideixeira and Telo da Garfisis a very simple choice beyond
phase equilibri&;” thermodynamic free energy, the equationthe mean field, for which the radial distribution function is
of state$® and liquid structure®~*? Bulk-phase properties approximated by a low-density form. For dipolar fluids, the
of some more sophisticated nonspherical molecular fluid§/MF-DFT predicts that stronger dipole moments yield
such as quadrupolar linear-Kihara fluids, quadrupolar harghigher sfurface tension and the.|nterfaC|aI molecular ordering
dumbbell fluids, and quadrupolar hard Gaussian-overlap flut@n be induced solely by the dipolar forces. The MMF-DFT
ids have also been investigaﬂéd.” hgs beep extend§d7to treat various molecular systems such as
Compared to the bulk-phase properties, less effort haEmary dipolar fluidé’ and TIP4P model watéf and has also

been dedicated to the study of interfacial properties of qua een generalized to investigate the vapor-phase nucleation of
. . : . Stockmayer fluid$? the electric field effects on the interface
drupolar fluids. A better understanding of the interfacial

. . 30 . .
properties of quadrupolar fluids can be useful, for exampIeOf dipolar fluids®® and the Tolman length of dipolar fluids.

to the study of heterogeneous droplet formation containin Here we extend the MMF-DFT to study the vapor—liquid
Y 9 . P %hase equilibria, surface ordering, surface polarization and
quadrupolar component. Haile, Gray, and Gublingere

surface tension of a model quadrupolar fluid. Note that sev-

apparently the first to investigate interfacial properties OferaI studies of the interfacial properties of quadrupolar fluids

qguadrupolar site—site LJ fluids. They dev,eloped athermodyasing DFT have been reported in the literat#%€ How-
namic perturbation theory based on the Pagproximation  gyer ‘the prediction of the interfacial molecular ordering thus
to calculate the Fowler modehbrupt vapor—liquid transi- ¢4 was entirely based on the dipole—quadrupole interaction.
tion) surface tension of the liquids. Later, Thompson, Gub-tq our knowledge, interfacial molecular ordering due to pure
bins, and Hail&® reported an improved perturbation theory quadrupole—quadrupole interaction has not been reported.
using the Mayef function as the expansion functional. This Teixeira and Telo da Ganf4,within the framework of

“ f-expansion” theory predicts orientational ordering at thetheir MMF-DFT, examined the interfacial ordering of the
planar liquid—vapor surface due to quadrupolar forcespoint quadrupolar fluid. In their perturbative scheme the
Thompsoret al. found that when the strength of the quadru- grand canonical potential was expanded over the powers of
pole moment is small the molecules tend to orient themthe quadrupole—quadrupole interaction. They only consid-
selves perpendicular to the interface on the liquid side. Howered the first-order term, however, and as a result, they did
ever, when the strength of the quadrupole moment isot find any orientational ordering at the vapor—liquid inter-
moderately strong the molecules tend to orient parallel to théace. Nonetheless, they pointed out that quadrupole-induced
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interfacial ordering may arise if quadrupole—quadrupolepotential between the spherical particles with embedded
terms to the second order were considered. Here, we confirpoint quadrupole. The Helmholtz free energy density of the
their prediction, as will be shown in next sections. isotropic reference system can be written as
The rest of the paper is organized as follows: In Sec. Il R
we extend the MMF-DFT to treat a model quadrupolar fluid.  fef(p(r))=fndp(r)) +kgTp(r){In[47f(r,w)]), (3)
A set of equations for evaluating the density and orientation N
profiles is derived. In Sec. Il we present vapor—liquid coex-where(...)= [ dw...f(r,). The first term on the right-hand
istence curves, density and order parameter profiles, surfaside of Eq.(3) is the free energy density of the hard-sphere
polarization and surface tension as well as their temperaturgystem, which can be accurately calculated using the
and the strength of quadrupole moment dependence and réarnahan—Starling formuf;the second term is due to the
lated scaling relations. The conclusion is given in Sec. IV. loss of the entropy caused by the orientational molecular
ordering.
Here, we consider a model quadrupolar fluid system

Il DENSITY FUNCTIONAL THEORY with the reference potential given by

FOR QUADRUPOLAR FLUIDS +o, ry=d

Updl12) = 0 (4

In this section we extend the MMF density functional
theory*?>?°to a model quadrupolar fluid system. We con-
sider a single-component fluid composed of ling¢axial)  and the perturbation potential given by
molecules with an electric quadrupole moment. In the body-
fixed spatial coordinates with the molecular axis as thelped 12, ®1,@2)=[Ugo(l12) +Uqq(F12, @1, @2) JH(r1,—d).
z'-axis the tensor of quadrupole moment has only one non- (5)

—3.q.7'2 i
o o ot e er e I EG8 (0 a5, h - spere amete(c) s e
i P Heaviside step function, and the isotropic part of the inter-

?uorlfggrlea;:teafé?r%ﬁegﬁre O?Z'Z)' 32 %nlc;]s gf:egiiht?ﬁe molecular interactionuyg is chosen as the augmented Suth-
y Al w) dep erland potentidf°such as

spatialr=(x,y,z) and angularw=(6,¢) coordinates of the

molecules. H_erew_ describes the relative orl_entat|on of_the Uoo(T12) = — 4e(d/T 1), (6)

molecular axis with respect to the space-fixed coordinate.

The orientation profiléf(r,») can be defined by wheree is the energy parameter of the Sutherland potential.

- The contributionugy(ri2,@1,w,) is the potential function

p(r,w)=p(Nf(r,0), (D) between two linear quadrupolds,

where p(r) is the density profile integrated over all

the orientations; thus,[dwf(r,w)=1. The pairwise

, T>d

Ugq(M12, @1, ®3)

intermolecular potentialu(r,,r,,w;,w,) can be written 3Q? ) ) ) _—

as a sum of pairwise intermolecular potential of the :Zr_§2(1_5cl_5Cz+2012+350102_200102C12),
reference systemu(r,,r,,w1,w,) and perturbation

potential  Upe(r1,fa,@1,@;), i€, U(ry,lp,01,0,) (7)

=Ure(1,12,01,w2) +Uper1,12,071,05), wWherer; andr,
denote the spatial coordinates, ang and w, the angular
coordinates of two molecules.

In the framework of the MMF density-functional
approac?*252°the grand canonical potential in the absence”
of external field is given by

wherec;=n;-n (i=1,2) andci,=n;-n,; Ny andn, is the
unit vector along the molecular axes of molecule 1 and 2,
respectively, anth=r,/r 1, is the unit intermolecular radius
ector.

The fluid system is considered to be an infinite slab with
the Cartesian axig normal to the slab surfaces. The planar

Q[p(r,w)] vapor—liquid interface is in the—y plane and in parallel
with the slab surfaces. Thus, the system is inhomogeneous

:J drfref(P(r))_f J drdwup(r, o) only in the z direction so that both the density profiigz)
and the orientation distribution functiof{z,») are depen-

dent only on the spatial variablebut not onx andy. The
+(1/2/3’)f f f f dridrade dw,p(ry, wq) orientation distribution functiori(z,w) can be conveniently
written as a sum of the isotropic term %4and a small
X p(ry,wp)e Plretliz 01,021 — @~ Alpellz.01.02)], correction termA f(z, ) (Af/f<1) due to anisotropy arising

) from the weak quadrupole—quadrupole interaction, that is

where ri,=r,—ry, wu is the chemical potential, ang@ f(z,w):1/4W+Af(z,w)_ 8
=1/kgT (T is the temperature ankiy the Boltzmann con-
stanj. The last term on the right-hand side of Eg) is the With Egs. (1), (3), and(8), Eqg. (2) can be transformed

interaction contribution due to the long-range part of the paiinto the following expression:
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Q[p(z,w)]/A S5(QIA) S(QIA)

= and =0 (k=1,2,.). 13

5(2) om0 (K219

) dz{f 7))+ 27k Tp(z de Af(z,w 2]
me ndp(2)) 8Tp(2) [Atz,0) The orientational order parameters are incorporated into the

expression of) [Eqg. (11)] at two places: a sum of squared
order parameter&he orientational entropyin the first inte-
gral, and in the expression @f Sincey [Eq. (12)] depends
only on the order parametey, and », the variation of() to
n«(2) is equal to zero for alk values excepk=2 and 4.
Consequently, the variation yields three coupled equations,

Bu=Bund p(21)) + 3 575(21) +973(21)]

~[“amowiy [ | andzpzpz

XJjdwldwz%(zlawl)%(zzvw2)¢eff(212,w1,w2),
9

where A is the area of the planar vapor—liquid interface,
Z,,=2,—2,, and the effective potentiabes iS given in the
Appendix. Note that in deriving Eq9) we expanded the
exponential term in Eq(2) up to the second order iBupe,
rather than to the first ordefsee the Appendix for more
detail9. This is based on the f&étthat no orientational or-
dering at the interface can be observed if only the
quadrupole—quadrupole interaction tefBu,,, term) to the
first order is considered.

Since the system under consideration is invariant in thé"d
X—Yy plane, the anisotropic part of the orientation distribution

+ﬂfj;dzzl//(21,22)p(22), (149

72(21)=— é J'i,d Zy[ A Z12) 72(22) + oA Z12)

+ $24(212) 14(25) 1p(22), (15

function Af(z,w) is independent of the axial angle As a

result,Af(z,w) can be expanded in terms of the Legendre

polynomialsP,(cosé#) with the coefficients of the expansion
{m(2)} serving as the orientation order parameters, that is

. 1 -
Af(z,0)= 7= 2, (2k+1)7(2)Py(cosb),
¥ =]
(10
nk(z)z(Pk>=fdwpk(cosa)?(z,w) (k=1,2,..).

Substituting Eqs(8) and (10) into Eg. (9), the grand
canonical potential per unit area becomes

Qp(2) {n(2}/A

w0 1 ~
=J_molz{fhs,<p<z>>+ﬁmz)g1 (2k+1>nﬁ(z>]

o]

© 1 ©
—f dsz(z)+§J

X p(21)p(22) ¥(21,2,),

dz,dz,

11
where

(21,25) = boo Z12) + b2 212) 1215+ Pad(212) 1am4

+ 0212 (72+ 15) + boa(Z12) (74 1)

+ d2d(21) (m2m4+ 374), (12

and wheren;= 7;(z;) and n = 5;(z,) (i=2,4). The func-
tions ¢qg, P22, Paas Po2, Poa, and ¢, are given in the
Appendix.

Finally, the equilibrium density and orientation order pa-

rameter profiles can be determined from the variational prin

Na(Z1)=— g J'i,d Zy[ pad(Z12) 74(Z2) + hoa(Z12)

+ $24(212) 12(25) 1p(22). (16)

In Eq. (14), undp(2)) is the local chemical potential of the
hard-sphere reference fluid.

We note that if those terms of the ord®f in the ex-
pression for coefficientspyy, Pro, Dasr Po2, Poas Poa
(A16) are neglected, then the coefficients,, o2, Poa,
and ¢,, Will be just zero, andpyy will be independent 06;
only ¢, will be proportional toQ?. As such, Eqgs(15) and
(16) will result in that,=0 and#,= 0. Clearly, this neglec-
tion of Q* terms explains the missing of any interfacial mo-
lecular ordering* Moreover, with the neglection of*
terms, Egs(11) and (14) will lose entirely the dependence
on Q, as will all the bulk-phase and interfacial properties of
the quadrupole fluid. Therefore, to study the effects of the
quadrupole strength on the bulk-phase and interfacial char-
acteristics of the fluid, it is essential to include Q& terms
in all the coefficientsp;, (i <k;i,k=0,2,4)[see(Eq. A16)].

[Il. NUMERICAL RESULTS AND DISCUSSION
A. Vapor—liquid coexistence

In homogeneous bulk phases the dengitgnd the ori-
entation order parametets, and », are uniform. Thus, the
integrals in Eqs(11), (14), (15), and(16) can be determined
analytically.  Since the integral [7.dz,¢oz12),
7 .d204(212), and [ .dz,$o4(215) in Egs.(15) and(16)
vanish it follows that»,=0 and 7,=0 in bulk phases.
Equations(11) and(14) become accordingly

Q=—pupdp)+3V(LUT)p?> and pu=ppdp) —‘1'(1”);0,(17)

ciple applied to the grand canonical potential per unit area

[Eqg. (11)], that is

Downloaded 18 Apr 2007 to 129.93.16.206. Redistribution subject to AIP
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T*

THT Q")

1.8

1.6 |

1.4

1.2

&_, FIG. 2. The same as Fig. 1 except the temperature is rescaled based on the
critical temperature. The inset shows that the difference between the coex-

FIG. 1. Vapor-liquid coexistence densities for a quadrupolar fluid with isting liquid and vapor densitieg — ¢, scales ag™'2
» .

various givenQ*. The inset shows the shift of the critical temperature
TE(Q*)—T%(0) as a function ofQ*.
Several Monte CarldgMC) simulations of the vapor—
liquid phase equilibria for the quadrupolar LJ fluids have
16 ed37 2 ¢ 3 Q° been performed:* Compared to the simulatiori$, the
VM == KT 1+3 I<B_T+ 20 edaT (18 present theory overestimates the value of critical tempera-
ture, although the model fluid is slightly different. The quali-
is a measure of the attractive interaction energy of the quagtive trend of T* as function ofQ* is, however, the same.
drupolar fluid. The coexisting liquid and vapor density,  smit et al® found that the effect of the reduced quadrupole
andp,, can be determined by solving the phase-equilibrigmomentQ* onT?* is stronger than that of the reduced dipole
equationsu(p)) = u(p,) andQ(p))=Q(p,). moment u} . For the pure LJ flui®f it is found thatT*
Figure 1 displays the vapor—liquid coexistence curves—1 31 and for the dipolar LJ flufd (ut=1), TF=1.41
for a number of reduced quadrupole moment strer@th  \yhich is about 7% higher. But for the quadrupolar LJ fuid
=Q/(ed®)¥? within 0<Q*<1. It can be seen that at a re- (Q* =1.0), T* = 1.60 which is about 22% higher.
duced temperaturg* =kgT/e increasingQ* decreases the We also examined whether the vapor—liquid coexistence
coexistence vapor densit, (é=mpd*/6 is the scaled den- densitiegthe binodal curvesatisfy the law of corresponding
sity) and enlarges the coexistence liquid dengjtyThe val-  giates. Figure 2 shows that all binodal curves for various
ues.ofg and T* a.t the critigal point can be determined by given Q* can be almost collapsed onto a single curve by
solving the following equations: scaling the temperature with thel*, that is, T*
‘939/‘753|fc20 and 829/‘752|5c +=0. (19 —T*/Tg(Q*). This result demonstrates that the law of cor-
¢ responding state is indeed followed by the point quadrupolar
Since the critical density, is determined from the third fluids. The same conclusion has been drawn by Dubey and
derivative of the grand canonical potentig}, depends only ~ O’Shed® from their MC simulation of quadrupolar LJ fluid.
on the reference hard-sphere system and ha@halepen- In the inset of Fig. 2 we show the scaling relationship for the
dence. In facté, is a constant £§,=0.1304). The critical difference between the coexisting liquid and vapor density
temperatureTy , however, isQ* dependent. It is foundy  &—¢, and the small values of (=1—T/T,),
=2.01, 2.01, 2.02, 2.05, and 2.10 f@* =0.0, 0.4, 0.6, 0.8, 1/
and 1.0, respectively. In the inset of Fig. 1 we show that the S &~ @D
difference in critical temperature from that of nonquadrupo-The mean-field scaling exponent is 0.5 which is typically
lar fluid, TZ (Q*) — T (0), follows very closely to the power higher than the nonclassical exponent 0.325 expected close
law, to the critical point. Note that the differenég— &, is nearly
7~ " o d independent of the quadrupole moment strer@thdue to
Te(Q1) =T (0)~(Q™)" (20) the law of corresponding state.
It appears that this power law stems from the term with  For purely dipolar fluids, Frodl and Dietriéhhave com-
Q*-dependence in Eq17), which is a mean-field result for pared the results of the truncated MMF-DFT of Teixeira and
weak Q* (Q*<1). Interestingly, Teixeira and Telo da Telo da Gam#¥ with the results of the full version of MMF-
Gama* have shown that for the dipolar fluids with reduced DFT with the nonexpanded second exponential in €.
dipole momentu® = uo/(ed®)¥? the difference in critical They showed that the truncated MMF-DFT introduces only
temperature follows a similar power l&#?°® that is, quantitative but not qualitative errors which grow with the
TH(ud)—TH(0)~(us)?. The relative change i for ug increasing of the dipole strengjkf . For instance, the criti-
changing from 0 to 1 is 2.5%, compared with 4.3% changecal temperaturd} calculated from the truncated MMF-DFT
for quadrupolar fluids witfQ* changing from 0 to 1. is lower than that of the full version. Atg =1 the difference
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FIG. 3. The density profil for various givenQ* at T*=1.6.
fty profile(z) various giverQ FIG. 4. The orientational order-parameter profi}g(z) for various given

Q* andT* =1.6. The inset shows the interfacial ordering scalesQis)f.

in Ty between the truncated and full version MMF-DFT is
about 10%. The present approach, therefore, is suited best for
o )
weakly quadrupolar fluids@* <1). For more strongly qua any givenT* the function 7,(2)/(Q*)* reduces to some

drupolar fluids Q* >1) the truncation errors become large. . ~.. . . 4 :
. limiting dimensionless function a®* goes to zero.
Nonetheless we also calculated the phase coexistence densi- |, : ) ! : .
It is convenient to characterize the magnitude of the in-

ties and critical temperatures for some large values OIen‘acial ordering by using the difference between the maxi-
Q* (1<Q*=<2). Interestingly, we find that the power-law ng by 9 :
mum and minimum value of#,(2), i.e., maxy,(2

Eq. (20) (inset to Fig. 1 and the law of corresponding states " . . . .
(Fig. 2) no longer hold, however, the power law Eg1) stil thgngozsézr).l;r\]/e inset of Fig. 4 shows this difference follows

holds.
max»,(z) —min 7,(z)~ (Q*)*. (22)

B. Interfacial properties Interfacial behavior of quadrupolar fluids has also been

The density and orientation order-parameter profiles foreported by other workerS:*> Thompsonet al*® used the
the planar vapor—liquid interface are calculated by solving-e€xpansion theory to study the site—site [SSLJ plus
Egs. (14)—(16) numerically using an iteration method. The quadrupole fluid at the reduced temperatlife= 1.065. Al-
initial input for the density profile is a step function for though the theory did not predict the dependence of the co-
which the density is set to be the bulk liquid densffyfor ~ €Xisting densities oQ*, it does show that a®* increases,
z<0 and the bulk vapor densit, for z>0. The initial input ~ the density profile becomes sharper, in accordance with the
for both 7,(2) and 74(2) is a constant zero. In Fig. 3 we Present resultsee Fig. 3 Both their f-expansion theory
show the scaled density profil{z)=(7d3/6)p(z) for Q*  and MD simulatioR® showed that increasin@* tends to
ranging from 0 to 1 and at* =1.6. It is seen that a@* alter interfacial ordering on the basis of nonquadrupolar
increases the values of liquid-side density increase while th&SLJ system. For larg@*, molecules prefer to orient par-
values of vapor-side density decrease, consistent with thellel to the interface on the liquid side and normal to the
result of vapor—liquid coexistence densities. Figure 4 show#terface on the vapor side. This result is in accordance with
the orientation order-parameter profilg,(z) for various Ours (see Fig. 4 Chacm etal® applied the density-
given Q*. Becauser,(z) is much smaller in values than functional theory to study the systems governed by disper-
7,(2) at the same give®* andT*, 5,(z) is not plotted. As  sion,  overlap,  dipole—dipole,  dipole—quadrupole,
defined above,(2) is related to the mean Legendre poly- quadrupole—quadrupole, and isotropic forces. Their calcu-
nomial of the second ord¢Eq. (10)]. Thus, 7,(z)<O0 indi- lated orientation order-parameter profig(z) is similar to
cates that the molecules tend to lie parallel to the interface ofUrs (see Fig. 4. Because only the perturbation to the first
the liquid side, while on the vapor side the molecules tend t@®rder was used, the theory cannot predict any orientational
be perpendicular to the interface becausepefz)>0. The order at the vapor—liquid interface for purely quadrupolar
interfacial molecular behavior is similar to that of dipolar fluids>*
molecules at the vapor—liquid interfate 2426 %We have Figure 5 displays the density profiles f@*=0.8 at
found that forQ* <1, 7,(z) is always<0.01 in values, con- Various scaled temperature We follow Rowlinson and
sistent with the weak anisotropy requirement to the distribuWidom™ to define the width of the interfac®/s=—(p
tion functionf [see Eqs(8) and(10)]. However, the relative _Pv)/(apmz”zy wherezg is the position of the Gibbs di-
increase ofy,(z) for largeQ* is substantial. We find that for viding surface, defined by the equati¢f® dz'[p,— p(z')]
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/
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FIG. 5. The density profil&(z) for various givenr andQ* =0.8.

FIG. 7. TemperatureT*) dependence of the reduced surface potentizt
for various givenQ*.

=fz+G°°dz’[p(z’)—pv]. In the inset of Fig. 5, we plot

In(Wg/d) vs InT from which we obtain the scaling relation 2
for r<1, Ap=—7"Qlp=py), (25
We~7 12 (23 is independent of the characteristics of the interface and

In Fig. 6 we show the effect of temperature on the orientatiorsOlely dependent on bulk-phase properties and strength of
order parameten,(z) at a fixedQ*. As the temperature the molecular quadrupole moméfitin Flgl./7 we show the
increases, the profile becomes more broaden and flat. In tHgduced surface potentiale* (=A¢(d/€)*?) as a function

inset of Fig. 6 we show that the interfacial ordering scales?f the temperaturd™ for various givenQ*. Sincep,—p,
with 7 when <1 as follows the scaling relation Eq21), Eq. (25 immediately

, 3 yields for 7<1,
maxz,— min 7,~ 722, (24
: , Ap*~77, (26)

Quadrupolar fluids are known to have an electric poten-

tial jump A across the planar liquid—vapor interface. Thisthat is, the surface potential follows the same scaling relation
as the coexisting density difference. Moreover, becajjse

— ¢, is almost independent @*, it follows from Eg. (25)
that at a givenr,

potential jump, given by

n, Ap*~Q*. (27)
— A We are aware of only one computer simulaffowhich pro-
0.0018 | = / ! ! 1 vides a calculation of the surface potential for quadrupolar
£ S ! \\ ‘ fluid. Brodskaya and Zakharov studied a cluster of 64 mol-
0.0012 E s // | \ | ecules of quadrupolar SSLJ model of bromine at one tem-
£ e . perature. Because the critical temperature of the model fluid
- P is unknown, it is not possible to compare their simulation
o0& , oo T result with the scaling relatiof26) obtained here.

Finally, we calculate the thermodynamical surface ten-
sion o, defined as the excess of the grand canonical potential
per unit area,

00006 ¢ L ot o=(Q— QPK/A, 28
b ----1=0.2
00012 | \\ //' ——- =03 | The reduced surface tensiart = o (d?/€). In Fig. 8, the
’ N temperature dependencedft at various giverQ* is shown.
The effect ofQ* on ¢* is similar to that of dipole moment
~0.0018 - 5 3 A ” 3 s 7 on ¢*, that is, the surface tensiom* increases with the
z/d strength of quadrupole moment at a fixed temperattif@.

. . . . . 18
FIG. 6. The order-parameter profilg,(z) for various givenr and Q* This interfacial b,ehaVIOr Wa_ls also reported by Haiteal.
=0.8. The inset shows that the magnitude of the orientational ordelba_sed on th(_% Pac_merturbauon St_Udy of quadrupolar SSLJ
max 7,—min 7, scales ag2 fluids (see Fig. 2 in Ref. 18 In Fig. 9, we plote™ vs the
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o* ‘ ‘ - For bulk-phase properties, we find that increasing the
guadrupole moment streng@r leads to a higher coexisting
liquid density and a lower coexisting vapor density, and
raises the critical temperatufi€ . For the latter, it is found
TH(Q*)—TX(0)~(Q*)% It is also found that the vapor—
liquid coexisting densities follows the law of corresponding
states. In fact, the binodal curves at various gi@ncan be

all collapsed into a single master curve. Moreover, the dif-
ference in coexisting density follows the scaling relatégn
—¢,~ 72 and¢ — ¢, is nearly independent ad*.

For interfacial properties, we find based on the orienta-
tion order-parameter profile;,(z) that quadrupolar mol-
ecules at the vapor—liquid interface tend to lie parallel to the
interface on the liquid side and normal to the interface on the
o ‘ , ‘ vapor side. This orientational ordering is due entirely to the
1.55 1.65 1.75 185 T+ molecular quadrupole—quadrupole interaction. At a fixed
temperature the orientational order, measured by the differ-
ence of the maximum and minimum value @(z), de-
creases with the quadrupole moment stren@th to the
fourth power Q*)*. The orientational order also follows the
o scaling relation, max,(2)—min 7,(2)~ 72 at a givenQ*. It
scaled temperature It shows that the surface tensiofl is 5 5150 found that the width of density profile satisfies the

nearly independent o@* as r—0 (or T>T). For dipolar  gcajing relatioWg~ 7~ 12 and the reduced surface electric
fluids it has been found by Teixeira and Telo da Gafrthat potential Ag* follows the scaling relationA o* ~ 72 at

the surface tension™ is nearly independent ofg for allthe  fyaq Q*. Moreover, Ag* is proportional toQ* at fixed
range of the considered scaled temperature. The inset of Figemperatureq-. Finally, we find the thermodynamic surface

FIG. 8. TemperatureT*) dependence of the reduced surface tensibifior
various givenQ*.

9 shows the scaling relation of*(7), i.e., tensions® increases witlQ*, and at fixedQ* it satisfies the
o* ~ 732 (29)  scaling relations™ ~ 72
To close, we note that purely quadrupolar fluids share
IV. CONCLUSION many similar mean-field scaling relations as those for purely

dipolar fluids. For example, Frodl and Dietrf€rhave ap-
We have extended the modified mean-field density funcplied a nonperturbative density-functional theory to dipolar

tional theory of Teixeira and Telo da Gaffiéo treat a model  (Stockmayer fluid. Their derived scaling relations and
quadrupolar fluid. We demonstrate that the inclusion of theyower-law exponents for the coexisting density difference,
quadrupole—quadrupole terms to second order in the theomie magnitude of orientational order, and the surface tension
permit us to observe the influence of the quadrupole strengthre identical to ours for the quadrupolar fluiEgs. (20),
on both the bulk-phase and interfacial properties of the quaf22)—(24), and(29)].
drupolar fluid.
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APPENDIX: DERIVATION OF ¢¢; IN EQ. (9)

Here, we derive the expression for the effective potential
dei arising in Eq.(9). Towards this end we expand the ex-
ponential function in Eq(2) over the perturbation potential
Buper With keeping the terms up to the second power of
BUper- Writing the radius-vector, in the cylindrical coor-
dinates, i.e.r1,=(R12,212,¢15), We obtain

bei(Z12, 01, 07)

2m + o0
:fo d‘PlZJO Ri0R (Uped R12,212, 012, 01, @2)

0.05 0.15 0.25

T

- —(BI2)U2{ Rz, 212, 912,01, @) ]. (A1)
FIG. 9. Scaled temperatute) dependence of* for various giverQ*. The
inset shows that™* scales ag®2 Substituting Eq.(5) into Eq. (Al) ¢ can be expressed as
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o B . . 1/2
Pei(Z12, w1, @) =Ugot Ugg— [Uoo+ 2UqUgqt qu] UooUgq™= — €d6Q2(87T)2( 1—0)
(A2)
On the right-hand side of EqA2) all five terms can be X ;n:, Y C(224:m1,m2,0)Yom, (01)Yom, (@2)
expressed as e
— += RypdRyp
X(Z12, 01, 05) x fo TH(rlz—d)P4(coselz). (A7)
12

2T + oo
=4 d‘PlzJ’O Ri20R12x(R12,212, 912, 01, 05)
The integral in Eq.(A7) involves P,(cos#;,) which is a

XH(r,—d), (A3) polynomial of co®;,= z,,/r 1, of the order four. Thus, it can
) ) ) — — be reduced to a sum of integrdly “Ri,dRy,/r,H(r 1,
wherex =uUoo, Ugq: Uoo Uodlqqs Ugg- The integralios, Ugp,  —d), where n is an integer greater than 2. Withy,
andugq are given in Ref. 24 as = JR%,+ 72, we obtain

Upo=A(2), UZ=C(2), Ugq=¢qq(2)P2Ps,  (A4)

whereP,=P,(cos#,), P,=P,(cos#,), and detailed expres-

+o RdRy
fo —— H(ryp—d)

sion for A(z), C(2), ¢qq(2), is provided in Eq.(A14) of o
Ref. 24 [note that in Eq.(A4) those terms involving 1
cosf(¢1— ) are removed because the orientation distribu- . g2 |z1J<d
tion f does not depend op so that the integration over for — (A8)
those terms will vanish (n=2) 1 2] >d
12| .

The two remaining terms in EqA2), uoouqq and u?, uqq, |z15" 2"
are our main focus, and both include the quadrupole—
qguadrupole interaction. First, we write the potential between
two linear quadrupoles as a sum of spherical harmonic¥’sind Ed.(A8) in Eq. (A7) we obtain

36
YIma

Q%87 Uoolga= Xo54aP2P2 (A9)
Ugg=5 1¢ (70m* > C(224m;,m;,my) e
o my,my, Mg
X Yom, (01)Yom,(@2) Yim (012, (AB)  where
where|my|, |my|<2, mg=m;+m,, C(224)m;,m,,ms) is . 5
the Clebsch—Gordan coefficient in the Rose converffion, %Z__ﬁ) z +1 Iz|<d
and w4, denotes the orientation of the intermolecular axis in - Q2 13d* 11d%2 " 3’
the space-fixed coordinate system. We then have X00gq= €3 O 128 d°
— — >d.
. 327 429|2°" |/>d
UpoUgg™ — EdGQZE(7O7T)l/2 (A10)
X 2 C(224my,my,my)Y o (@) We also have
mq,My, Mg
te Rlzd R12 2
XY —r— d — (87
ano) . () u§q=(—) Q* 3 c(22amy,my,my)
15 mq,my,mg
2w . m:’l’mé’mé
X | Yam(0)der,. (A6)
0 X C(224;m7,mj ,m3)Y o (@1)Y o, (@)
With account of the expression for the spherical harmonics +2 RAR
1 12
XY Y f —5— H(r>—d
Yim(8,0) 2m] (wy) 2m), (w3) ig H(r,—d)
@D\ A-myn 2 me . .
=(- ppe T+ m)! P(cosd)e™, Xf d@12Y amy (012 Y gy (@12)- (A11)

whereP["(x) is the associated Legendre polynomial, and the
orthogonal relationf27e!(m ™)¢dp=275,n, Eq. (A6)  The angular integral ove,, in Eq. (A11) is proportional to
becomes 5m3,mé. Therefore,
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2 (8” ‘of S crea )

Us= | ——= my,m,, M

qq 15 ml,mz‘ms 1 2 3
mi,mé

X C(224imy, My, —Mg)Yom, (1) Yom,(@2) Yom: (@1)
+ RydRyo
XYZm(U)Z)f —H( 1~ d)Py®

X (cosfy) P, ™(cosb;y), (A12)

where P} %(coséy,) P, "(cosé;) is a polynomial of co#,

V. B. Warshavsky and X. C. Zeng

with the highest power being eight. Taking the integration on
Ry, for every m; in Eq. (A12) with using Eg.(A8), and
rewriting the result as an expansion of the Legendre polyno-
mials, we obtain, after a lengthy calculation,

2 _ .00 22 44
Ugq(Z,@1,02) = Xqq.qat Xag,aqP2P2+ Xaq.aqPaPa
02 04
+ qu,qq( P2+ Pé) + qu,qq( I:)44_ Pé’l)

+xZe qq(P2P4+ P5P.), (A13)

whereP; = P;(cosé,), P{ = P;(cosé,) and the coefficients,

4 1, |z]=d
00 :WQ 7] e
Xggaa™ g8 10 . |z>d,
z
7z4 15622+77 2]=d
,» w45 Tt B d7 100 T
Xaaaa™ "g8 49 7 g8
E?, |Z|>d,
6002528 16100_6+1092 9{ 120927 . 1757 12/ =d
u ™Y 9 8 d® d® d 5 d> 20 7~
Xaaaa™ "g8 784 638
ZOZT, |Z|>d,
12 72 (A14)
———1, |z|]=d
o _7TQ4 5 5 d2 | |
Xaa.qq™ g8 14| 7 ¢8
g?g, |Z|>d,
( 224 21622+27 12| =d
w mts | ¥a s @t T
aeda g8 112| 21d°®
g?, |Z|>d,
f 42026 690Z4 14762 21, |z|=d
,  mQ* 15 R A
Xaaaa™ g8 784 | 2148
{ g ?, |Z|>d.
Finally, to expressp.+ as an expansion of the Legendre B 00
polynomials we substitute Eq&A4), (A10), and (A13) into bod2) =A(2) = 5 (C(2) + Xqq.q4(2):
Eqg. (A2), and obtain
B
¢eﬁ(z,w1,w2) ¢22(Z) = (qu(z) - g(ZXOqu(Z) +qu,qq(z))l
= oo(2) + P2 Z) PP+ day(2)P4P, (A16)
+ ¢02(Z)(P2+ Pé)+ ¢O4(Z)(P4+ PA,I) ¢44(Z) qu qq(z)1 ¢02(Z)_ - qu qq(z)a
+ h24(2) (PP, +P5Py), (A15) 3
where ¢O4(Z) - qu qq(z): ¢24(Z) qu qq(z)
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