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Bulk and interfacial properties of quadrupolar fluids
V. B. Warshavsky and X. C. Zeng
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

~Received 5 April 2002; accepted 31 May 2002!

We extend Teixeira and Telo da Gama’s density-functional approach@J. Phys.: Condens. Matter3,
111 ~1991!# to study the vapor–liquid phase equilibria and planar interfacial properties of
quadrupolar fluids. The density profile, surface ordering, surface polarization, and surface tension of
quadrupolar fluids are evaluated. Particular attention is given to the temperature and
quadrupole-strength dependence. It is found that the interfacial molecular ordering can arise entirely
due to the quadrupole–quadrupole interaction. It is also found that the bulk-phase properties of the
quadrupolar fluids satisfy the law of correspondence states. The reduced surface potential and
surface tension can be well correlated by power laws of the scaled temperaturet[12T/Tc , where
Tc is the critical temperature of the fluids. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1495841#

I. INTRODUCTION

Quadrupolar molecules such as O2, N2 , and CO2

abound in nature1 and thus quadrupolar fluids are of both
fundamental and practical importance. In the past two de-
cades many model fluids with embedded point quadrupole
have been studied using liquid-state theories and molecular
simulations. These include, for example, quadrupolar hard-
sphere fluids, quadrupolar Lennard-Jones~LJ! fluids, quadru-
polar hard diatomic molecular fluids, and ideal~point! qua-
drupolar two-center LJ fluids. Special attention has been
given to the bulk-phase properties such as the vapor–liquid
phase equilibria,2–7 thermodynamic free energy, the equation
of states,8,9 and liquid structures.10–12 Bulk-phase properties
of some more sophisticated nonspherical molecular fluids
such as quadrupolar linear-Kihara fluids, quadrupolar hard-
dumbbell fluids, and quadrupolar hard Gaussian-overlap flu-
ids have also been investigated.13–17

Compared to the bulk-phase properties, less effort has
been dedicated to the study of interfacial properties of qua-
drupolar fluids. A better understanding of the interfacial
properties of quadrupolar fluids can be useful, for example,
to the study of heterogeneous droplet formation containing
quadrupolar component. Haile, Gray, and Gubbins18 were
apparently the first to investigate interfacial properties of
quadrupolar site–site LJ fluids. They developed a thermody-
namic perturbation theory based on the Pade´ approximation
to calculate the Fowler model~abrupt vapor–liquid transi-
tion! surface tension of the liquids. Later, Thompson, Gub-
bins, and Haile19 reported an improved perturbation theory
using the Mayerf function as the expansion functional. This
‘‘ f-expansion’’ theory predicts orientational ordering at the
planar liquid–vapor surface due to quadrupolar forces.
Thompsonet al. found that when the strength of the quadru-
pole moment is small the molecules tend to orient them-
selves perpendicular to the interface on the liquid side. How-
ever, when the strength of the quadrupole moment is
moderately strong the molecules tend to orient parallel to the

surface. This prediction is in qualitative agreement with the
molecular dynamic~MD! simulation.20

Since the eighties, density functional theories~DFT!
have been widely used for the study of interfacial properties
of molecular fluids. The DFT allows one to calculate both
structural~density and orientational profiles! and thermody-
namical~surface tension! properties in a self-consistent fash-
ion. An important input required in the DFT is the correlation
function which can be obtained either from the integral equa-
tion theories21–23 or by using some approximations. The
modified mean field approximation~MMF! proposed by
Teixeira and Telo da Gama24 is a very simple choice beyond
the mean field, for which the radial distribution function is
approximated by a low-density form. For dipolar fluids, the
MMF-DFT predicts that stronger dipole moments yield
higher surface tension and the interfacial molecular ordering
can be induced solely by the dipolar forces. The MMF-DFT
has been extended to treat various molecular systems such as
binary dipolar fluids27 and TIP4P model water,28 and has also
been generalized to investigate the vapor-phase nucleation of
Stockmayer fluids,29 the electric field effects on the interface
of dipolar fluids,30 and the Tolman length of dipolar fluids.31

Here we extend the MMF-DFT to study the vapor–liquid
phase equilibria, surface ordering, surface polarization and
surface tension of a model quadrupolar fluid. Note that sev-
eral studies of the interfacial properties of quadrupolar fluids
using DFT have been reported in the literatures.28,32 How-
ever, the prediction of the interfacial molecular ordering thus
far was entirely based on the dipole–quadrupole interaction.
To our knowledge, interfacial molecular ordering due to pure
quadrupole–quadrupole interaction has not been reported.

Teixeira and Telo da Gama,24 within the framework of
their MMF-DFT, examined the interfacial ordering of the
point quadrupolar fluid. In their perturbative scheme the
grand canonical potential was expanded over the powers of
the quadrupole–quadrupole interaction. They only consid-
ered the first-order term, however, and as a result, they did
not find any orientational ordering at the vapor–liquid inter-
face. Nonetheless, they pointed out that quadrupole-induced
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interfacial ordering may arise if quadrupole–quadrupole
terms to the second order were considered. Here, we confirm
their prediction, as will be shown in next sections.

The rest of the paper is organized as follows: In Sec. II
we extend the MMF-DFT to treat a model quadrupolar fluid.
A set of equations for evaluating the density and orientation
profiles is derived. In Sec. III we present vapor–liquid coex-
istence curves, density and order parameter profiles, surface
polarization and surface tension as well as their temperature
and the strength of quadrupole moment dependence and re-
lated scaling relations. The conclusion is given in Sec. IV.

II. DENSITY FUNCTIONAL THEORY
FOR QUADRUPOLAR FLUIDS

In this section we extend the MMF density functional
theory24,25,29 to a model quadrupolar fluid system. We con-
sider a single-component fluid composed of linear~axial!
molecules with an electric quadrupole moment. In the body-
fixed spatial coordinates with the molecular axis as the
z8-axis the tensor of quadrupole moment has only one non-
zero component,Qz8z85( iqizi8

2, whereqi is the charge on
the i-site andzi8 its position relative to the center of the
molecule. Hereafter we denoteQz8z8 as Q. In general, the
number density of moleculesr~r ,v! depends on both the
spatial r5(x,y,z) and angularv5~u,f! coordinates of the
molecules. Here,v describes the relative orientation of the
molecular axis with respect to the space-fixed coordinate.
The orientation profilef̂ (r ,v) can be defined by

r~r ,v!5r~r ! f̂ ~r ,v!, ~1!

where r~r ! is the density profile integrated over all
the orientations; thus,* dv f̂ (r ,v)51. The pairwise
intermolecular potentialu(r1 ,r2 ,v1 ,v2) can be written
as a sum of pairwise intermolecular potential of the
reference system uref(r1 ,r2 ,v1 ,v2) and perturbation
potential uper(r1 ,r2 ,v1 ,v2), i.e., u(r1 ,r2 ,v1 ,v2)
5uref(r1 ,r2 ,v1 ,v2)1uper(r1 ,r2 ,v1 ,v2), where r1 and r2

denote the spatial coordinates, andv1 and v2 the angular
coordinates of two molecules.

In the framework of the MMF density-functional
approach,24,25,29the grand canonical potential in the absence
of external field is given by

V@r~r ,v!#

5E dr f ref~r~r !!2E E drdvmr~r ,v!

1~1/2b!E E E E dr1dr2dv1dv2r~r1 ,v1!

3r~r2 ,v2!e2buref~r12 ,v1 ,v2!@12e2buper~r12 ,v1 ,v2!#,

~2!

where r125r22r1 , m is the chemical potential, andb
51/kBT ~T is the temperature andkB the Boltzmann con-
stant!. The last term on the right-hand side of Eq.~2! is the
interaction contribution due to the long-range part of the pair

potential between the spherical particles with embedded
point quadrupole. The Helmholtz free energy density of the
isotropic reference system can be written as

f ref~r~r !!5 f hs~r~r !!1kBTr~r !^ ln@4p f̂ ~r ,v!#&, ~3!

where^...&5* dv... f̂ (r ,v). The first term on the right-hand
side of Eq.~3! is the free energy density of the hard-sphere
system, which can be accurately calculated using the
Carnahan–Starling formula;33 the second term is due to the
loss of the entropy caused by the orientational molecular
ordering.

Here, we consider a model quadrupolar fluid system
with the reference potential given by

uhs~r 12!5H 1`, r 12<d

0, r 12.d
~4!

and the perturbation potential given by

uper~r12,v1 ,v2!5@u00~r 12!1uqq~r12,v1 ,v2!#H~r 122d!.
~5!

In Eqs.~4! and~5!, d is the hard-sphere diameter,H(r ) is the
Heaviside step function, and the isotropic part of the inter-
molecular interactionu00 is chosen as the augmented Suth-
erland potential34,35 such as

u00~r 12!524e~d/r 12!
6, ~6!

wheree is the energy parameter of the Sutherland potential.
The contributionuqq(r12,v1 ,v2) is the potential function
between two linear quadrupoles,36

uqq~r12,v1 ,v2!

5
3

4

Q2

r 12
5 ~125c1

225c2
212c12

2 135c1
2c2

2220c1c2c12!,

~7!

whereci5ni•n ( i 51,2) andc125n1•n2 ; n1 and n2 is the
unit vector along the molecular axes of molecule 1 and 2,
respectively, andn5r12/r 12 is the unit intermolecular radius
vector.

The fluid system is considered to be an infinite slab with
the Cartesian axisz normal to the slab surfaces. The planar
vapor–liquid interface is in thex–y plane and in parallel
with the slab surfaces. Thus, the system is inhomogeneous
only in the z direction so that both the density profiler(z)
and the orientation distribution functionf̂ (z,v) are depen-
dent only on the spatial variablez but not onx and y. The
orientation distribution functionf̂ (z,v) can be conveniently
written as a sum of the isotropic term 1/4p and a small
correction termD f̂ (z,v)(D f̂ / f̂ !1) due to anisotropy arising
from the weak quadrupole–quadrupole interaction, that is

f̂ ~z,v!51/4p1D f̂ ~z,v!. ~8!

With Eqs. ~1!, ~3!, and ~8!, Eq. ~2! can be transformed
into the following expression:
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V@r~z,v!#/A

5E
2`

`

dzH f hs~r~z!!12pkBTr~z!E dvuD f̂ ~z,v!u2J
2E

2`

`

dzmr~z!1
1

2 E2`

` E
2`

`

dz1dz2r~z1!r~z2!

3E E dv1dv2 f̂ ~z1 ,v1! f̂ ~z2 ,v2!feff~z12,v1 ,v2!,

~9!

where A is the area of the planar vapor–liquid interface,
z125z22z1 , and the effective potentialfeff is given in the
Appendix. Note that in deriving Eq.~9! we expanded the
exponential term in Eq.~2! up to the second order inbuper

rather than to the first order~see the Appendix for more
details!. This is based on the fact24 that no orientational or-
dering at the interface can be observed if only the
quadrupole–quadrupole interaction term~buper term! to the
first order is considered.

Since the system under consideration is invariant in the
x–y plane, the anisotropic part of the orientation distribution
function D f̂ (z,v) is independent of the axial anglew. As a
result, D f̂ (z,v) can be expanded in terms of the Legendre
polynomialsPk(cosu) with the coefficients of the expansion
$hk(z)% serving as the orientation order parameters, that is

D f̂ ~z,v!5
1

4p (
k51

`

~2k11!hk~z!Pk~cosu!,

~10!

hk~z!5^Pk&5E dvPk~cosu! f̂ ~z,v! ~k51,2,...!.

Substituting Eqs.~8! and ~10! into Eq. ~9!, the grand
canonical potential per unit area becomes

V@r~z!,$hk~z!%#/A

5E
2`

`

dzH f hs~r~z!!1
1

2b
r~z!(

k51

`

~2k11!hk
2~z!J

2E
2`

`

dzmr~z!1
1

2 E2`

` E
2`

`

dz1dz2

3r~z1!r~z2!c~z1 ,z2!, ~11!

where

c~z1 ,z2!5f00~z12!1f22~z12!h2h281f44~z12!h4h48

1f02~z12!~h21h28!1f04~z12!~h41h48!

1f24~z12!~h2h481h28h4!, ~12!

and whereh i5h i(z1) and h i85h i(z2) ( i 52,4). The func-
tions f00, f22, f44, f02, f04, and f24 are given in the
Appendix.

Finally, the equilibrium density and orientation order pa-
rameter profiles can be determined from the variational prin-
ciple applied to the grand canonical potential per unit area
@Eq. ~11!#, that is

d~V/A!

dr~z!
50 and

d~V/A!

dhk~z!
50 ~k51,2,...!. ~13!

The orientational order parameters are incorporated into the
expression ofV @Eq. ~11!# at two places: a sum of squared
order parameters~the orientational entropy! in the first inte-
gral, and in the expression ofc. Sincec @Eq. ~12!# depends
only on the order parameterh2 andh4 the variation ofV to
hk(z) is equal to zero for allk values exceptk52 and 4.
Consequently, the variation yields three coupled equations,

bm5bmhs~r~z1!!1 1
2@5h2

2~z1!19h4
2~z1!#

1bE
2`

`

dz2c~z1 ,z2!r~z2!, ~14!

h2~z1!52
b

5 E
2`

`

dz2@f22~z12!h2~z2!1f02~z12!

1f24~z12!h4~z2!#r~z2!, ~15!

and

h4~z1!52
b

9 E
2`

`

dz2@f44~z12!h4~z2!1f04~z12!

1f24~z12!h2~z2!#r~z2!. ~16!

In Eq. ~14!, mhs(r(z)) is the local chemical potential of the
hard-sphere reference fluid.

We note that if those terms of the orderQ4 in the ex-
pression for coefficientsf00, f22, f44, f02, f04, f24

~A16! are neglected, then the coefficientsf44, f02, f04,
andf24 will be just zero, andf00 will be independent ofQ;
only f22 will be proportional toQ2. As such, Eqs.~15! and
~16! will result in thath250 andh450. Clearly, this neglec-
tion of Q4 terms explains the missing of any interfacial mo-
lecular ordering.24 Moreover, with the neglection ofQ4

terms, Eqs.~11! and ~14! will lose entirely the dependence
on Q, as will all the bulk-phase and interfacial properties of
the quadrupole fluid. Therefore, to study the effects of the
quadrupole strength on the bulk-phase and interfacial char-
acteristics of the fluid, it is essential to include theQ4 terms
in all the coefficientsf ik ( i<k; i ,k50,2,4) @see~Eq. A16!#.

III. NUMERICAL RESULTS AND DISCUSSION

A. Vapor–liquid coexistence

In homogeneous bulk phases the densityr and the ori-
entation order parametersh2 andh4 are uniform. Thus, the
integrals in Eqs.~11!, ~14!, ~15!, and~16! can be determined
analytically. Since the integral *2`

` dz2f02(z12),
*2`

` dz2f04(z12), and*2`
` dz2f24(z12) in Eqs.~15! and~16!

vanish it follows thath250 and h450 in bulk phases.
Equations~11! and ~14! become accordingly

V52phs~r!1 1
2C~1/T!r2 and m5mhs~r!2C~1/T!r,

~17!

wherephs5rmhs2 f hs is the hard-sphere pressure and
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C~1/T!5
16

3

ed3p

kBT S 11
2

3

e

kBT
1

3

20

Q4

ed10kBTD ~18!

is a measure of the attractive interaction energy of the qua-
drupolar fluid. The coexisting liquid and vapor density,r l

and rv , can be determined by solving the phase-equilibria
equations,m(r l)5m(rv) andV(r l)5V(rv).

Figure 1 displays the vapor–liquid coexistence curves
for a number of reduced quadrupole moment strengthQ*
5Q/(ed5)1/2 within 0<Q* <1. It can be seen that at a re-
duced temperatureT* 5kBT/e increasingQ* decreases the
coexistence vapor densityjv ~j[prd3/6 is the scaled den-
sity! and enlarges the coexistence liquid densityj l . The val-
ues ofj and T* at the critical point can be determined by
solving the following equations:

]3V/]j3ujc
50 and ]2V/]j2ujc ,T

c*
50. ~19!

Since the critical densityjc is determined from the third
derivative of the grand canonical potential,jc depends only
on the reference hard-sphere system and has noQ* depen-
dence. In fact,jc is a constant (jc50.1304). The critical
temperatureTc* , however, isQ* dependent. It is foundTc*
52.01, 2.01, 2.02, 2.05, and 2.10 forQ* 50.0, 0.4, 0.6, 0.8,
and 1.0, respectively. In the inset of Fig. 1 we show that the
difference in critical temperature from that of nonquadrupo-
lar fluid, Tc* (Q* )2Tc* (0), follows very closely to the power
law,

Tc* ~Q* !2Tc* ~0!;~Q* !4. ~20!

It appears that this power law stems from the term with
Q4-dependence in Eq.~17!, which is a mean-field result for
weak Q* (Q* <1). Interestingly, Teixeira and Telo da
Gama24 have shown that for the dipolar fluids with reduced
dipole momentm0* 5m0 /(ed3)1/2 the difference in critical
temperature follows a similar power law,24,26 that is,
Tc* (m0* )2Tc* (0);(m0* )4. The relative change inTc* for m0*
changing from 0 to 1 is 2.5%, compared with 4.3% change
for quadrupolar fluids withQ* changing from 0 to 1.

Several Monte Carlo~MC! simulations of the vapor–
liquid phase equilibria for the quadrupolar LJ fluids have
been performed.2–4 Compared to the simulations,3,4 the
present theory overestimates the value of critical tempera-
ture, although the model fluid is slightly different. The quali-
tative trend ofTc* as function ofQ* is, however, the same.
Smit et al.4 found that the effect of the reduced quadrupole
momentQ* on Tc* is stronger than that of the reduced dipole
moment m0* . For the pure LJ fluid37 it is found that Tc*
51.31, and for the dipolar LJ fluid38 (m0* 51), Tc* 51.41
which is about 7% higher. But for the quadrupolar LJ fluid4

(Q* 51.0), Tc* 51.60 which is about 22% higher.
We also examined whether the vapor–liquid coexistence

densities~the binodal curve! satisfy the law of corresponding
states. Figure 2 shows that all binodal curves for various
given Q* can be almost collapsed onto a single curve by
scaling the temperature with theTc* , that is, T*
→T* /Tc* (Q* ). This result demonstrates that the law of cor-
responding state is indeed followed by the point quadrupolar
fluids. The same conclusion has been drawn by Dubey and
O’Shea39 from their MC simulation of quadrupolar LJ fluid.
In the inset of Fig. 2 we show the scaling relationship for the
difference between the coexisting liquid and vapor density
j l2jv and the small values oft (t[12T/Tc),

j l2jv;t1/2. ~21!

The mean-field scaling exponent is 0.5 which is typically
higher than the nonclassical exponent 0.325 expected close
to the critical point. Note that the differencej l2jv is nearly
independent of the quadrupole moment strengthQ* due to
the law of corresponding state.

For purely dipolar fluids, Frodl and Dietrich25 have com-
pared the results of the truncated MMF-DFT of Teixeira and
Telo da Gama24 with the results of the full version of MMF-
DFT with the nonexpanded second exponential in Eq.~2!.
They showed that the truncated MMF-DFT introduces only
quantitative but not qualitative errors which grow with the
increasing of the dipole strengthm0* . For instance, the criti-
cal temperatureTc* calculated from the truncated MMF-DFT
is lower than that of the full version. Atm0* 51 the difference

FIG. 1. Vapor–liquid coexistence densities for a quadrupolar fluid with
various givenQ* . The inset shows the shift of the critical temperature
Tc* (Q* )2Tc* (0) as a function ofQ* .

FIG. 2. The same as Fig. 1 except the temperature is rescaled based on the
critical temperature. The inset shows that the difference between the coex-
isting liquid and vapor densitiesj l2jv scales ast1/2.
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in Tc* between the truncated and full version MMF-DFT is
about 10%. The present approach, therefore, is suited best for
weakly quadrupolar fluids (Q* <1). For more strongly qua-
drupolar fluids (Q* .1) the truncation errors become large.
Nonetheless we also calculated the phase coexistence densi-
ties and critical temperatures for some large values of
Q* (1,Q* <2). Interestingly, we find that the power-law
Eq. ~20! ~inset to Fig. 1! and the law of corresponding states
~Fig. 2! no longer hold, however, the power law Eq.~21! still
holds.

B. Interfacial properties

The density and orientation order-parameter profiles for
the planar vapor–liquid interface are calculated by solving
Eqs. ~14!–~16! numerically using an iteration method. The
initial input for the density profile is a step function for
which the density is set to be the bulk liquid densityj l for
z,0 and the bulk vapor densityjv for z.0. The initial input
for both h2(z) and h4(z) is a constant zero. In Fig. 3 we
show the scaled density profilej(z)[(pd3/6)r(z) for Q*
ranging from 0 to 1 and atT* 51.6. It is seen that asQ*
increases the values of liquid-side density increase while the
values of vapor-side density decrease, consistent with the
result of vapor–liquid coexistence densities. Figure 4 shows
the orientation order-parameter profileh2(z) for various
given Q* . Becauseh4(z) is much smaller in values than
h2(z) at the same givenQ* andT* , h4(z) is not plotted. As
defined above,h2(z) is related to the mean Legendre poly-
nomial of the second order@Eq. ~10!#. Thus,h2(z),0 indi-
cates that the molecules tend to lie parallel to the interface on
the liquid side, while on the vapor side the molecules tend to
be perpendicular to the interface because ofh2(z).0. The
interfacial molecular behavior is similar to that of dipolar
molecules at the vapor–liquid interface.21–24,26,40We have
found that forQ* <1, h2(z) is always,0.01 in values, con-
sistent with the weak anisotropy requirement to the distribu-
tion function f̂ @see Eqs.~8! and~10!#. However, the relative
increase ofh2(z) for largeQ* is substantial. We find that for

any given T* the function h2(z)/(Q* )4 reduces to some
limiting dimensionless function asQ* goes to zero.

It is convenient to characterize the magnitude of the in-
terfacial ordering by using the difference between the maxi-
mum and minimum value ofh2(z), i.e., maxh2(z)
2minh2(z). The inset of Fig. 4 shows this difference follows
the power law,

maxh2~z!2minh2~z!;~Q* !4. ~22!

Interfacial behavior of quadrupolar fluids has also been
reported by other workers.19,32 Thompsonet al.19 used the
f-expansion theory to study the site–site LJ~SSLJ! plus
quadrupole fluid at the reduced temperatureT* 51.065. Al-
though the theory did not predict the dependence of the co-
existing densities onQ* , it does show that asQ* increases,
the density profile becomes sharper, in accordance with the
present result~see Fig. 3!. Both their f-expansion theory19

and MD simulation20 showed that increasingQ* tends to
alter interfacial ordering on the basis of nonquadrupolar
SSLJ system. For largeQ* , molecules prefer to orient par-
allel to the interface on the liquid side and normal to the
interface on the vapor side. This result is in accordance with
ours ~see Fig. 4!. Chacón et al.32 applied the density-
functional theory to study the systems governed by disper-
sion, overlap, dipole–dipole, dipole–quadrupole,
quadrupole–quadrupole, and isotropic forces. Their calcu-
lated orientation order-parameter profileh2(z) is similar to
ours ~see Fig. 4!. Because only the perturbation to the first
order was used, the theory cannot predict any orientational
order at the vapor–liquid interface for purely quadrupolar
fluids.24

Figure 5 displays the density profiles forQ* 50.8 at
various scaled temperaturet. We follow Rowlinson and
Widom41 to define the width of the interfaceWG52(r l

2rv)/(]r/]z)uzG
, wherezG is the position of the Gibbs di-

viding surface, defined by the equation*
2`
zG dz8@r l2r(z8)#

FIG. 3. The density profilej(z) for various givenQ* at T* 51.6.
FIG. 4. The orientational order-parameter profileh2(z) for various given
Q* andT* 51.6. The inset shows the interfacial ordering scales as (Q* )4.
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5*zG

1`dz8@r(z8)2rv#. In the inset of Fig. 5, we plot

ln(WG /d) vs lnt from which we obtain the scaling relation
for t!1,

WG;t21/2. ~23!

In Fig. 6 we show the effect of temperature on the orientation
order parameterh2(z) at a fixedQ* . As the temperature
increases, the profile becomes more broaden and flat. In the
inset of Fig. 6 we show that the interfacial ordering scales
with t whent!1 as

maxh22minh2;t3/2. ~24!

Quadrupolar fluids are known to have an electric poten-
tial jump Dw across the planar liquid–vapor interface. This
potential jump, given by

Dw5
2p

3
Q~r l2rv!, ~25!

is independent of the characteristics of the interface and
solely dependent on bulk-phase properties and strength of
the molecular quadrupole moment.42 In Fig. 7 we show the
reduced surface potentialDw* ([Dw(d/e)1/2) as a function
of the temperatureT* for various givenQ* . Sincer l2rv
follows the scaling relation Eq.~21!, Eq. ~25! immediately
yields for t!1,

Dw* ;t1/2, ~26!

that is, the surface potential follows the same scaling relation
as the coexisting density difference. Moreover, becausej l

2jv is almost independent ofQ* , it follows from Eq. ~25!
that at a givenṫ,

Dw* ;Q* . ~27!

We are aware of only one computer simulation43 which pro-
vides a calculation of the surface potential for quadrupolar
fluid. Brodskaya and Zakharov studied a cluster of 64 mol-
ecules of quadrupolar SSLJ model of bromine at one tem-
perature. Because the critical temperature of the model fluid
is unknown, it is not possible to compare their simulation
result with the scaling relation~26! obtained here.

Finally, we calculate the thermodynamical surface ten-
sions, defined as the excess of the grand canonical potential
per unit area,

s5~V2Vbulk!/A. ~28!

The reduced surface tensions* 5s(d2/e). In Fig. 8, the
temperature dependence ofs* at various givenQ* is shown.
The effect ofQ* on s* is similar to that of dipole moment
on s* , that is, the surface tensions* increases with the
strength of quadrupole moment at a fixed temperature.24,26

This interfacial behavior was also reported by Haileet al.18

based on the Pade´ perturbation study of quadrupolar SSLJ
fluids ~see Fig. 2 in Ref. 18!. In Fig. 9, we plots* vs the

FIG. 5. The density profilej(z) for various givent andQ* 50.8.

FIG. 6. The order-parameter profileh2(z) for various givent and Q*
50.8. The inset shows that the magnitude of the orientational order
maxh2–minh2 scales ast3/2.

FIG. 7. Temperature (T* ) dependence of the reduced surface potentialDw*
for various givenQ* .
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scaled temperaturet. It shows that the surface tensions* is
nearly independent ofQ* as t→0 ~or T→Tc!. For dipolar
fluids it has been found by Teixeira and Telo da Gama,24 that
the surface tensions* is nearly independent ofm0* for all the
range of the considered scaled temperature. The inset of Fig.
9 shows the scaling relation ofs* ~t!, i.e.,

s* ;t3/2. ~29!

IV. CONCLUSION

We have extended the modified mean-field density func-
tional theory of Teixeira and Telo da Gama24 to treat a model
quadrupolar fluid. We demonstrate that the inclusion of the
quadrupole–quadrupole terms to second order in the theory
permit us to observe the influence of the quadrupole strength
on both the bulk-phase and interfacial properties of the qua-
drupolar fluid.

For bulk-phase properties, we find that increasing the
quadrupole moment strengthQ* leads to a higher coexisting
liquid density and a lower coexisting vapor density, and
raises the critical temperatureTc* . For the latter, it is found
Tc* (Q* )2Tc* (0);(Q* )4. It is also found that the vapor–
liquid coexisting densities follows the law of corresponding
states. In fact, the binodal curves at various givenQ* can be
all collapsed into a single master curve. Moreover, the dif-
ference in coexisting density follows the scaling relationj l

2jv;t1/2, andj l2jv is nearly independent ofQ* .
For interfacial properties, we find based on the orienta-

tion order-parameter profileh2(z) that quadrupolar mol-
ecules at the vapor–liquid interface tend to lie parallel to the
interface on the liquid side and normal to the interface on the
vapor side. This orientational ordering is due entirely to the
molecular quadrupole–quadrupole interaction. At a fixed
temperature the orientational order, measured by the differ-
ence of the maximum and minimum value ofh2(z), de-
creases with the quadrupole moment strengthQ* to the
fourth power (Q* )4. The orientational order also follows the
scaling relation, maxh2(z)2minh2(z);t3/2 at a givenQ* . It
is also found that the width of density profile satisfies the
scaling relationWG;t21/2, and the reduced surface electric
potential Dw* follows the scaling relationDw* ;t1/2, at
fixed Q* . Moreover, Dw* is proportional toQ* at fixed
temperaturet. Finally, we find the thermodynamic surface
tensions* increases withQ* , and at fixedQ* it satisfies the
scaling relations* ;t3/2.

To close, we note that purely quadrupolar fluids share
many similar mean-field scaling relations as those for purely
dipolar fluids. For example, Frodl and Dietrich26 have ap-
plied a nonperturbative density-functional theory to dipolar
~Stockmayer! fluid. Their derived scaling relations and
power-law exponents for the coexisting density difference,
the magnitude of orientational order, and the surface tension
are identical to ours for the quadrupolar fluid@Eqs. ~20!,
~22!–~24!, and~29!#.
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APPENDIX: DERIVATION OF feff IN EQ. „9…

Here, we derive the expression for the effective potential
feff arising in Eq.~9!. Towards this end we expand the ex-
ponential function in Eq.~2! over the perturbation potential
buper with keeping the terms up to the second power of
buper. Writing the radius-vectorr12 in the cylindrical coor-
dinates, i.e.,r125(R12,z12,w12), we obtain

feff~z12,v1 ,v2!

5E
0

2p

dw12E
0

1`

R12dR12@~uper~R12,z12,w12,v1 ,v2!

2~b/2!uper
2 ~R12,z12,w12,v1 ,v2!#. ~A1!

Substituting Eq.~5! into Eq. ~A1! feff can be expressed as

FIG. 8. Temperature (T* ) dependence of the reduced surface tensions* for
various givenQ* .

FIG. 9. Scaled temperature~t! dependence ofs* for various givenQ* . The
inset shows thats* scales ast3/2.
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feff~z12,v1 ,v2!5u001uqq2
b

2
@u00

2 12u00uqq1uqq
2 #.

~A2!

On the right-hand side of Eq.~A2! all five terms can be
expressed as

x̄~z12,v1 ,v2!

5E
0

2p

dw12E
0

1`

R12dR12x~R12,z12,w12,v1 ,v2!

3H~r 122d!, ~A3!

wherex5u00, uqq , u00
2 , u00uqq , uqq

2 . The integralu00, u00
2 ,

anduqq are given in Ref. 24 as

u005A~z!, u00
2 5C~z!, uqq5wqq~z!P2P28 , ~A4!

whereP25P2(cosu1), P285P2(cosu2), and detailed expres-
sion for A(z), C(z), wqq(z), is provided in Eq.~A14! of
Ref. 24 @note that in Eq. ~A4! those terms involving
cos(n(w12w2)) are removed because the orientation distribu-
tion f̂ does not depend onw so that the integration overw for
those terms will vanish#.

The two remaining terms in Eq.~A2!, u00uqq and uqq
2 ,

are our main focus, and both include the quadrupole–
quadrupole interaction. First, we write the potential between
two linear quadrupoles as a sum of spherical harmonics
Ylm ,36

uqq5
Q2

r 12
5

8p

15
~70p!1/2 (

m1 ,m2 ,m3

C~224;m1 ,m2 ,m3!

3Y2m1
~v1!Y2m2

~v2!Y4m3
* ~v12!, ~A5!

where um1u, um2u<2, m35m11m2 , C(224;m1 ,m2 ,m3) is
the Clebsch–Gordan coefficient in the Rose convention,44

andv12 denotes the orientation of the intermolecular axis in
the space-fixed coordinate system. We then have

u00uqq52ed6Q2
32p

15
~70p!1/2

3 (
m1 ,m2 ,m3

C~224;m1 ,m2 ,m3!Y2m1
~v1!

3Y2m2
~v2!•E

0

1` R12dR12

r 12
11 H~r 122d!

3E
0

2p

Y4m3
* ~v12!dw12. ~A6!

With account of the expression for the spherical harmonics

Ylm~u,w!

5~21!mS ~2l 11!

4p D 1/2S ~ l 2m!!

~ l 1m!! D
1/2

Pl
m~cosu!eimw,

wherePl
m(x) is the associated Legendre polynomial, and the

orthogonal relation*0
2pei (m2m8)wdw52pdmm8 , Eq. ~A6!

becomes

u00uqq52ed6Q2~8p!2S 7

10D
1/2

3 (
m11m250

C~224;m1 ,m2,0!Y2m1
~v1!Y2m2

~v2!

3E
0

1` R12dR12

r 12
11 H~r 122d!P4~cosu12!. ~A7!

The integral in Eq.~A7! involves P4(cosu12) which is a
polynomial of cosu125z12/r 12 of the order four. Thus, it can
be reduced to a sum of integral*0

1`R12dR12/r 12
n H(r 12

2d), where n is an integer greater than 2. Withr 12

5AR12
2 1z12

2 , we obtain

E
0

1` R12dR12

r 12
n H~r 122d!

5
1

~n22! H 1

dn22 , uz12u<d

1

uz12un22 , uz12u.d.

~A8!

Using Eq.~A8! in Eq. ~A7! we obtain

u00uqq5x00,qq
22 P2P28 , ~A9!

where

x00,qq
22 52e

pQ2

d3 6H 35

13

z4

d42
30

11

z2

d2 1
1

3
, uzu<d

128

429

d9

uz9u
, uzu.d.

~A10!

We also have

uqq
2 5S 8p

15D 2

Q4 (
m1 ,m2 ,m3

m18 ,m28 ,m38

C~224;m1 ,m2 ,m3!

3C~224;m18 ,m28 ,m38!Y2m1
~v1!Y2m2

~v2!

3Y2m
18
~v1!Y2m

28
~v2!E

0

1` R12dR12

r 12
10 H~r 122d!

3E dw12Y4m3
* ~v12!Y4m

38
* ~v12!. ~A11!

The angular integral overw12 in Eq. ~A11! is proportional to
dm3 ,m

38
. Therefore,
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uqq
2 5S 8p

15D 2

Q4 (
m1 ,m2 ,m3

m18 ,m28

C~224;m1 ,m2 ,m3!

3C~224;m18 ,m28 ,2m3!Y2m1
~v1!Y2m2

~v2!Y2m
18
~v1!

3Y2m
28
~v2!E

0

1` R12dR12

r 12
10 H~r 122d!P4

m3

3~cosu12!P4
2m3~cosu12!, ~A12!

whereP4
m3(cosu12)P4

2m3(cosu12) is a polynomial of cosu12

with the highest power being eight. Taking the integration on
R12 for every m3 in Eq. ~A12! with using Eq. ~A8!, and
rewriting the result as an expansion of the Legendre polyno-
mials, we obtain, after a lengthy calculation,

uqq
2 ~z,v1 ,v2!5xqq,qq

00 1xqq,qq
22 P2P281xqq,qq

44 P4P48

1xqq,qq
02 ~P21P28!1xqq,qq

04 ~P41P48!

1xqq,qq
24 ~P2P481P28P4!, ~A13!

wherePi5Pi(cosu1), Pi85Pi(cosu2) and the coefficients,

xqq,qq
00 5

pQ4

d8

7

10H 1, uzu<d

d8

z8 , uzu.d,

xqq,qq
22 5

pQ4

d8

5

49H 27
z4

d42
156

5

z2

d2 1
77

10
, uzu<d

7

2

d8

z8 , uzu.d,

xqq,qq
44 5

pQ4

d8

9

784H 60025

8

z8

d8216100
z6

d6 110929
z4

d42
12092

5

z2

d2 1
1757

20
, uzu<d

63

40

d8

z8 , uzu.d,

~A14!

xqq,qq
02 5

pQ4

d8

5

14H 12

5

z2

d221, uzu<d

7

5

d8

z8 , uzu.d,

xqq,qq
04 5

pQ4

d8

3

112H 42
z4

d42
216

5

z2

d2 1
27

5
, uzu<d

21

5

d8

z8 , uzu.d,

xqq,qq
24 5

pQ4

d8

15

784H 420
z6

d62690
z4

d4 1
1476

5

z2

d2221, uzu<d

21

5

d8

z8 , uzu.d.

Finally, to expressfeff as an expansion of the Legendre
polynomials we substitute Eqs.~A4!, ~A10!, and~A13! into
Eq. ~A2!, and obtain

feff~z,v1 ,v2!

5f00~z!1f22~z!P2P281f44~z!P4P48

1f02~z!~P21P28!1f04~z!~P41P48!

1f24~z!~P2P481P28P4!, ~A15!

where

f00~z!5A~z!2
b

2
~C~z!1xqq,qq

00 ~z!!,

f22~z!5wqq~z!2
b

2
~2x00,qq

22 ~z!1xqq,qq
22 ~z!!,

~A16!

f44~z!52
b

2
xqq,qq

44 ~z!, f02~z!52
b

2
xqq,qq

02 ~z!,

f04~z!52
b

2
xqq,qq

04 ~z!, f24~z!52
b

2
xqq,qq

24 ~z!.
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