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The study of extremal problems related to independent sets in hypergraphs is a problem that has
generated much interest. There are a variety of types of independent sets in hypergraphs depending
on the number of vertices from an independent set allowed in an edge. We say that a subset
of vertices is j-independent if its intersection with any edge has size strictly less than j. The
Kruskal–Katona theorem implies that in an r-uniform hypergraph with a fixed size and order, the
hypergraph with the most r-independent sets is the lexicographic hypergraph. In this paper, we use
a hypergraph regularity lemma, along with a technique developed by Loh, Pikhurko and Sudakov,
to give an asymptotically best possible upper bound on the number of j-independent sets in an
r-uniform hypergraph.

AMS 2010 Mathematics subject classification: Primary 05C65
Secondary 05D05, 05C69

1. Introduction

The study of independent sets in graphs has a long history. Recently, extremal problems related to
maximizing the number of independent sets in graphs have been an active area of research. Kahn
[7] determined which regular bipartite graphs with n vertices have the most independent sets, and
his theorem was recently extended to all regular graphs by Zhao [15]. It is a consequence of the
Kruskal–Katona theorem [9, 8] that the lexicographic graph has the largest number of independ-
ent sets among graphs of fixed order and size (see, e.g., [2]). Independent sets in hypergraphs
have also been well studied. Much of this research has focused on determining algorithms for
finding independent sets in r-uniform hypergraphs (see, e.g., [14]).

In this paper we determine asymptotically the maximum number of independent sets possible
for an r-uniform hypergraph on n vertices and m edges. Independent sets in hypergraphs are a bit
more complicated than those in graphs since they can be defined in a number of ways depending
on how many vertices from an independent set are allowed in an edge.
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For us, a hypergraph H is an ordered pair (V , E), where V is a finite set and E ⊆ P(V ). We
say a hypergraph H = (V , E) is r-uniform if E ⊆

(
V
r

)
, where

(
V
r

)
= {E ⊆ V : |E| = r}. For a

hypergraph H = (V , E), we write n(H) for |V | and e(H) for |E |.

Definition. For an r-uniform hypergraph H = (V , E) and an integer j with 1 � j � r, we say
that a set I ⊆ V (H) is j-independent if |I ∩ E| < j for all E ∈ E . Let Ij(H) be the collection of
all j-independent subsets of V and ij(H) = |Ij(H)|.

Example 1. If G is a graph, i.e., a 2-uniform hypergraph, then I2(G) is the collection of all
independent sets in the graph G. On the other hand, I1(G) is simply the collection of subsets
disjoint from all edges of G. Thus, i1(G) = 2n0 , where n0 is the number of isolated vertices in G.

In the case j = r, the maximum number of independent sets possible in an r-uniform hy-
pergraph is known exactly as a consequence of the Kruskal–Katona theorem. For the sake of
completeness, we include this result and its proof.

Theorem 1.1. If H = (V , E) is an r-uniform hypergraph with n(H) = n and e(H) = m, then

ir(H) � ir(Ln,m),

where Ln,m is the r-graph on [n] = {1, 2, . . . , n} whose edges are the first m elements in the
lexicographic ordering1 on

(
[n]
r

)
.

Proof. Let us write I (k)
r (H) for Ir(H) ∩

(
V
k

)
. Note that I ∈ I (k)

r (H) if and only if I is not in the
upper shadow of H on level k, the set

∂(k)H =

{
B ∈

(
V

k

)
: ∃E an edge of H such that E ⊆ B

}
.

Thus

ir(H) =

n∑
k=0

|I (k)
r (H)|

=

r−1∑
k=0

(
n

k

)
+

n∑
k=r

((
n

k

)
− |∂(k)H|

)

�
r−1∑
k=0

(
n

k

)
+

n∑
k=r

((
n

k

)
− |∂(k)Ln,m|

)

= ir(Ln,m),

where the inequality |∂(k)H| � |∂(k)Ln,m| is the content of the Kruskal–Katona theorem.

Maximizing the number of 1-independent sets is trivial, since for an r-uniform hypergraph H
with n vertices,

i1(H) � 2n−n∗
,

1 For A,B ⊆ [n], we say A <lex B if and only if min(A � B) ∈ A.
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where n∗ is the unique integer for which
(
n∗−1
r

)
< e(H) �

(
n∗

r

)
. Just as in Example 1 for graphs,

1-independent sets in a hypergraph H are simply subsets of the isolated vertices of H-vertices
not in any edge of H. This bound is achieved by any hypergraph whose edges are contained in
some set of size n∗.

For 1 < j < r the problem of maximizing the number of j-independent sets in r-uniform
hypergraphs is open. If we follow the approach of Theorem 1.1 and think about I (k)

j (H) for
some j < r, we have

I (k)
j (H) =

(
V

k

) ∖
∂(k)

(
∂(j)H

)
,

where the lower shadow

∂(j)H =

{
B ∈

(
V

j

)
: ∃E an edge of H such that B ⊆ E

}
.

The configuration of sets that minimizes the lower shadow, i.e., the colex hypergraph, is very
different than that which minimizes the upper shadow, i.e., the lex hypergraph. It is thus very dif-
ficult to get exact results giving upper bounds on the number of independent sets in hypergraphs.

We give an asymptotically best possible bound on ij(H) in terms of the number of independent
sets in a split hypergraph, which we define below. Our approach follows that of Loh, Pikhurko
and Sudakov in [10], where they determine asymptotically the maximum number of q-colourings
of a graph G with n vertices and m edges. They use Szemerédi’s Regularity Lemma [12] in a
clever way. Given a regular partition of the vertex set and and q-colouring of G, they associate
a colouring of the auxiliary graph. Since the regular partition has a bounded number of parts,
there are only a constant number of possible auxiliary colourings and one need only consider,
asymptotically, those colourings of G corresponding to a fixed auxiliary colouring. This allows
them to get good control on the problem of maximizing the number of q-colourings.

We adapt this approach to prove an asymptotic bound on the number of j-independent sets in
an r-uniform hypergraph. We prove that the way to get many j-independent sets is, asymptotic-
ally, to have a very large j-independent set, all of whose subsets are, of course, j-independent.
Another way to say this is that the asymptotic extremal graphs will be what we call split hyper-
graphs, which are analogous to split graphs. In adapting the approach of Loh, Pikhurko and
Sudakov we need to use a hypergraph regularity lemma. In Section 2, we discuss both the
hypergraph regularity lemma and preliminary results about split hypergraphs, defined below.

Definition. The j-split r-graph with partition (A,B), denoted S (r)
j (A,B), is defined as the r-

uniform hypergraph with vertex set V = A ∪ B and edge set{
E ∈

(
V

r

)
: |E ∩ A| < j

}
.

When we are not concerned with the identity of the sets A and B, we write S (r)
j (k, n − k) for a

j-split r-graph with |A| = k and |B| = n − k. We let

s
(r)
j (k, n − k) = e

(
S (r)
j (k, n − k)

)
.

See Figure 1 for an example.
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A B

Figure 1. (Colour online) The types of edges in the split 3-graph S(3)
2 (A,B).

We can now state the main result of the paper. In the statement, and for the rest of the paper,
all o(1) terms go to zero as n goes to infinity.

Main Theorem. Let j and r 
= 1 be positive integers with 1 � j � r. Given η > 0 and any
r-uniform hypergraph H on n vertices with η

(
n
r

)
� e(H) � (1 − η)

(
n
r

)
, if we let k∗ be maximal

such that

e(H) � s
(r)
j (k∗, n − k∗),

then

ij(H) � 2(1+o(1))k∗
.

In Section 2, in addition to proving some preliminary lemmas, we will show that this result is
asymptotically best possible by showing that

ij
(
S (r)
j (k, n − k)

)
= (1 + o(1))2k,

for k/n bounded away from 0 and 1. In Section 3, we prove the Main Theorem.

2. Preliminaries

2.1. Hypergraph regularity
There are now highly sophisticated hypergraph regularity lemmas available: see, e.g., [1], [5],
[6], [11] and [13]. We, however, need only a simple version which can be found in [3] or [4], for
example. In order to state the regularity lemma, we need first to define an ε-regular partition, the
structure guaranteed by the regularity lemma. In what follows, we use the standard notation that
if H = (V , E) is an r-uniform hypergraph and W1,W2, . . . ,Wr are disjoint subsets of the vertex
set, then

H[W1,W2, . . . ,Wr] = {E ∈ E : |E ∩ Wi| = 1, ∀i ∈ [r]}.

Definition. Let H = (V , E) be an r-uniform hypergraph. Given ε > 0, we say an r-tuple
(W1,W2, . . . ,Wr) of disjoint subsets of V is ε-regular if, for all sequences (Si)

r
1 of subsets
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Si ⊆ Wi with |Si| � ε|Wi| for all i ∈ [r], we have∣∣∣∣e(H[W1,W2, . . . ,Wr])∏r
1 |Wi|

− e(H[S1, S2, . . . , Sr])∏r
1 |Si|

∣∣∣∣ < ε.

We say a partition {V1, . . . , Vt} is an ε-regular partition of H if

(1) |V1| � |V2| � . . . � |Vt| � |V1| + 1, and
(2) the r-tuple (Vi1 , Vi2 , . . . , Vir ) is ε-regular for all but ε

(
t
r

)
of the r-sets {i1, i2, . . . , ir} in

(
[t]
r

)
.

The following hypergraph regularity lemma can be read out of, for example, a result of Czy-
grinow and Rödl [3].

Theorem 2.1. For all r, m ∈ n and ε > 0, there exists M,L ∈ n such that given any r-uniform
hypergraph H = (V , E) with |V | � L, there is an ε-regular partition {V1, . . . , Vt} of H with m �
t � M.

2.2. Split hypergraphs
We now present some characteristics of the j-split r-graphs, S (r)

j (k, n − k), which were defined
in Section 1. To develop intuition, we briefly discuss the r = 2 case.

Example 2. Note that in the case when r = 2, only two values for j are of interest, namely 1

and 2. (If j � 3, then S (2)
j (k, n − k) is a complete graph.) In the case when j = 1, we have that

S (2)
1 (k, n − k) is the disjoint union of the empty graph Ek and the complete graph Kn−k. When

j = 2, similarly, S (2)
2 (k, n − k) is the join2 of Ek and Kn−k.

We now prove a sequence of lemmas concerning hypergraphs which we will need for the proof
of the Main Theorem. The first lemma gives the number of edges and j-independent sets in the
split r-graphs. For convenience, we write

(
n

� k

)
=

k∑
i=0

(
n

i

)
.

From this point forward, we will fix an integer r and discuss r-uniform hypergraphs. Also, we
will fix an integer j with 1 � j � r. Our aim is to prove the Main Theorem for these values of r
and j, which will appear in our lemmas without further comment.

Lemma 2.2. Let n be a positive integer with n � r. If |A| = k and |B| = n − k, then the number
of edges in S = S (r)

j (A,B) is

e(S) =

j−1∑
i=0

(
k

i

)(
n − k

r − i

)
.

2 The join of graphs G and H is the graph with vertex set the disjoint union of V (G) and V (H) and edge set E(G) ∪
E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}.
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If j � k � n − r + j − 1, i.e., S is neither complete nor empty, then the number of j-independent
sets in S is

ij(S) = 2k +

(
n

� (j − 1)

)
−

(
k

� (j − 1)

)
.

Proof. The first calculation is straightforward. For the second, it is easy to check that in the
relevant range of k, any set of j vertices not contained in A is contained in an edge.

Corollary 2.3. Given 0 < ξ < 1/2, we have

ij
(
S (r)
j (k, n − k)

)
= (1 + o(1))2k,

provided ξ < k/n < 1 − ξ.

The next technical lemma bounds the difference in the number of edges between split graphs
with adjacent values of k. We need to show that the difference is large to ensure that changing
k by a constant multiple of n changes the proportion of edges in the hypergraph by a constant
amount.

Lemma 2.4. Given 0 < ξ < 1/2 there exists ζ > 0 such that whenever n is an integer with
n � 2max(j, r − j)/ξ and k ∈ [n] satisfies k

n
∈ (ξ, 1 − ξ), we have

s
(r)
j (k − 1, n − k + 1) � s

(r)
j (k, n − k) + ζnr−1.

Proof. Writing S = S (r)
j (k − 1, n − k + 1) and S ′ = S (r)

j (k, n − k), we see that S contains S ′

and

e(S) − e(S ′) =

(
k − 1

j − 1

)(
n − k

r − j

)

� (k − j)j−1

(j − 1)!
· (n − k − r + j)r−j

(r − j)!

� 1

(j − 1)!(r − j)!

(
ξ n

2

)j−1(
ξ n

2

)r−j

=
ξr−1

2r−1(j − 1)!(r − j)!
· nr−1.

We can clearly set ζ = ξr−1/
(
2r−1(j − 1)!(r − j)!

)
.

Our last lemma discusses the relationship between the number of edges in the split hypergraph
S (r)
j (k, n − k) and the ratio k/n. We make the following definition.

Definition. Given an integer n � r and e with 0 � e �
(
n
r

)
, we write

k∗(n, e) = max{k � n : s
(r)
j (k, n − k) � e},
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for the largest k such that the split graph S (r)
j (k, n − k) has at least e edges. This is clearly well-

defined since s
(r)
j (0, n) =

(
n
r

)
and s

(r)
j (n, 0) = 0. Note further that s(r)j (k, n − k) is a decreasing

function of k for fixed n.

We prove that if e/
(
n
r

)
is bounded away from 0 and 1 then so is k∗(n, e)/n.

Lemma 2.5. Given ν ∈ (0, 1/2), there exists ξ = ξ(ν) ∈ (0, 1/2) such that for n sufficiently
large (as a function of ν), we have the following: if e satisfies

ν

(
n

r

)
< e < (1 − ν)

(
n

r

)
,

then k∗ = k∗(n, e) satisfies

ξ <
k∗

n
< 1 − ξ.

Proof. For the lower bound (by Lemma 2.2), we want to show that there is a ξ such that

s
(r)
j (ξn, n − ξn) =

j−1∑
i=0

(
ξn

i

)(
n − ξn

r − i

)
� (1 − ν)

(
n

r

)
.

Pick ξ1 with 0 < ξ1 < 1 − (1 − ν)1/r. To show the above with ξ = ξ1, we bound the sum by the
i = 0 term. Thus,

s
(r)
j (ξ1n, n − ξ1n) =

j−1∑
i=0

(
ξ1n

i

)(
n − ξ1n

r − i

)

�
(

(1 − ξ1)n

r

)

= (1 − o(1))(1 − ξ1)
r

(
n

r

)

> (1 − ν)

(
n

r

)
,

for n sufficiently large. In the other direction pick ξ2 with 0 < ξ2 < ν /
(
j
(

r
r/2�

))
. We let i′ be

the value of i with 1 � i � j − 1 that maximizes
(
(1−ξ2)n

i

)(
ξ2n
r−i

)
. Note that i′ � j − 1 < r. Now,

s
(r)
j (n − ξ2n, ξ2n) =

j−1∑
i=0

(
n − ξ2n

i

)(
ξ2n

r − i

)

� j

(
(1 − ξ2)n

i′

)(
ξ2n

r − i′

)

< j(1 − ξ2)
i′ξr−i′

2

(
n

i′

)(
n

r − i′

)
.
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Since we want an upper bound, we can neglect the factors of 1 − ξ2; since i′ < r, there is at least
one factor of ξ2. So,

s
(r)
j (n − ξ2n, ξ2n) � j ξ2

(
n

i′

)(
n

r − i′

)

= j ξ2 (1 + o(1))

(
n

i′

)(
n − i′

r − i′

)

= j ξ2 (1 + o(1))

(
n

r

)(
r

i′

)

� j ξ2 (1 + o(1))

(
n

r

)(
r

r/2�

)

< ν

(
n

r

)
,

for n sufficiently large. Letting ξ = min(ξ1, ξ2), the lemma follows.

3. Proof of Main Theorem

We restate the Main Theorem before presenting its proof.

Main Theorem. Let j and r 
= 1 be positive integers with 1 � j � r. Given η > 0 and any
r-uniform hypergraph H on n vertices with η

(
n
r

)
� e(H) � (1 − η)

(
n
r

)
, if we let k∗ be maximal

such that

e(H) � s
(r)
j (k∗, n − k∗),

then

ij(H) � 2(1+o(1))k∗
.

Proof. Given ε > 0, we want to show that for n sufficiently large and H an r-uniform hyper-
graph with η

(
n
r

)
� e(H) � (1 − η)

(
n
r

)
, we have

ij(H) � 2(1+ε)k∗(n,e), (3.1)

where we have written e for e(H). We will proceed by introducing a parameter δ which governs
our use of the regularity lemma; at the end of the proof we will choose δ sufficiently small so as
to achieve the bound in (3.1). Our proof proceeds in a sequence of steps.

Step 1. Given 0 < δ < 1, there exists a ‘cleaned-up’ subhypergraph H′ of H and a δ-regular
partition {V1, V2, . . . , Vt} of H such that

(a) e(H′) � e(H) − δnr,

(b) all edges of H′ span r parts of the partition, and

(c) all subgraphs H′[Vi1 , Vi2 , . . . , Vir ] are either empty or δ-regular with density at least δ.
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To show this, first apply Theorem 2.1 with ε = δ/4 and m sufficiently large that

r−1∏
i=1

(
1 − i

m

)
> 1 − δ

2

to get a suitable partition {V1, V2, . . . , Vt}. We get H′ by first deleting all edges that do not span r

parts of the partition. Taking into account the fact that the sizes of the Vi are each within one of
n/t, and the number of parts in the partition is bounded by M, the number of r-sets in V (H) that
do not span r parts of the partition is at most

(1 + o(1))

[(
n

r

)
−

nr
∏r−1

i=1 (1 − i
t
)

r!

]
= (1 + o(1))

(
n

r

)[
1 − nr

(n)r

r−1∏
i=1

(
1 − i

t

)]

� (1 + o(1))

(
n

r

)[
1 −

r−1∏
i=1

(
1 − i

m

)]

< (1 + o(1))
δ

2

(
n

r

)

� (1 + o(1))
δ

4
nr

<
3δ

8
nr

for n sufficiently large. Certainly, then, the number of edges of H that do not span r parts of
the partition is at most 3δ

8
nr. Now, if {i1, i2, . . . , ir} has the property that H[Vi1 , Vi2 , . . . , Vir ] either

has density less than δ or is not δ-regular, we delete all edges of H[Vi1 , Vi2 , . . . , Vir ]. The total
number of such deleted edges is at most

δ

(
t

r

)(
n

t

)r

+
δ

4

(
t

r

)(
n

t

)r

<
5δ

8
nr.

(Recall that the partition was chosen to be (δ/4)-regular.) The hypergraph H′ is the result of
deleting all of the above edges from H.

Step 2. Now we focus our attention on j-independent sets with the property that if they intersect
a part Vi, then they have reasonably large intersection with that part.

Definition. Given a j-independent set I in H′, we define a subset D(I) ⊆ [t] by

D(I) = {i ∈ [t] : |I ∩ Vi| � δ|Vi|}.

We call a j-independent set robust if I ∩ Vi = ∅ for all i /∈ D(I). We let R be the set of robust
j-independent sets in H′. Also, for convenience we define VD, for D ⊆ [t], to be

VD =
⋃
i∈D

Vi.

The following lemma proves that a reasonable proportion of j-independent sets are robust.
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Lemma 3.1. There exists cδ > 0 such that

|R| � exp(−cδn) ij(H′)

and cδ tends to zero as δ tends to zero.

Proof. Define a map f : Ij(H′) → R by

f(I) = I ∩ VD(I).

We show that each I0 ∈ R has at most exp((2δ − δ ln δ)n) pre-images under f. First note that
|I \ f(I)| � δn; therefore the number of I such that f(I) = I0 is at most, using Stirling’s formula
to bound the largest term,

δn∑
s=0

(
n

s

)
� (1 + δn) exp(δn)

(
1

δ

)δn

� exp(δn) exp(δn)

(
1

δ

)δn

= exp((2δ − δ ln δ)n).

Setting cδ = 2δ − δ ln δ proves the lemma.

Step 3. We have shown that there are not too many fewer robust j-independent sets than j-
independent sets. Now we show that the existence of many robust j-independent sets constrains
H′ to be a subgraph of a j-split hypergraph. To be precise, for D ⊆ [t], we let SD be the j-split
hypergraph S (r)

j (VD, V
c
D), and show the following.

Lemma 3.2. If I ∈ R and D(I) = D, then H′ ⊆ SD, or, in other words, VD is j-independent.

Proof. We need to show that if {Vi1 , Vi2 , . . . , Vir} is a set of blocks with

|{i1, i2, . . . , ir} ∩ D| � j,

then H′[Vi1 , Vi2 , . . . , Vir ] is empty. If it is not empty then it is δ-regular. For i ∈ {i1, i2, . . . , ir} ∩
D, we have |I ∩ Vi| � δ|Vi|, so, by the δ-regularity, there is an edge E of H′ with E ∩ Vi ⊆
I ∩ Vi for all i ∈ {i1, i2, . . . , ir} ∩ D. In particular, |E ∩ I | � j, contradicting the j-independence
of I .

Step 4. Finally, we prove (3.1), that

log2

(
ij(H)

)
� (1 + ε)k∗(n, e).

For D ⊆ [t], we let RD be the collection of robust j-independent sets supported on D, i.e.,
RD = {I ∈ R : D(I) = D}. Fix a D∗ with |RD∗ | maximal, so that

|RD∗ | � 2−t|R| � 2−M |R|. (†)

We estimate as follows:

ij(H) � ij(H′)

� exp(cδn)|R|
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� exp(cδn) 2M |RD∗ |
� exp(cδn) 2M2|VD∗ |.

The first inequality follows from the fact that H′ ⊆ H, the second from Lemma 3.1, and the third
from (†). The final estimate is simply the fact that if I is a robust independent set with D(I) = D,
then I ⊆ VD. Taking logarithms, we have

log2

(
ij(H)

)
� cδn

ln 2
+ |VD∗ | + M. (3.2)

We now need to bound |VD∗ |.

Lemma 3.3. There exists c′
δ > 0 such that

|VD∗ | � k∗(n, e) + c′
δn

and c′
δ tends to zero as δ tends to zero.

Proof. Let e′ = e(H′) and k′ = k∗(n, e′) = max{k : s
(r)
j (k, n − k) � e′}. Since H′ is a subgraph

of SD∗ , by Lemma 3.2, we have |VD∗ | � k′. We apply Lemma 2.5 with ν = η/2 to get a suitable
ξ ∈ (0, 1/2). Recall that e′ > η

(
n
r

)
− δnr. So, for n sufficiently large and δ < η/(4r!), we have

η

2

(
n

r

)
< (η − 2r!δ)

(
n

r

)
� e′ � e(H) � (1 − η)

(
n

r

)
<

(
1 − η

2

)(
n

r

)
.

So, Lemma 2.5 implies that

ξ <
k∗(n, e)

n
� k′

n
< 1 − ξ.

Thus, by Lemma 2.4, there exists ζ > 0 such that for all k with k∗(n, e) � k � k′, we have

s
(r)
j (k − 1, n − k + 1) � s

(r)
j (k, n − k) + ζnr−1.

In particular,

δnr � e − e′

� s
(r)
j (k∗(n, e) + 1, n − k∗(n, e) − 1) − s

(r)
j (k′, n − k′)

� (k′ − k∗(n, e) − 1)ζnr−1.

Therefore, k′ − k∗(n, e) � δn
ζ

+ 1 � 2δn
ζ

. We have

|VD∗ | � k′ � k∗(n, e) +
2δ

ζ
n.

We set c′
δ = 2δ

ζ
and the lemma is proved, noting that ζ does not depend on δ.
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Applying Lemma 3.3 to (3.2), we have, for n sufficiently large,

log2

(
ij(H)

)
� cδn

ln 2
+ k∗(n, e) + c′

δn + M

� k∗(n, e) +

(
cδ

ln 2
+ c′

δ

)
ξk∗(n, e) + M

� (1 + ε)k∗(n, e).

The penultimate step follows from Lemma 2.5. The final bound comes from choosing δ suffi-
ciently small.
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