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Next-Generation Sequencing of Crown and Rhizome
Transcriptome from an Upland, Tetraploid Switchgrass

Nathan A. Palmer & Aaron J. Saathoff &
Jaehyoung Kim & Andrew Benson &

Christian M. Tobias & Paul Twigg & Kenneth P. Vogel &
Soundararajan Madhavan & Gautam Sarath

Published online: 13 December 2011
# Springer Science+Business Media, LLC. (outside the USA) 2011

Abstract The crown and rhizome transcriptome of an
upland tetraploid switchgrass cultivar cv Summer well
adapted to the upper Midwest was investigated using the
Roche 454-FLX pyrosequencing platform. Overall, ap-
proximately one million reads consisting of 216 million
bases were assembled into 27,687 contigs and 43,094
singletons. Analyses of these sequences revealed minor
contamination with non-plant sequences (< 0.5%), indicat-
ing that a majority were for transcripts coded by the
switchgrass genome. Blast2Gos comparisons resulted in
the annotation of ~65% of the contig sequences and ~40%
of the singleton sequences. Contig sequences were mostly
homologous to other plant sequences, dominated by matches
to Sorghum bicolor genome. Singleton sequences, while dis-
playing significant matches to S. bicolor, also contained

sequences matching non-plant species. Comparisons of
the 454 dataset to existing EST collections resulted in the
identification of 30,177 new sequences. These new
sequences coded for a number of different proteins and a
selective analysis of two categories, namely, peroxidases
and transcription factors, resulted in the identification of
specific peroxidases and a number of low-abundance tran-
scription factors expected to be involved in chromatin
remodeling. KEGG maps for glycolysis and sugar metab-
olism showed high levels of transcript coding for enzymes
involved in primary metabolism. The assembly provided
significant insights into the status of these tissues and
broadly indicated that there was active metabolism taking
place in the crown and rhizomes at post-anthesis, the seed
maturation stage of plant development.

Electronic supplementary material The online version of this article
(doi:10.1007/s12155-011-9171-1) contains supplementary material,
which is available to authorized users.
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Introduction

Increasingly, there is interest in the use of switchgrass as a
feedstock for biofuels because it can be effectively grown on
marginal croplands [1, 2]. In order to fulfill anticipated
biomass demand, improvements in agronomic properties,
particularly biomass yields, yield stability, and quality of
lignocellulosic materials, need to be accomplished by the
year 2030 to meet a national goal of replacing 30% of
petroleum gasoline with liquid fuels derived from renew-
ables [3]. Accomplishing these goals in the upper Midwest
will also be met with the challenge of sustaining high
productivity from potential cold weather-related losses in
stand (plants per square meter) over time that could both
reduce yields and increase production costs to replant fields.

Sustainable production of switchgrass for biofuels in the
upper Midwest will require cultivars that withstand great
fluctuation in temperatures and rainfall. At least two differ-
ent factors are believed to contribute to switchgrass produc-
tion under these conditions. The first is the overall health of
the below-ground components of the plant. Depending on
the genotype, switchgrass produces either short or long
rhizomes. Each spring, new tillers arise from rhizomes,
crowns, and axilliary buds present on stem bases. There is
significant genetic variation for new tiller production and for
the proportion of tiller initials derived from different sour-
ces. Thus, breeding efforts will have to capitalize on this
diversity to produce cultivars with optimal biological effi-
ciency for tiller meristem initiation and growth. In addition
to tillering, a second factor that is related with winter hardi-
ness is lignin. Selection of forages for increased dry matter
digestibility (e.g., for animal feed) is accompanied by low-
ering lignin in plant tissues, but plants bred for lowered
lignin also have displayed a loss in agricultural fitness in
some genetic backgrounds [4]. Unfortunately, little is
known about the underlying reason for this observation.
However, several studies have also seen that selection for
increased digestibility also negatively impacts winter hardi-
ness in some switchgrass populations [5, 6].

To aid breeding and selection, molecular markers that are
associated with below-ground tissue health are necessary.
While genomic biology provides a systematic means for
identifying such markers, the transformational step of estab-
lishing a whole genome sequence is difficult to realize in
plants such as switchgrass that have polyploid genomes and
are likely to contain large families of dispersed repetitive
DNA elements [7]. To circumvent this problem, transcrip-
tomes of these plants are generally evaluated by de novo

sequencing of cDNA to provide a fundamental overview of
the coding capacity of their genomes (for example, [8–14]).
ESTs from sequencing of switchgrass tissues, including
young crowns and roots, have been produced and made
publicly available [11, 15, 16]. However, these ESTs suffer
from the limitations of being produced from traditional
clone-based libraries and are not from crowns and rhizomes
of field-grown plants, especially from a cultivar well adap-
ted to the Upper Midwest of the USA. To more systemati-
cally characterize the transcriptome of plants relevant to the
Upper Midwest, we have capitalized on the capacity of next-
generation sequencing technologies that can provide a more
comprehensive overview of the transcriptome. In addition to
capacity, the availability of longer reads (250–500 bases)
from the Roche-454 FLX titanium platform allows a rela-
tively accurate assembly of data into contigs, permitting
better overall annotation and data mining.

Here we have analyzed the transcriptome of crowns and
rhizomes obtained from field-grown switchgrass cv Summer
plants. This cultivar is an upland tetraploid with good winter
hardiness [17] and has been used to create hybrids which
show heterosis for yields [18, 19].

Materials and Methods

Plant Material

Stands of switchgrass cv Summer had been established in
the field near Mead, NE, USA, for several years [20].
Above-ground portions of the plants were cut and below-
ground portions of the plants were then harvested in late
August 2009 at post-anthesis, seed maturation stage of
development, using a lever-action hole cutter for golf
greens. Four soil plugs containing crown, roots, and rhi-
zomes were placed in plastic bags and kept on ice until
cleaned. Soil plugs were cleaned by hand within 1 h of
harvest. Adherent soil was removed using toothbrushes.
Crowns and rhizomes were trimmed to remove much of
the roots and tiller buds and immediately flash-frozen in
liquid nitrogen. Flash-frozen tissues were placed on dry ice
for transport to the laboratory and stored at −80°C until use.
Crowns and rhizomes were fine-milled either by hand or
using a cryogenic grinder (6870 Freezer Mill (Spex Sample
Prep, Metuchen, NJ, USA)). Pulverized plant material was
used to extract RNA.

RNA Extraction and cDNA Library Generation

Total RNA was extracted from all switchgrass tissues using
the modified Trizol (Invitrogen, Carlsbad, CA, USA) proto-
col of Tobias et al. [15]. In short, total RNA was extracted
from 16–20 100 mg aliquots of switchgrass tissue. During
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extraction, the RNA from two 100-mg aliquots was com-
bined for resuspension in 50 μl of RNase-free water with
RNaseOUT ribonuclease inhibitor added. The pellets from
both aliquots were resuspended sequentially in the same
50 μl of water with heating at 60°C for 5 min each. Any
undissolved pellet material was discarded. From these sam-
ples, mRNA was isolated using the FastTrack MAG Maxi
isolation kit and 100 μl of magnetic beads as directed
(Invitrogen, Carlsbad, CA, USA). The mRNA was quanti-
tated using a Nanodrop spectrophotometer (Thermo Fisher,
Waltham, MA). Synthesis of cDNA was performed using
the high-yield protocol of QuantiTect Whole Transcriptome
kit (Qiagen, Valencia, CA, USA) with 100 ng of mRNA as
the starting material. The cDNA was purified from the
reaction mixture using QIAamp DNA Blood Mini Kit
(Qiagen, Valencia, CA, USA). Clean-up was achieved
using the supplementary protocol for the purification of
REPLI-g amplified DNA. The cDNA was again quantitat-
ed using the Nanodrop and adjusted to a concentration of
400–500 ng/μl (total cDNA of 40–50 μg provided for 454
sequencing).

454 Pyrosequencing

Switchgrass cv Summer crown and rhizome cDNA was
fractionated and sequenced using a 454 GS-FLX sequencer
with titanium chemistry according to the manufacturer’s
instructions (Roche, IN, USA) at the Core for Applied
Genomics and Ecology, The University of Nebraska—
Lincoln, Lincoln, NE, USA.

Briefly, 10 ng of cDNA was nebulized. Fragment end
polishing, adaptor ligation, and library immobilization reac-
tions were subsequently carried out using GS FLX Titanium
General Library Prep Kits (Roche, IN, USA). The single-
stranded (sst) template DNAwas eluted with 25 μl of the EB
buffer (QIAGEN, Valencia, CA, USA) and DNA profile and
quantification were measured by running 1 μl of the sam-
ples on Agilent Bioanalyzer 2100 (Santa Clara, CA, USA)
using a RNA Pico 6000 chip. The final sst DNA library was
quantified using Qubit (Invitrogen, Carlsbad, CA, USA) and
was diluted to a normalized concentration of 1×108 mole-
cules/μl for the emulsion PCR reactions. Emulsion PCR and
sequencing were performed according to the FLX titanium
protocols. The read number, average read length, and aver-
age quality of the reads for each run are shown in Table 1.
Sequence files are available in the NCBI Sequence Read
Archives under study: SRP009076; and Runs: SRR358964;
SRR358965; and SRR358966.

Bioinformatics and De Novo Transcriptome Assembly

454 GS FLX titanium sequence data were assembled using
Roche’s GS De Novo Assembler (gsAssembler) software,

version 2.3. The cDNA option was used since the sequence
data source was mRNA. The default assembly parameters
were used to assemble all three half-plates in a single as-
sembly, and the software automatically excluded reads
<50 bp. The assembly output consisted of a series of
27,687 contigs, all of which were greater than 100 bp in
length. These contigs were used for downstream analysis. In
addition to the contig sequences, individual sequencing
reads that had no significant overlap with any other read
were classified as “singletons” by Roche’s software and not
included in the assembly output. These singleton reads were
separated from the initial data set and all of these reads
greater than 250 bp in length were also used in downstream
analysis. Although we have used contig coverage as an
approximation of transcript abundance, the actual relation-
ship between these two parameters has not been quantified.

Results

Switchgrass crowns and rhizomes obtained from field-
grown cv Summer plants were used to generate cDNA
libraries for pyrosequencing on a Roche Inc 454 GS-FLX
instrument. Three aliquots from two different library prepa-
rations were sequenced. The pooled raw read exhibited a
bimodal distribution with a broad peak centered around
125 bp and a sharper peak centered around 515 bp
(Fig. 1a). Quality trimming of these reads prior to assembly
by Newbler version 2.3 (Roche Inc) resulted in a bulk of
reads under 250 bp, although the biomodal distribution was
still evident (Fig. 1b).

The trimmed component yielded a total of 929,820 reads
containing over 216 million bases. These reads were assem-
bled into 27,687 contigs of 100 base pairs or larger with a
total assembly length of 12.9 million bases. A total of
641,443 (69%) reads of the original 929,982 were included
in this assembly with an inferred read error of 2.23%. This
error term was generated by the Newbler assembler and was
defined as: number of read alignment differences/number of
mapped bases. About 18% (170,312) of the reads failed to

Table 1 Assembly of 454 data

Total reads 928,820

Total bases 216,450,730

Aligned reads 641,443

Aligned bases 146,297,845

Inferred read error 2.23%

Singletons 170,312

Isogroups 12,548

Isogroups with one contig 7,288

Contigs 27,687
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assemble into contigs using the Newbler 2.3 program and
were categorized as singletons. The other aligned reads
could be placed into 12,548 isogroups (gene models) and
27,687 contigs (Table 1). The average contig length was
722 bp and the median was 568 bp.

To assess potential contamination in this assembly,
switchgrass contig and singleton sequences were first com-
pared to proteins present in diverse taxonomic groups of
organisms contained in the Refseq databases (NCBI) using
the blastX algorithm at an e-value threshold of 1×10−7.
These analyses showed that the contig and singleton sequen-
ces displayed a match of 0.02% and 0.05%, respectively, to
microbial sequences, 0.08% and 0.70% to fungal proteins,
and 0.01% and 2.91% to invertebrate sequences within the
Refseq collections. These data indicated that most of the
assembled sequences were from switchgrass tissues.

Assembled contigs 100 bp and longer and singletons
longer than 250 bp were annotated with Blast2GO (Conesa
and Gotz 2008; Gotz, Garcia-Gomez et al. 2008) (www.
Blast2GO.org/) in a two-step process. First, the blastx algo-
rithm [21] was used searching against the NCBI non-

redundant protein database using an e-value of 1×10−3

cutoff and saving up to 20 blast hits for each sequence.
Second, every significant blast hit for each sequence was
searched against a gene ontology (GO) database to collect
all of the GO terms associated with related proteins. Out of
the 27,687 contigs, approximately 70% (19,505 sequences
displayed at least one blast hit at the e-value of 1×10−3), and
the remaining 30% (8,174 sequences) did not have a blastx
hit (Fig. 2a). The top 50 most abundant contigs are shown in
Table S1 of “Electronic supplementary material”. This list
contained ESTs coding for metabolic enzymes, transcription
factors, and proteins involved in signaling.

The contig sequences that did not display a blastx simi-
larity were next analyzed by the blastn algorithm [21]
against the NCBI ALL_EST database (Fig. 2b). Analysis
of these 8,174 contigs indicated that approximately 87% of
the remaining contig sequences matched other sequences
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Fig. 1 Size and distribution of 454 reads for dataset a raw reads and b
trimmed reads after removal of adapter sequences and sequences of
poor quality. Reads under 50 bp were excluded from further analyses

Blastx Hit, no GO
GO assigned

No Blastx Hit

1,370

18,135

8,174

No Hit Blastn Hit

Blastn Hit

High Confidence
Blastn Hit

B

1,241

1,031

5,902

A

Fig. 2 Pie chart showing results of Blast2GO alignments for contig
sequences. a Distribution of sequences with GO terms assigned
(green), Blast hit but no GO terms assigned at an e-value of 1×10−3

(blue), and no Blast hits at an e-value of 1×10−3 (red). b Reanalysis of
the contig sequences with no Blast2GO assignments by Blastn, high-
confidence blast hits with an e-value of 10−30 or lower (green), hits
with an e-value between 10−3 and 10−30 (blue), and no blast hits (red).
Numbers in each section are the total number of contigs assigned to
each category
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with an e-value of 1×10−3, and almost 73% of the remaining
contig sequences had an EST match of less than 1×10−30.

Similar analyses for the 43,094 singleton sequences were
performed (Fig. 3a, b). Over 54% of the sequences did not
have a match against the NCBI protein databases of less
than a value of 1×10−3. Of the sequences showing protein
matches, 87% had at least one GO assigned term and 13%
(2,505 sequences) had a blastx hit, but no GO terms
assigned (Fig. 3a). The singleton sequences (23,344) with-
out a blastx hit were compared against the NCBI EST
database using the blastn algorithm (Fig. 3b). A majority
(65%) of the queried sequences displayed a match to exist-
ing EST sequences at an e-value of <1×10−3 with 36% of
the sequences having an EST match at the e-value of
1×10−30 cutoff. A total of 8,165 sequences did not have a
significant match. Of the reanalyzed singleton sequences
with a match to an existing EST in the NCBI database,

56% displayed a match to EST sequences at an e-value
threshold of 1×10−3. These initial analyses suggested that
even a small DNA sequence error rate (1 bp) in base as-
signment in the non-overlapping regions of a contig or
within a singleton could lead to the virtual translation of
short or incorrect protein sequences, resulting in no matches
in a Blast2GO search. However, reanalysis of these
Blast2GO unmatched sequences using the blastn algorithm
indicated that many of these 454-derived sequences indeed
matched existing ESTs.

We next performed a database search using blastn with an
e-value threshold of <1×10−25 with the contig (27,687) and
singleton (43,094) sequences to the available switchgrass
UniGenes from NCBI (Build #2 from August 25, 2010),
sorghum [Phytozome.org version 7.0], and the Brachypo-
dium [Phytozome.org version 7.0] transcriptomes [22, 23]
(Table 2). As expected, greater than 81% of the contig
sequences had a match in the available switchgrass ESTs;
the remaining 19% (5,199) sequences appear to be new to
this dataset. Matches to the sorghum and Brachypodium
transcriptomes were considerably less, approximately~
63% and ~53%, respectively (Table 2). For the singleton
sequences, approximately 39% shared a significant identity
to the available switchgrass ESTs, and the matches to the
sorghum transcriptome were somewhat lower (~27%). The
least identity was observed with the Brachypodium tran-
scriptome. A bulk of the predicted singleton sequences did
not have a match to the three plant transcript databases that
were queried (Table 2).

To better understand the robustness of the contig assem-
bly, we took all the ~18,000 contig sequences with an
assigned GO term (see Fig. 2) and performed an annotation
using increasingly stringent cutoff values. We were also
interested in finding a stringency parameter (blastx e-value)
that afforded good annotation and that could be routinely
used to analyze the total dataset. Of the total contig sequen-
ces, approximately 92% (18,135 sequences) showed a
match to existing annotated sequences at an e-value of
1×10−3. As might be expected, increasing the stringency
from an e-value of 1×10−3 to 1×10−50 resulted in a loss of
39% in the number of annotated sequences, with similar

Blastx Hit, no GO
GO assigned

No Blastx Hit

23,344

2,505

17,245

No Hit Blastn Hit

Blastn Hit

High Confidence
Blastn Hit

B

9,714 8,165

5,465

A

Fig. 3 Pie chart showing results of Blast2GO alignments for singleton
sequences. a Distribution of sequences with GO terms assigned
(green), Blast hit but no GO terms assigned at an e-value of 1×10−3

(blue), and no Blast hits at an e-value of 1×10−3 (red). b Reanalysis of
the contig sequences with no Blast2GO assignments by Blastn, high
confidence blast hits with an e-value cutoff of 10−30 or lower (green),
hits with an e-value cutoff between 10−3 and 10−30 (blue), and no blast
hits (red). Numbers in each section are the total number of singleton
sequences assigned to each category

Table 2 Blastn of contigs and singletons with selected plant
transcriptomes

Species Blast hitsa No blast hits

Contigs Singletons Contigs Singletons

Sorghum bicolor 17,553 11,523 10,134 31,571

Brachypodium distachyon 14,631 7,382 13,056 35,712

Panicum virgatum (EST) 22,488 16,710 5,199 26,384

a An e-value threshold of 1×10−15 was used for these analyses
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decreases in the total number of enzyme codes and annotated
sequences with enzyme codes (Table 3). We selected an e-
value of 1×10−15 for further annotation of sequences. This
value appeared to be a reasonable compromise between dis-
covering true protein/enzyme matches in our dataset, arising
from the imperfect assembly of sequences introducing frame-
shifts, short translated reads, and potential lack of orthologs in
the existing databases (also see Table 2).

A blastx comparison of the proteins coded by the switch-
grass contig and singleton sequences with other plant and
non-plant species also provided further insights to this data-
set. The best matches of the translated switchgrass contig
sequences were to sorghum (Sorghum bicolor L. Moench.)
proteins, followed by maize (Zea mays L.) and rice (Oryza
sativa L.) protein sequences (Fig. 4a). There were fewer hits
to other plant species, including a range of dicots (Fig. 4a).
Very few switchgrass contigs displayed a significant match to
non-plant sequences. In contrast, for the switchgrass singleton
sequences, although the best matches were to sorghum, the
next highest scores were to rice followed by maize. Signifi-
cant numbers of singleton sequences matched to proteins
present in insects Tribolium castaneum (red flour beetle),
Bombyx mori (silkworm), and the pea aphid (Acyrthosiphon
pisum). Matches to a gram-negative bacterium (Acinetobacter
junii) were also present in the singleton sequences (Fig. 4b).

A comparison of the assembled crown and rhizome
contigs and singletons against available switchgrass ESTs
derived from different tissues [16] was performed to obtain
new sequences not yet present in these databases, and an
approximation of the distribution of ESTs (expression
snap-shot) in the different tissues was analyzed (Fig. 5).
Of the ~70,000 contigs and singletons, 30,177 sequences
did not have a match to the available EST sequences in
cDNA libraries generated from seedlings, callus, young
crowns and roots, vegetative and floral apices, and developing

seeds. A total of 11,043 sequences were common to all of the
tissue/stage-specific ESTs queried (Fig. 5); ESTs com-
mon between all of the other library comparisons were
below ~3,500. The relatively small number of matches
(1,715) to the existing crown and root ESTs derived from
Sanger sequencing of young tissues suggested that crowns
and rhizomes in field-grown plants had a considerably
more complex transcriptome. Overall, these comparisons
indicated that the 454 sequencing had yielded a significant
coverage of the crown and rhizome transcriptome. The
30,177 sequences (“new”) to the current 454 assembly
yielded ~2,000 gene models that were analyzed by
Blast2GO. We compared the resultant output to the whole
crown and rhizome transcriptome assembly to determine
overall distribution of GO terms in these ~2,000 gene
models and to detect any over/underrepresentation within
broad and narrow GO terms.

At the “Biological Processes, Level 2 Terms,” there were
some variations between the new sequences and the whole
assembly in classifications into terms. The ‘new” contained
slightly greater proportion of sequences that were assigned
to the cellular process, cellular component organization, and
death categories and lower representation in the biological
regulation, response to stimulus, and signaling categories as
compared to the whole assembly (Fig. 6a). Representation
(percentage) in other categories was essentially similar. A
comparison between these sequences at the “Molecular
Function, Level 3 Terms” showed a greater abundance of
new sequences that matched to nucleotide/nucleoside/

Table 3 GO annotation of contig sequences at different stringencies

e-value Sequencesa Annotationsb EC Number of
sequences
with ECcNumber Percent (%)

1×10−3 16,708 92.1 72,772 8,221 6,291

1×10−10 15,979 88.1 69,473 7,912 6,079

1×10−15 15,102 83.3 65,704 7,527 5,781

1×10−25 13,484 74.4 58,683 6,849 5,273

1×10−50 10,223 56.4 44,388 5,400 4,167

EC number of enzyme codes recovered at each e-value threshold
a Total number of annotated sequences and percentage of total input
sequences with a match
b Total number of annotations across all GO terms
c Total number of sequences with an enzyme code as identified by GO
analysis

40
40
38
33

Triticumaestivum
Populus trichocarpa

Arabidopsis lyrata
Saccharum hybrid

Contigs

2,990
67
63
51

Oryza sativa

Vitis vinifera
Hordeumvulgare

Ricinus communis

10,468
5,133

Sorghum bicolor
Zea mays

81

76

52

48

Populus trichocarpa

Bombyx mori

Ricinus communis

Acyrthosiphon pisum

Singletons

2,895

1,474

140

106

mays

Tribolium castaneum

Vitis vinifera

Acinetobacter junii

8,872

4,157

Sorghum bicolor

Oryza sativa
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A

B

Fig. 4 Top ten matches of switchgrass crown and rhizome sequences
to other species. a Contigs. b Singletons. An e-value cutoff of 10−3 or
lower was used to designate matches to the species identified on the left
axis
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nucleic acid and chromatin binding as compared to the
whole assembly (Fig. 6b). These new sequences also
appeared to be enriched in transcripts coding for hydrolases
and transferases as compared to the whole assembly. There
was a slight decrease in transcripts coding for proteins
assigned into the cofactor binding, structural constituent of
ribosomes, and transcription factor activity categories
(Fig. 6b). We did not statistically evaluate these differences
since the descriptive value of this analysis would not have
been affected.

Two different subsets of proteins containing relatively
few sequences (peroxidases) and a much larger number of
sequences (transcription factors) within the “new” were
selected for a more detailed analysis. There were a total of
56 sequences coding for 21 different proteins putatively
identified as peroxidases by Blast2GO. Of these 56 DNA
sequences, a large number (26) were classified as retrotrans-
posons of an unknown category or as putative copia-like
retrotransposons and were not analyzed further. The remain-
ing 30 sequences coded for 16 proteins (Table 4) that
contained a “peroxidase descriptor”. Two sequences
coding for a putative acid phosphatase were included
in this annotation due to the association of the “haloacid
peroxidase-like” term within GO. The contigs coding
for catalase displayed a moderate match to the two
catalases encoded within the sorghum genome (e-value
of 1×10−20 to SORBIDRAFT_04g001130 and e-value
of 1×10−19 to SORBIDRAFT_10g030840), in contrast
to strong matches (< e-value of 1×10−90) to these
catalases within the available switchgrass ESTs in the

public databases. It is unclear if this rhizome sequence
codes for a catalase or a catalase-like protein. Analysis
of the five class III peroxidases present in the “new”
sequences showed that they belonged to four different
clades described by Passardi et al. [24] for the class III
peroxidases encoded by the rice genome (Table 4). Two
other proteins appeared to be transcripts coding for
cytosolic ascorbate peroxidase and a 2cys-peroxiredoxin.

New sequences coding for transcription factors are
shown in Table 5. There were a total of 175 DNA sequences
that were identified by Blast2GO as transcription factors.
Filtering out multiple sequences that coded for the same
protein and annotation by hand of the remaining sequences
resulted in the identification of over 30 sequences that coded
for transcription factors with orthologs with a known func-
tion in other plants. Many of these switchgrass genes were
present as singletons in the assembled transcriptome and
coded for proteins controlling a number of important cellu-
lar process, including control of cell cycle [E2F and its
repressor E2L], organ development [Rolled leaf; bZIP42,
BHL4, and HUA2], interactions with the environment
[RAV1 and 2, CBF-7, LEC1, SPL7, NLP7 and NFXL1],
hormone signaling [ARF-7, ABI-5, MYB101], DNA repair
and remodeling [SWI3D, DUO1 and NAC8], and histone
H3 demethylation, specifically at H3K4 [ELF6] and at
H3K27 [REF6] (Table 5). A number of proteins belonging
to the WRKY family were annotated, but it was more
difficult to accurately predict their exact orthologs due to
incomplete sequence coverage. Although not fully explored
in this study, many of these factors will show variable levels

New Sequences
Contigs and Singletons

30,177
Callus Crown, Root

Seedling

Apex,
Floral,
Stem

772

2,745 1,715

340,1104,2

3,381

2,082 860

11,403 2,969

2,342

1,512
2,859 3,222

1,298

Fig. 5 Comparison of 454 contig and singleton sequences to switch-
grass ESTs. ESTs for seedlings, callus, young crown and root, stem,
stem apices, and floral organs were obtained from publicly available
databases. The assembled 454 sequences were compared against each
library by Blastn with an e-value of 10−25 or lower to identify

transcripts found in common between the compared datasets. Crown
and rhizome sequences without a significant match (30,117) were
considered to be “new” sequences and are shown within the largest
ellipse. The numbers of common transcripts among and between the
compared databases are shown in the appropriate areas
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of interaction, and their identification will be the prelude to
dissecting their role(s) in switchgrass crowns and rhizomes.
Two KEGG (http://www.genome.jp/kegg/) pathways were
populated with DNA sequences identified by Blast2GO as
coding for metabolic enzymes involved in glycolysis/
gluconeogenesis (MAP00010) and starch and sucrose me-
tabolism (MAP00500). These pathways were chosen to
ascertain that sequences expected to be abundant in meta-
bolically active tissues were present. The entire pathway
relevant to plants for glycolysis/gluconeogenesis was pop-
ulated with varying levels of transcript abundances

(colored shading on appropriate boxes; Fig. 7). Transcripts
for glyceraldehyde-3-phosphate dehydrogenase, pyruvate
kinase, phosphoglycerate kinase, and aldolase were most
abundant and transcripts coding for enzymes such as phos-
phoenolpyruvate carboxykinase and aldose-1-epimerase
were least abundant.

A similar protocol was used to study the presence of
enzymes in the starch and sucrose metabolism pathways.
Sugar metabolism can be expected to play a key role in the
growth and adaptation of the below-ground tissues in
switchgrass to changes in photosynthate supply over the
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Fig. 6 Comparison of the
percent of sequences associated
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and the “new” sequences (red)
(see Fig. 5). a Biological
processes terms and b molecular
processes terms
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course of the growing season. Transcripts for all of the
expected enzymes were found with the notable exception of
a 1,4-β-D-xylan synthase (E.C. 2.4.2.24) (Fig. 8). However,
transcripts for UDP-D-xylose synthetase and xylan 1-4-β-
xylosidase were not very abundant. In contrast, transcripts
for enzymes involved in pectin synthesis were quite abundant.
Similarly, these tissues appeared to have high levels of tran-
scripts for sucrose, starch, and cellulose synthesis. The presence
of enzymes involved in the biosynthesis of polysaccharides
suggested that active growth was probably still occurring in
the crowns and rhizomes of these plants.

Discussion

Perenniality in switchgrass is likely to be controlled by
several mechanisms that ultimately impact the physiological
status of the below-ground components of the plant [25].
These below-ground structures include the roots, rhizomes,
and crowns. It can be anticipated that over a growing cycle
there will be significant, but cyclical, changes in the

Table 4 Peroxidases and related proteins identified in cv Summer
crowns and rhizome transcripts (identified within the “new” group
with significant matches to heme-containing oxidoreductases)

C or S Protein family Predicted ortholog and groupa

S Ascorbate peroxidase Cytosolic

C Bacterial-induced peroxidase Os02g0237000, group IV.4

S Catalase Catalase

C Class III peroxidase PviPrx-19, monocot-specific
group V

C Class III peroxidase Os09g0471100, group IV

C Class III peroxidase Rice peroxidase 124, group III

S Class III peroxidase Os03g0762400, group VI

S Peroxidasin homolog Fatty acid dioxygenase

S Thioredoxin peroxidase 2-cys peroxiredoxin

C contig, S singleton, PviPrx-19 Panicum virgatum peroxidase 19
(identified in earlier work by Tobias et al. [16])
a Predicted rice ortholog based on Passardi et al. [24]

Table 5 Switchgrass transcription factor orthologs identified within cv Summer crowns and rhizome transcripts (only “new” switchgrass
transcripts with orthologs of known function are shown; orthologs defined as best-hit by BLASTP to translated switchgrass sequences)

C or S TF family Predicted ortholog Function of orthologs References

S AP-2 domain containing RAV 1 and 2 (Atha) Interactions with CONSTANS and FT [33]

S Antagonist of e2f E2L (Atha) Represses E2F activation of genes [34]

C Auxin response ARF-7 (Slyc) Auxin and gibberellin signaling [35]

S bHLH family Involved in rooting/root hairs [36]

C bHLH Family HEC-1 (Atha) Female flower development [37]

S basic leucine zipper Rolled leaf (Zmay) Organ development [38]

S basic-leucine zipper LIGULELESS-2 (Zmay) Demarcates boundary of leaf and sheath [39]

S bZip ABI-5 (Atha) Abscisic acid signaling [40]

S bZip bZIP 42 (Atha) Organ formation [41]

C CBF/DREB-Like CBF-7 (Atha) Cold hardiness [42]

S CCAAT-binding factor LEC1 (Zmay) Embryo/fatty acid biosynthesis [43]

S Chromatin remodeling SWI3D (Atha) Interactions with SWI/SNF complex [44]

S E2F E2F (Atha) Control of cell cycle [34]

C Heat shock SPL7 (Osat) Control of leaf spots [45]

S Hox-family BHL4 (Atha) Leaf margin organization [46]

S Jumonji domain ELF 6 (Atha) Histone H3K4 demethylation [47]

S Jumonji-domain REF6 (Atha) Histone H3K27 demethylation [48]

S Myb family DUO-1 (Atha) Male germline formation [49]

S Myb r2r3 family MYB101 (Atha) Hormone signaling [50]

S NAM-superfamily NAC 8 (Atha) Suppressor of gamma response 1 [51]

S NIN-Like NLP7 (Atha) Nitrate sensing [52]

S NF-X1 type NFXL1 (Atha) Protection under stress [53]

C Tudor/PWWP/MBT

domain-containing protein HUA2 (Atha) Flowering/shoot morphology [54]

C/S WRKYs Several members ABA, UV responses biotic and abiotic stresses [55]

C contig, S singleton, TF transcription factor, Atha Arabidopsis thaliana, Osat O. sativa, Slyc Solanum lycopersicum, Zmay Z. mays
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physiology of these organs underpinned by significant
changes in the transcriptome. These changes will include
nutrient remobilization and regeneration of new shoots
(tillers) at the onset of green-up in early spring, increased
tissue accretion over the growing season, transition to the
slowing of developmental processes in the fall, and followed
by a potentially quiescent stage in the winter. At present, we
lack meaningful molecular insights into these processes.

As a first step in understanding how gene expression
patterns change in the below-ground tissues of switchgrass
plants over a growing season, we have assembled a prelim-
inary transcriptome using over 900,000 sequences obtained

by next-generation sequencing of tissues obtained from cv
Summer. Tissues were obtained from plants at the S4 stage,
seeds at physiological maturity; [26]. Contamination within
the assembled sequences from other organisms was quite
low, indicating that a majority of these sequences were
derived from switchgrass tissues. However, some level of
contamination from insect, fungal, and bacterial sources can
be expected in field-harvested tissues. As might be expected,
the level of non-switchgrass transcripts was greater in the
singleton pool as compared to the assembled contigs. A ma-
jority of the contigs (~67%) had a GO term assigned, consis-
tent with studies in several other non-model species lacking
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Fig. 7 KEGG map for glycoly-
sis/gluconeogenesis populated
with transcripts coding for
specific enzymes in the pathway.
The abundance of sequences
identified by Blast2GO for a
given enzyme is shown with
different colored boxes. The
abundance range for assignment
of transcripts is shown on the
left margin. Blue (0–99), light
green (100–249), yellow
(250–499), orange (500–999),
and red (>1,000)
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annotated genomes [12, 14, 27, 28] (Table S2 of “Electronic
supplementary material”). The numbers of singletons reported
in other studies have been variable, and success in finding GO
terms have been dependent on whether these sequences were
analyzed separately or combined with contigs. The switch-
grass singletons reported here were analyzed as a separate
pool to maximize the discovery of new (and potentially rare)
transcripts and to understand relative distribution of similari-
ties to other organisms. A combination of Blast2GO and
Blastx searches resulted in effectively identifying~87% of the
singleton sequences as sharing significant similarity to other
plants. Nonetheless, actual GO annotation in this singleton pool
(`40%) was lower as compared to the contig pool, indicating
that deeper coverage might have improved discovery.

A sizeable fraction (~>40%) of the 454-derived sequen-
ces were not present in earlier EST collections [16], suggest-
ing that these “new” transcripts not currently in the
databases could contain some proportion of rhizome- and
crown-specific sequences. However, the unequal distribu-
tion of sequences across all libraries (ESTs and 454; see
Fig. 5) might have skewed these comparative analyses, and
“new” sequences could contain low abundance and rare
transcripts that might have escaped detection during Sanger
sequencing of the different switchgrass tissues [16]. The
relatively large number of overlapping sequences present
in all the libraries can be expected to contain transcripts
coding for many metabolic processes common to all switch-
grass tissues.

Fig. 8 KEGG map for starch
and sugar metabolism populated
with transcripts coding for
specific enzymes in the pathway.
Other details are as described
for Fig. 7
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New sequences generally occupied a similar distribution
within the biological processes and molecular function GO
terms as compared the overall 454 assembly, although cer-
tain categories broadly classified as “binding” and “hydro-
lytic/transferase activities” within GO were somewhat
overrepresented. These data indicated that singleton sequen-
ces could code for specific but rare proteins such as tran-
scription factors that are needed for normal functioning of
crowns and rhizomes. Indeed a manual annotation of two
sets of sequences classified as coding for peroxidases and
transcription factors showed the utility of such a detailed
analysis. Five new peroxidases, a cytosolic ascorbate per-
oxidase, and thioredoxin peroxidase were identified. A
bacterial-induced peroxidase homolog [29] present in the
tissues analyzed indicated that rhizome and crowns could
have been under biotic stress. Although care was exercised
to process field-harvested tissues as quickly as possible
(within 1 h of harvest), some elevation of transcripts asso-
ciated with stress and or wounding might be expected.

Singleton sequences also coded for a number of tran-
scription factors, which could be expected to be of lower
abundance in the transcriptome. Although they belonged to
diverse families, several factors that control chromatin
remodeling were identified. Among these, the switchgrass
orthologs of the Jumonji-type ELF6 [30], REF6 [31], and
SWI3D [32] could provide a future means to understand
chromatin remodeling that might occur in response to the
seasonal growth habits of the switchgrass plants. Addition-
ally, many of these transcription factors control the expres-
sion of genes involved in basal cell metabolism and
responses to biotic and abiotic stress. Transcript abundances
for genes coding for metabolic pathways were variable,
although abundances for those involved in primary metab-
olism were quite high. The assembly provided significant
insights into the status of these tissues and broadly indicated
that there was active metabolism taking place in the crown
and rhizomes at this stage of plant development. Future
next-generation analyses of crown, rhizome, and root tran-
scriptomes across the growing season, among switchgrass
populations with divergent winter hardiness responses,
should yield even greater insights into tissues that impact
perenniality and are essential to the sustainable production
of this important bioenergy feedstock.
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