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THE AUSLANDER-BRIDGER FORMULA
AND THE GORENSTEIN PROPERTY

FOR COHERENT RINGS

LIVIA HUMMEL AND THOMAS MARLEY

ABSTRACT. The concept of Gorenstein dimension, de-
fined by Auslander and Bridger for finitely generated modules
over a Noetherian ring, is studied in the context of finitely
presented modules over a coherent ring. A generalization of
the Auslander-Bridger formula is established and is used as a
cornerstone in the development of a theory of coherent Goren-
stein rings.

1. Introduction. In addressing a problem posed by Glaz ([11,
12]), Hamilton and the second author give a definition of Cohen-
Macaulay for commutative rings which agrees with the usual notion
for Noetherian rings with the property that every coherent regular ring
is Cohen-Macaulay [13]. (A quasi-local ring is defined to be regular if
every finitely generated ideal has finite projective dimension.) A natu-
ral question is whether there is a reasonable concept of Gorenstein for
commutative rings such that every coherent regular ring is Gorenstein
and every coherent Gorenstein ring is Cohen-Macaulay. In this paper,
we develop such a theory of coherent Gorenstein rings which mirrors
much of the theory in the Noetherian case. Central to this development
is the concept of Gorenstein dimension (G-dimension, for short), first
introduced in the context of finitely generated modules over Noethe-
rian rings by Auslander and Bridger [1]. In particular, we prove the
following generalization of the Auslander-Bridger formula for coherent
rings using a notion of depth for arbitrary quasi-local rings developed
by Barger [2], Hochster [14], and Northcott [18]:

Theorem 1.1. Let R be a quasi-local coherent ring and M a finitely
presented R-module of finite G-dimension. Then

depthM + GdimR M = depth R.
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284 L. HUMMEL AND T. MARLEY

Since working with depth in the non-Noetherian case typically re-
quires passage to faithfully flat extensions (which does not generally
preserve coherence), our development of G-dimension must be done
with some care. Out of necessity, we prove a version of Theorem 1.1
which holds for modules over an arbitrary quasi-local ring which have
free resolutions consisting of finitely generated free modules in each
degree (so-called (FP )∞-modules).

Auslander and Bridger prove that every ideal having finite G-
dimension characterizes Noetherian local Gorenstein rings. It is natu-
ral, therefore, to make the following definition:

Definition 1.2. A quasi-local ring R is said to be Gorenstein if
every finitely generated ideal has finite G-dimension.

We are able to prove several properties of coherent Gorenstein rings
which are analogous to results in the Noetherian case. We summarize
some of these results in the following:

Theorem 1.3. Let R be a quasi-local coherent ring.

(1) If x is a non-unit non-zero-divisor on R, then R is Gorenstein if
and only if R/(x) is Gorenstein.

(2) If x is an indeterminate over R, then R is Gorenstein if and only
if R[x] is Gorenstein.

(3) If depth R < ∞, then R is Gorenstein if and only if R has finite
FP-injective dimension.

(4) Every coherent regular ring is Gorenstein.

(5) Every coherent Gorenstein ring is Cohen-Macaulay.

(6) If R is a coherent quasi-local Gorenstein ring with depth R = n,
and x1, . . . , xn is a regular sequence on R, then (x1, . . . , xn) is an
irreducible ideal.

The paper is structured in the following way: In section two, we
summarize the main results we need concerning non-Noetherian depth
and (FP )∞-modules. Section three defines G-dimension and restricted
G-dimension and proves their basic properties. Section four is devoted
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to the proof of the Auslander-Bridger formula for modules of finite
restricted G-dimension, while in section five the main results concerning
Gorenstein rings are established.

2. Preliminaries. Throughout R will always denote a commu-
tative ring with identity. All modules are assumed to be unital. The
term local ring will be used exclusively for commutative Noetherian
rings with a unique maximal ideal. When the ring is not necessarily
Noetherian, the term quasi-local will be used. A ring is coherent if
every finitely generated ideal is finitely presented. See [10] for basic
properties of coherent rings.

The following definition is due to Bieri [4]:

Definition 2.1. An R-module M is said to be (FP )R
n for some

n ≥ 0 if there exists an exact sequence

Fn → Fn−1 → · · · → F1 → F0 → M → 0

where F0, . . . , Fn are finitely generated free R-modules. For brevity we
often write (FP )n for (FP )R

n when there is no ambiguity about the
ring R. If M is (FP )n for all n ≥ 0 then we say M is (FP )∞.

We note that over a Noetherian ring the class of (FP )∞-modules
coincides with the class of finitely generated modules. Over a coherent
ring, (FP )∞-modules are just the finitely presented modules (cf.[10,
Corollary 2.5.2]).

Lemma 2.2. Let M be an R-module and n ≥ 0 an integer. The
following are equivalent:

(1) M is (FP )n+1.

(2) The functors Exti
R(M,−) commute with direct limits for i =

0, . . . , n.

Proof. See [4, Corollary 1.6].

Lemma 2.3. Let 0 → L → M → N → 0 be a short exact sequence
of R-modules. Then the following hold for any n ≥ 0:
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(1) If L is (FP )n and M is (FP )n+1 then N is (FP )n+1.

(2) If M and N are (FP )n+1 then L is (FP )n.

(3) If L and N are (FP )n then M is (FP )n.

Consequently, if any two modules in a short exact sequence are
(FP )∞ then so is the third.

Proof. See [4, Proposition 1.4] or [10, Theorem 2.1.2].

The following remark is easily seen from the definition of (FP )n and
Lemma 2.3:

Remark 2.4. Let S be a flat R-algebra, M an R-module, and n ≥ 0
an integer.

(1) If M is (FP )R
n then M ⊗R S is (FP )S

n .

(2) If S is faithfully flat then the converse to (1) holds.

We also will need the following:

Remark 2.5. Suppose M is (FP )R∞ and x ∈ R is a non-zero-divisor
on R and M . Then M/xM is (FP )R/(x)

∞ .

Proof. Let F be a free resolution of M consisting of finitely
generated free R-modules. As x is a non-zero-divisor on R and M ,
TorR

i (M, R/(x)) = 0 for all i > 0. Hence, F ⊗R R/(x) is a resolution
of M/xM consisting of finitely generated free R/(x)-modules.

Depth plays an important role in the theory of G-dimension over
local rings. The notion of depth was extended to quasi-local rings by
Hochster [14]:
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Definition 2.6. Let M be an R-module and I an ideal of R
such that IM �= M . Define the classical depth of M with respect to
I, denoted DepthI M , to be the supremum of the lengths of regular
sequences on M contained in I. Define the depth of M with respect to
I, denoted depthI M , to be the supremum of DepthIS M ⊗R S over all
faithfully flat extensions S of R. If R is quasi-local with maximal ideal
m, we denote depthm M by depthR M or simply depthM .

We note that if R is Noetherian and M is finitely generated then
depthI M = DepthI M for all ideals I of R (see, for instance, Lemma
2.8 below). We summarize some basic properties of depth in the
following proposition. We refer the reader to [2, 14], [18, Chapter
5], [10, Chapter 7] or [5, Section 9.1] for details.

Proposition 2.7. Let M be an R-module and I an ideal of R such
that IM �= M .

(1) depthI M = sup{depthJ M | J ⊆ I, J finitely generated}.
(2) If I = (x1, . . . , xn) then depthI M = inf{i ≥ 0 | Hn−i(x, M) �=

0}, where Hj(x, M) denotes the jth Koszul homology of x = x1, . . . , xn

on M .

(3) depthI M = depthIS(M ⊗R S) for any faithfully flat R-algebra S.

(4) If depthI M > 0 then DepthIS M ⊗R S > 0 where S = R[X ], a
polynomial ring in one variable over R.

(5) If I is generated by n elements then depthI M = DepthIS M⊗R S
where S = R[X1, . . . , Xn], a polynomial ring in n variables over R.

(6) depthI M = depth√
I M .

(7) If x ∈ I is M -regular then depthI M = depthI M/xM + 1.

(8) Suppose 0 → L → M → N → 0 is a short exact sequence of
R-modules such that IL �= L and IN �= N . If depthI M > depthI N
then depthI L = depthI N + 1.

In the case I is (FP )∞ we have another characterization of depthI M :

Lemma 2.8. Let M be an R-module and I an ideal such that
IM �= M . Suppose R/I is (FP )n. The following are equivalent:

(1) depthI M ≥ n.

(2) Exti
R(R/I, M) = 0 for 0 ≤ i < n.
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Proof. See Theorem 7.1.2 or Theorem 7.1.8 of [10].

Combining Lemma 2.8 with part (1) of Proposition 2.7, we have:

Proposition 2.9. Let R be a coherent quasi-local ring with maximal
ideal m and M a nonzero R-module such that mM �= M . Then

depthM := sup{n ≥ 0 | Exti
R(R/I, M) = 0

for all i < n for some f.g. ideal I ⊆ m}.

3. Gorenstein dimension. As noted in the introduction, the
theory of Gorenstein dimension, or G-dimension, for finitely generated
modules over a Noetherian ring was developed by Auslander and
Bridger in [1]. This theory was later generalized for modules over
arbitrary rings (Gorenstein projective dimension) by Enochs and Jenda
[8]. However, for the notion of depth to be used effectively (e.g., as an
inductive tool), one needs to restrict to a resolving class of finitely
generated modules so that Nakayama’s lemma can be applied. Hence,
our development of G-dimension falls somewhere between Auslander-
Bridger’s and Enochs-Jenda’s. While our main interest is the case of
finitely presented modules over coherent rings, restricting the theory
to such rings does not allow one to fully utilize the concept of depth,
which requires passage to faithfully flat extensions to guarantee the
existence of non-zero-divisors. (It is well-known that coherence is not
preserved under faithfully flat extensions, even finitely generated ones.
See [10, Example 7.3.13], for example.)

For an R-module M we let M∗ denote the dual module HomR(M, R).
Following Auslander and Bridger [1], we make the following definition:

Definition 3.1. A finitely generated R-module M is said to be a
member of the G-class of R, denoted G(R), if the following hold:

(1) Exti
R(M, R) = 0 for i > 0.

(2) Exti
R(M∗, R) = 0 for i > 0.

(3) The natural map M → M∗∗ is an isomorphism.

The class G(R) is closed under extensions and summands. In partic-
ular, every finitely generated projective module is a member of G(R).
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However, if R is not Noetherian, G(R) may not be closed under duals
(since the dual of a member of G(R) may not be finitely generated –
see Example 5.2). A much better behaved class for our purposes is the
following:

Definition 3.2. An R-module M is a member of the restricted
G-class of R, denoted G̃(R), if the following hold:

(1) M is in G(R).

(2) M is (FP )∞.

(3) M∗ is (FP )∞.

The class G̃(R) is easily seen to be closed under extensions, sum-
mands, and duals. Additionally, every finitely generated projective
R-module is a member of G̃(R). Since any reflexive module is isomor-
phic to a submodule of a free module, we note that modules in G(R)
and G̃(R) are torsion-free.

Let M be an R-module. A complex G is called a G-resolution
(respectively, G̃-resolution) of M if each Gi is a member of the G-
class (respectively, G̃-class), Gn = 0 for n < 0, Hi(G) = 0 for all i �= 0,
and H0(G) ∼= M . For a resolution G we set the length of G to be the
infimum of the set of integers n such that Gn �= 0. (By convention, we
define the length of the zero complex to be zero.) For an integer n we
define the nth syzygy of G to be the kernel of the map Gn−1 → Gn−2

(here we let G−1 = M). If M has a G-resolution (respectively, G̃-
resolution), we define the G-dimension of M , GdimR M (respectively,
the G̃-dimension of M, G̃dimR M), to be the infimum of the lengths of
all G-resolutions (respectively, G̃-resolutions) of M . Otherwise, we say
the G-dimension (respectively, G̃-dimension) of M is undefined.

We remark that GdimR M and G̃dimR M are defined for any R-
module M which is (FP )∞, since in this case M has a resolution
consisting of finitely generated free R-modules. We also note that any
syzygy module of a G-resolution (respectively, G̃-resolution) is finitely
generated (respectively, (FP )∞). Since every module in G̃(R) is a
member of G(R), it is clear that GdimR M ≤ G̃dimR M for every
(FP )∞ R-module M . We’ll show below that if G̃dimR M < ∞ then
GdimR M = G̃dimR M (Corollary 3.6). Furthermore, if R is coherent
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and M is finitely presented then GdimR M = G̃dimR M (Corollary
3.7).

In the remainder of this section we summarize the basic properties
of G-dimension and G̃-dimension. The proofs of many of these results
are similar to the analogous results for finitely generated modules over
a Noetherian ring, once one observes the relevant modules are finitely
generated or (FP )∞. In a few instances alternative arguments must be
made. We refer the reader to Chapter 1 of [6] for a clear and thorough
treatment of G-dimension over Noetherian rings. More complete proofs
of the results below can be found in [17].

Proposition 3.3. Let 0 → L → M → N → 0 be a short
exact sequence of R-modules. Suppose N is a member of the G-class
(respectively, G̃-class) and L and M are finitely generated (respectively,
(FP )∞). Then L ∈ G(R) if and only if M ∈ G(R) (respectively,
L ∈ G̃(R) if and only if M ∈ G̃(R)).

Proof. See [6, Lemma 1.1.10(a)]. We add the observation that, as
0 → N∗ → M∗ → L∗ → 0 is exact and N∗ is (FP )∞, we have L∗ is
(FP )∞ if and only if M∗ is (FP )∞ by Lemma 2.3.

Lemma 3.4. Let M be an R-module of finite G-dimension
(respectively, G̃-dimension) such that Exti

R(M, R) = 0 for all i > 0.
Then GdimR M = 0 (respectively, G̃dimR M = 0).

Proof. See [6, Lemma 1.2.6].

The following proposition will be used frequently:

Proposition 3.5. Let M be an R-module which is (FP )∞ and
n ≥ 0 an integer. The following are equivalent:

(1) GdimR M ≤ n.

(2) GdimR M < ∞ and Exti
R(M, R) = 0 for i > n.

(3) The nth syzygy of any G-resolution of M is in the G-class of R.

The same statement also holds if Gdim, G-resolution, and G-class
are replaced with G̃dim, G̃-resolution, and G̃-class, respectively.
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Proof. The proof is similar to that of [6, Theorem 1.2.7], substituting
Proposition 3.3 and Lemma 3.4 where appropriate. We add the
observation that, using the notation of the proof of [6, Theorem 1.2.7],
Hn is (FP )∞ if and only if Kn is (FP )∞.

Consequently, we have the following:

Corollary 3.6. Let M be a nonzero R-module of finite G-
dimension. Then

GdimR M = sup{i ≥ 0 | Exti
R(M, R) �= 0}.

The same statement also holds if G-dimension is replaced by G̃-
dimension. Hence, if M has finite G̃-dimension then GdimR M =
G̃dimR M .

We note that if R is coherent and M is a finitely presented R-
module then M∗ is also finitely presented (and hence (FP )∞). This
follows from the more general fact that, over a coherent ring, kernels of
homomorphisms between finitely presented modules are again finitely
presented (cf. Chapter 2 of [10]). In light of this observation, we have:

Corollary 3.7. Let R be a coherent ring and M a finitely presented
R-module. Then GdimR M = G̃dimR M .

Proof. Note that as R is coherent and M is finitely presented, M is
(FP )∞. Hence GdimR M and G̃dimR M are defined. If GdimR M = ∞
then clearly G̃dimR M = ∞. Suppose GdimR M = n < ∞. Let G be
a G̃-resolution of M . By Proposition 3.5, the nth syzygy Kn of G is in
G(R) and is (FP )∞. By the remark above, K∗

n is (FP )∞. Hence Kn

is in G̃(R) and G̃dimR M < ∞. The result now follows from Corollary
3.6.

As we are mainly interested in G-dimension in the context of coherent
rings, and since G-dimension is equal to G̃-dimension for finitely pre-
sented modules over coherent rings, we will subsequently state results
only in terms of G̃-dimension (although some results may also hold for
G-dimension).
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For an R-module M we let pdR M denote the projective dimension
of M . If M is (FP )∞ and pdR M = n it is easily seen that M
has a projective resolution of length n consisting of finitely generated
projective modules in each degree.

Proposition 3.8. Suppose M is (FP )∞ and has finite projective
dimension. Then G̃dimR M = pdR M .

Proof. Let n = pdR M and m = G̃ dimR M . As remarked above,
there exists a projective resolution P of M of length n where Pi is
finitely generated for each i. Hence, P is a G̃-resolution of M of length
n and m ≤ n. Let Km be the mth syzygy of P. By Proposition 3.5,
Km is in G̃(R). It is enough to show that Km is projective. Since

0 → Pn → Pn−1 → · · · → Pm+1 → Km → 0

is exact and Exti
R(Km, R) = 0 for all i > 0, we have

0 → K∗
m → P ∗

m+1 → · · · → P ∗
n → 0

is also exact. As P ∗
i is projective for all i, K∗

m is projective. Hence,
K∗∗

m
∼= Km is projective.

Proposition 3.9. Suppose 0 → K → G → M → 0 is exact where
G̃dimR M > 0 and G is in G̃(R). Then G̃dimR K = G̃dimR M − 1.

Proof. By Lemma 2.3, K is (FP )∞ and G̃dimR K is defined. It is
clear that if G̃dimR M = ∞ then G̃dimR K = ∞, so we may assume
n = G̃dimR M is positive and finite. Clearly, G̃dimR K ≥ n − 1.
Let F be a resolution of K consisting of finitely generated free R-
modules. Since the composition F → G gives a G̃-resolution of M ,
the (n − 1)st syzygy of F is in G̃(R) by Proposition 3.5. Hence,
G̃dimR K ≤ n − 1.
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We will also need the following:

Proposition 3.10. Let 0 → L → M → N → 0 be an exact sequence
of R-modules each of which is (FP )∞. Then the following hold:

(1) If G̃dimR L ≤ n and G̃dimR N ≤ n, then G̃dimR M ≤ n.

(2) If G̃dimR M ≤ n and G̃dimR N ≤ n, then G̃dimR L ≤ n.

(3) If G̃dimR L ≤ n and G̃dimR M ≤ n, then G̃dimR N ≤ n + 1.

In particular, if any two of the modules has finite G̃-dimension, then
so does the third.

Proof. We prove (3). The remaining two parts are proved similarly.
Let F and F′ be free-resolutions of L and N , respectively, which consist
of finitely generated free R-modules. By the Horseshoe Lemma, there
exists a free resolution F′′ of M consisting of finitely generated free
R-modules and chain maps F → F′′ and F′′ → F′ such that

0 → F → F′′ → F′ → 0

is an exact sequence of complexes.

Let Kn, K ′
n, and K ′′

n denote the nth syzygies of F, F′, and F′′,
respectively. Then the sequence

0 → Kn → K ′′
n → K ′

n → 0

is exact. Since L and M have G̃-dimension at most n, we have that Kn

and K ′′
n are in G̃(R) by Proposition 3.5. Hence, G̃dimR K ′

n ≤ 1, which
implies that G̃dimR N ≤ n + 1.

The next result shows the restricted G-class is preserved by flat base
change:

Proposition 3.11. Let S be a flat R-algebra and M an R-module.

(1) If M is in G̃(R) then M ⊗R S is in G̃(S).

(2) If S is faithfully flat then the converse of (1) holds.

Proof. For an S-module N , let Nv denote HomS(N, S). By
Remark 2.4, if M is (FP )R∞ then M ⊗R S is (FP )S∞, and the converse
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holds if S is faithfully flat. Hence, in the proof of (1) or its converse
(under the assumption that S is faithfully flat), there are natural
isomorphisms Exti

R(M, R) ⊗R S ∼= Exti
S(M ⊗R S, S) for all i ≥ 0.

In particular, M∗ ⊗R S ∼= (M ⊗R S)v. Again by Remark 2.4, we
have that M∗ is (FP )R

∞ and (M ⊗R S)v is (FP )S
∞ in both the proof

of (1) and its converse; furthermore, we have natural isomorphisms
Exti

R(M∗, R) ⊗R S ∼= Exti
S((M ⊗R S)v, S) for all i ≥ 0. Thus, if

Exti
R(M, R) = ExtiR(M∗, R) = 0 for i > 0, then Exti

S(M ⊗R S, S) =
Exti

S((M ⊗R S)v, S) = 0 for all i > 0, with the converse holding if S is
faithfully flat. Let ρ : M → M∗∗ and ϕ : M ⊗R S → (M ⊗R S)vv be
the canonical maps. Let K and C be the kernel and cokernel of ρ, and
K ′ and C′ the kernel and cokernel of ϕ. Then by the flatness of S we
have the following commutative diagram:

0 � K ⊗R S �

�

M ⊗R S �

ρ ⊗ 1

�

=

M∗∗ ⊗R S �

�

∼=
C ⊗R S �

�

0

0 � K ′
� M ⊗R S �ϕ (M ⊗R S)vv

� C′
� 0.

If ρ is an isomorphism, then so is ρ ⊗ 1 and thus ϕ also. Conversely, if
ϕ is an isomorphism and S is faithfully flat, then K = C = 0 and thus
ρ is an isomorphism.

Membership in the restricted G-class is a local condition, as the next
result demonstrates.

Proposition 3.12. Suppose M and M∗ are (FP )∞. The following
are equivalent:

(1) M is in G̃(R)

(2) Mp is in G̃(Rp) for all prime ideals p.

(3)Mm is in G̃(Rm) for all maximal ideals m.

Proof. By Proposition 3.11, it is enough to prove that (3) implies
(1). As M and M∗ are (FP )∞, Exti

Rm
(Mm, Rm) ∼= ExtiR(M, R) ⊗R

Rm = 0 and Exti
Rm

((Mm)∗, Rm) ∼= ExtiR(M∗, R) ⊗R Rm = 0 for
all i > 0 and all maximal ideals m. Furthermore, there are natural
isomorphisms (M∗)m

∼= (Mm)v and (M∗∗)m
∼= (Mm)vv, where (−)v =
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HomRm(−, Rm). Let ρ : M → M∗∗ be the canonical homomorphism
and K = kerρ and C = cokerρ. By hypothesis, for each maximal ideal
m we have Mm is in G̃(Rm), which implies Km = Cm = 0 for all m.
Hence, ρ is an isomorphism and M ∈ G̃(R).

Corollary 3.13. Suppose M is (FP )∞. Then

(1) G̃dimR M ≥ G̃dimS M ⊗R S for all flat R-algebras S.

(2) G̃dimR M = G̃dimS M ⊗R S for all faithfully flat R-algebras S.

(3) If in addition M∗ is (FP )∞ then

G̃dimR M = sup{G̃dimRm Mm | m a maximal ideal of R}.

Proof. Part (1) is clear from Proposition 3.11. For part (2), suppose
G̃dimS M ⊗R S = n. Let G be a G̃-resolution of M and K the nth
syzygy of G. Since G ⊗R S is a G̃(S)-resolution of M ⊗R S, we have
that K ⊗R S is in G̃(S) by Proposition 3.5. By Proposition 3.11, K is
in G(R) and hence GdimR M ≤ n. Part (3) is proved similarly using
Proposition 3.12.

The following is a basic change of rings result.

Lemma 3.14. Let M be in G̃(R) and x ∈ R a non-zero-divisor on
R. Then M/xM is in G̃(R/(x)).

Proof. Since both M and M∗ are torsion-free, x is a non-zero-divisor
on M and M∗. Thus, M/xM and M∗/xM∗ are (FP )R/(x)

∞ by Remark
2.5. The remainder of the proof is identical to Lemma 1.3.5 of [6].

Lemma 3.15. Let M be an R-module such that G̃dimR M ≤ n.
Then Extn

R(M, R) is finitely presented.

Proof. Since Exti
R(M, R) = 0 for i > G̃dimR M , we may assume

n = G̃dimR M . If n = 0 the result is clear. Suppose n > 0 and
let 0 → K → G → M → 0 be exact where G is in G̃(R). By
Proposition 3.9, G̃dimR K = n − 1. By induction, Extn−1

R (K, R) is
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finitely presented. By the exactness of

Extn−1
R (G, R) → Extn−1

R (K, R) → ExtnR(M, R) → 0

we see that Extn
R(M, R) is finitely presented (e.g., Lemma 2.3).

Let J(R) denote the Jacobson radical of R.

Proposition 3.16. Let M be an R-module which is (FP )∞ and
x ∈ J(R) a non-zero-divisor on M and R. Suppose M/xM is in
G̃(R/(x)).

(1) If G̃dimR M < ∞ then M is in G̃(R).

(2) If R is coherent then M is in G̃(R).

Proof. We prove part (1). The proof of (2) is similar to the proof of
Lemma 1.4.4 of [6], where one uses coherence to ensure the kernel and
cokernel of the canonical map M → M∗∗ are finitely generated so that
Nakayama’s lemma can be applied. Let G̃dimR M = n and assume
n > 0. As x is a non-zero-divisor on M and R, ExtiR(M, R/(x)) ∼=
Exti

R/(x)(M/xM, R/(x)) = 0 for i > 0. Then ExtnR(M, R) is nonzero
and finitely generated (Lemma 3.15). Applying HomR(M,−) to the
short exact sequence 0 → R

x→ R → R/(x) → 0 yields the exact
sequence

· · · −→ Extn
R(M, R) x−→ Extn

R(M, R) −→ 0,

which implies by Nakayama’s lemma that ExtnR(M, R) = 0, a contra-
diction. Hence, n = 0.

Applying these results to restricted G-dimension, we have:

Proposition 3.17. Let M be an R-module which is (FP )∞ and
x ∈ R a non-zero-divisor on M and R. Then

(1) G̃dimR/(x) M/xM ≤ G̃dimR M .

(2) If x ∈ J(R) and either M has finite G̃-dimension or R is coherent
then

G̃dimR/(x) M/xM = G̃dimR M.
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Proof. For part (1), we may assume G̃dimR M = n < ∞. If
n = 0 the result follows by Lemma 3.14. If n > 0 then there exists
a short exact sequence 0 → K → G → M → 0 where G is in G̃(R)
and G̃dimR K = n − 1. Since x is a non-zero-divisor on M and R,
the sequence 0 → K/xK → G/xG → M/xM → 0 is exact. By
the induction hypothesis, G̃dimR/(x) K/xK ≤ n − 1 and G/xG is in
G(R/(x)) by the n = 0 case. Hence, G̃dimR/(x) M/xM ≤ n.

For part (2), it is enough to show G̃dimR M ≤ G̃dimR/(x) M/xM .
Again, we may assume G̃dimR/(x) M/xM = n < ∞. If n = 0 the
result follows by Proposition 3.16. Otherwise, consider a short exact
sequence 0 → K → G → M → 0 where G is in G̃(R). Then
0 → K/xK → G/xG → M/xM → 0 is exact and G/xG is in
G̃(R/(x)). By Proposition 3.9 we have G̃dimR/(x) K/xK = n − 1.
Since x is a non-zero-divisor on K we have by the induction hypothesis
that G̃dimR K ≤ n − 1. Hence, G̃dimR M ≤ n.

We will need the following lemma in the proof of Theorem 3.19:

Lemma 3.18. Let n be a nonnegative integer and consider an exact
sequence of R-modules

0 → M → A0 → A1 → · · · → An → 0.

Suppose that for 1 ≤ i ≤ n we have Extj
R(Ai, R) = 0 for 1 ≤ j ≤ i.

Then
0 → A∗

n → A∗
n−1 → · · · → A∗

0 → M∗ → 0

is exact.

Proof. We use induction on n, the cases n = 0 and n = 1 being
trivial. If n > 1 let K be the kernel of the map An−1 → An. It follows
easily from the short exact sequence 0 → K → An−1 → An → 0
that 0 → A∗

n → A∗
n−1 → K∗ → 0 is exact and ExtiR(K, R) = 0 for

1 ≤ i ≤ n − 1 By the induction hypothesis, we have that

0 → K∗ → A∗
n−2 → · · · → A∗

0 → M∗ → 0

is exact. Patching the two sequences we obtain the desired result.
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The proof of the following important change of rings theorem is sim-
ilar to the argument of [1, Proposition 4.35] except for a simplification
(using the lemma above) which replaces a “tedious calculation” [1, p.
137].

Theorem 3.19. Let M be a nonzero R-module such that
G̃dimR M < ∞ and suppose x is a non-zero-divisor on R such that
xM = 0. Then

G̃dimR/(x) M = G̃dimR M − 1.

Proof. We use induction on G̃dimR M . Note that since x is a non-
zero-divisor on R and annihilates M , M cannot be reflexive. Hence
G̃dimR M ≥ 1. Suppose G̃dimR M = 1. Then there exists an exact
sequence 0 → G1 → G0 → M → 0 such that G1 and G0 are in
G̃(R). Let R denote R/(x). For an R-module N let Nv denote
HomR(N, R) (to distinguish this dual from N∗ = HomR(N, R)). As
x is a non-zero-divisor on R and xM = 0, we have that M∗ = 0 and
Exti+1

R (M, R) ∼= Exti
R
(M, R) for i ≥ 0 by [16, Lemma 18.2]. Hence,

Mv ∼= Ext1R(M, R) and Exti
R
(M, R) = 0 for all i > 0. Applying

HomR(−, R) to the short exact sequence above, we have

0 → G∗
0 → G∗

1 → Mv → 0.

Thus, G̃dimR Mv = 1. Repeating the above argument with Mv in place
of M , we get Exti

R
(Mv, R) = 0 for all i > 0. It remains to show that

M is reflexive as an R-module. It is readily seen by the assumptions
on x that TorR

1 (M, R/(x)) ∼= M and Tor1(G0, R/(x)) = 0. Hence we
have an exact sequence of R-modules

0 → M → G1/xG1 → G0/xG0 → M → 0.

Note that by Lemma 3.14, G1/xG1 and G0/xG0 are in G̃(R). Applying
HomR(−, R) twice to this exact sequence and using Lemma 3.18, we
obtain the exactness of

0 → Mvv → (G1/xG1)vv → (G0/xG0)vv → Mvv → 0.

Since G0/xG0 and G1/xG1 are reflexive (as R-modules), we see that
M is reflexive by the five lemma. Hence, G̃dimR M = 0.
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Suppose G̃dimR M = n > 1. Let ϕ : G → M be a surjective
homomorphism where G ∈ G̃(R). Tensoring with R/(x) we get a
surjection ϕ : G/xG → M . Letting K be the kernel of ϕ we get a
short exact sequence of R-modules 0 → K → G/xG → M → 0. As
x is a non-zero-divisor on G, 0 → G

x→ G → G/xG → 0 is exact.
Hence, G̃dimR G/xG = 1. (Note that G/xG is nonzero as M is.) By
Proposition 3.10, G̃dimR K < ∞. Moreover, as G̃dimR M = n > 1, it
readily follows from Proposition 3.5 that Exti

R(K, R) = 0 for i > n− 1
and Extn−1

R (K, R) �= 0. Hence G̃dimR K = n − 1. Since xK = 0 we
have by the induction hypothesis that G̃dimR/(x) K = n − 2. Since
G/xG is in G̃(R/(x)) (Lemma 3.14), we have G̃dimR/(x) M = n− 1 by
Proposition 3.9.

In the coherent case, we have the same result holding if the assump-
tion G̃dimR M < ∞ is replaced with G̃dimR/(x) M/xM < ∞ and
x ∈ J(R):

Proposition 3.20. Let R be coherent, M a nonzero finitely
presented R-module, and x ∈ J(R) a non-zero-divisor on R such that
xM = 0. If G̃dimR/(x) M < ∞ then

G̃dimR/(x) M = G̃dimR M − 1.

Proof. The proof is virtually identical to the proof of Lemma 1.5.2 of
[6], where we use part (2) of Proposition 3.17 in place of [6, Proposition
1.4.5].

Combining Theorem 3.19, Proposition 3.20, and Proposition 3.17 we
obtain:

Corollary 3.21. Let R be coherent, M a nonzero finitely presented
R-module, and x ∈ J(R) a non-zero-divisor on R.

(1) If xM = 0 then G̃dimR/(x) M = G̃dimR M − 1.

(2) If x is a non-zero-divisor on M then
G̃dimR M/xM = G̃dimR M + 1.
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4. The Auslander-Bridger formula for restricted Gorenstein
dimension. In this section we prove the Auslander-Bridger formula
for modules of finite restricted G-dimension over a quasi-local ring. The
proof here differs by necessity from those given in [1] and [6] to avoid
arguments using the theory of associated primes. One also needs to
pass to faithfully flat extensions to make the induction argument work.

We begin with the following elementary result:

Lemma 4.1. Let R be a quasi-local ring with depth R = 0 and M
a finitely presented R-module. Then M = 0 if and only if M∗ = 0.

Proof. Let M be generated by n elements and suppose M∗ = 0. We
show by induction on n that M = 0. If n = 1 then M ∼= R/I for some
finitely generated ideal I. Since depth R = 0 we have HomR(R/I, R) �=
0 unless I = R (Lemma 2.8). As M∗ = HomR(R/I, R) = 0 we must
have I = R and hence M = 0. If n > 1 then there exists a submodule
M ′ of M generated by n − 1 elements and such that M/M ′ is cyclic.
Clearly, M/M ′ is finitely presented and (M/M ′)∗ = 0. By the n = 1
case, we have M/M ′ = 0. Hence, M is generated by n − 1 elements
and M = 0.

Lemma 4.2. Let R be a quasi-local ring with depth R = 0 and M
a nonzero R-module of finite G̃-dimension. Then G̃dimR M = 0 and
depthM = 0.

Proof. By induction it suffices to prove the case when G̃dimR M ≤ 1.
Then there exists a short exact sequence 0 → G1 → G0 → M → 0
where G0 and G1 are in G̃(R). Applying HomR(−, R) twice, we get
the exact sequence

0 → Ext1R(M, R)∗ → G∗∗
1 → G∗∗

0 .

Since G0 and G1 are reflexive and the map G1 → G0 is injective,
we obtain Ext1R(M, R)∗ = 0. As Ext1R(M, R) is finitely presented
by Lemma 3.15, we have Ext1R(M, R) = 0 by Lemma 4.1. Hence,
G̃dimR M = 0 by Proposition 3.5.

By way of contradiction, assume depthM > 0. Let m be the maximal
ideal of R and S = R[x]mR[x] where x is an indeterminate over R. As S
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is faithfully flat over R, M ⊗R S is in G̃(S), depthS S = depthR R = 0,
and depthS M⊗RS = depthM (cf. Propositions 3.11 and 2.7, part (3)).
Furthermore, DepthS M ⊗R S > 0 by part (4) of Proposition 2.7. Thus
by passing to S and resetting notation, we may assume there exists
an element x ∈ m such that x is a non-zero-divisor on M . Applying
HomR(−, R) to the short exact sequence 0 → M

x→ M → M/xM → 0
we get the exact sequence

0 → (M/xM)∗ → M∗ x→ M∗ → Ext1R(M/xM, R) → 0.

In particular, this sequence shows that Ext1R(M/xM, R) is finitely
presented. Dualizing again, we have

0 → Ext1R(M/xM, R)∗ → M∗∗ x→ M∗∗

is exact. Since M ∼= M∗∗ and x is a non-zero-divisor on M we have
Ext1R(M/xM, R)∗ = 0. By Lemma 4.1, we see that Ext1R(M/xM, R) =
0. From the exact sequence above, this implies M∗ = xM∗. By
Nakayama’s Lemma we have M∗ = 0, a contradiction. Thus,
depthM = 0.

Lemma 4.3. Let R be a quasi-local ring and M a nonzero R-module
in G̃(R). Then depth R = depthM .

Proof. Let m denote the maximal ideal of R. Let n = depth R
and suppose n < ∞. If n = 0 the result holds by Lemma 4.2. If
n > 0, as in the proof of Lemma 4.2 we may assume, by passing to
R[x]mR[x] if necessary, that there exists x ∈ m which is a non-zero-
divisor on R. Then x is also a non-zero-divisor on M (as reflexive
modules are torsion-free) and M/xM is in G̃(R/(x)) by Lemma 3.14.
Hence depthR/(x) R/(x) = n−1 and depthR/(x) M/xM = depthM −1.
By induction on n, we obtain depthR/(x) M/xM = n − 1 and hence
depthM = n.

Suppose now that depthR = ∞. We prove that depthM ≥ n for
all n. The case n = 0 is trivial. Assume that for all quasi-local rings
S with depth S = ∞ and modules N in G̃(S), that depthS N ≥ n.
As above, we may assume there exists x ∈ m such that x is a non-
zero-divisor on R (and hence M). Then M/xM is in G̃(R/(x)),



302 L. HUMMEL AND T. MARLEY

depthR/(x) R/(x) = ∞, and depthR/(x) M/xM = depthM − 1. By
assumption, depthR/(x) M/xM ≥ n which implies
depthM ≥ n + 1.

We now prove the Auslander-Bridger formula for restricted G-
dimension:

Theorem 4.4. Let R be a quasi-local ring and M a nonzero R-
module of finite G̃-dimension. Then

depthM + G̃dimR M = depth R.

Proof. First assume depth R = ∞. If G̃dimR M = 0 then
depthM = ∞ by Lemma 4.3. Suppose G̃dimR M = n > 0 and
depthN = ∞ for all R-modules N such that G̃dimR N < n. Let
0 → K → G → M → 0 be exact where G is in G̃(R). Then
G̃dimR K = n − 1 and hence depth K = ∞. Since depthG = ∞,
depthM = ∞ by part (8) of Proposition 2.7 and the equality holds.

Assume now that depth R < ∞. We proceed by induction on
depthR. If depthR = 0 the formula holds by Lemma 4.2. Suppose
depth R = n > 0. Let m denote the maximal ideal of R. If
depthM > 0 we may assume, by passing to R[x]mR[x] if necessary,
that there exists x ∈ m such that x is a non-zero-divisor on R and
M . (In this case, one can show depth M ⊕ R > 0 and we may apply
part (4) of Proposition 2.7.) Then G̃dimR/(x) M/xM = G̃dimR M
by Proposition 3.17. Furthermore, depthR/(x) M/xM = depth M − 1
and depthR/(x) R/(x) = depthR − 1. By the induction hypothesis,
we have depthR/(x) M/xM + G̃dimR/(x) M/xM = depthR/(x) R/(x).
Substituting, we see the formula holds.

Finally, assume depth R = n > 0 and depth M = 0. Then
G̃dimR M > 0 by Lemma 4.3. Let 0 → K → G → M → 0 be a short
exact sequence where G is in G̃(R). Then G̃dimR K = G̃dimR M − 1
(Proposition 3.9) and, since depthG = depthR > depth M = 0,
depthK = 1 (part (8) of Proposition 2.7). By the depthM > 0 case
applied to K, we have depth K + G̃dimR K = depthR. Substituting,
we again see the formula holds.

As a corollary, we get the desired result for coherent rings:
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Corollary 4.5. Let R be a quasi-local coherent ring and M a finitely
presented R-module of finite G-dimension. Then

depthM + GdimR M = depth R.

Proof. As R is coherent and M is finitely presented, GdimR M =
G̃dimR M by Corollary 3.7.

We note that Theorem 4.4 also generalizes (and hence gives another
proof of) [18, Theorem 2, Chapter 6]:

Corollary 4.6. Let R be a quasi-local ring and M an (FP )∞-
module of finite projective dimension. Then

depth M + pdR M = depthR.

Proof. By Proposition 3.8, pdR M = G̃dimR M .

5. Coherent Gorenstein rings. In [3], J. Bertin defines a
quasi-local ring to be regular if every finitely generated ideal has finite
projective dimension. A ring R is said to be regular if Rm is regular for
every maximal ideal m of R. It is clear that this definition of regular
reduces to the usual definition for Noetherian local rings. In this spirit,
we propose the following definition:

Definition 5.1. A quasi-local ring R is called Gorenstein if every
finitely generated ideal of R has finite G-dimension. In general, a ring
R is called Gorenstein if Rm is Gorenstein for every maximal ideal m
of R.

We remark that by [1, Theorem 4.20], this definition agrees with
the usual notion of Gorenstein for Noetherian rings. While most of
the results and examples in this section pertain to coherent Gorenstein
rings, we point out that there exist non-coherent Gorenstein rings. We
thank the referee for suggesting the following example.

A valuation ring R is almost maximal if for every non-zero ideal I,
R/I is linearly compact in the discrete topology.
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Example 5.2. Let V be an almost maximal valuation domain with
value group R. (For instance, one could take V to be the ring of formal
power series over an arbitrary field with exponents in the nonnegative
reals. See section II.6 of [9] for details.) Let P denote the maximal
ideal of V and let a be a nonzero element of P . Then R = V/aP is a
non-coherent Gorenstein ring.

Proof. Since P has elements of arbitrarily small positive value,
(0 :R a) = P/aP is not finitely generated. Thus, R is not coherent.
Note that the ideals of V have the form xV or xP for x ∈ V . If
xV ⊇ aP , it is easily seen that (aP :V xV ) = x−1aP . Similarly, if
xP ⊇ aP then (aP :V xP ) = x−1aV . It follows that for all ideals I of
R one has (0 :R (0 :R I)) = I; i.e., every ideal of R is an annihilator
ideal. We next show that R is injective as an R-module. To see this,
let J be an arbitrary ideal of R generated by {rα | α ∈ Λ} where Λ
is an index set, and let ϕ : J → R be an R-homomorphism. Since for
any r ∈ R we have (0 :R (0 :R r)) = rR, it follows that for each α ∈ Λ
there exists exists an sα ∈ R such that ϕ(rα) = sαrα. Since every
finitely generated ideal of R is principal, we get that for every finite
subset Λ0 of Λ there exists an s ∈ R such that sαrα = ϕ(rα) = srα for
all α ∈ Λ0. In other words, the set of cosets {rα + (0 :R rα) | α ∈ Λ}
has the finite intersection property. By the linear compactness of R,
there exists an s ∈ R such that ϕ(rα) = srα for all α ∈ Λ. Thus, R is
injective. It now readily follows from the injectivity of R and the fact
that every ideal is an annihilator ideal that every ideal is reflexive and
every cyclic module is a member of G(R). By induction on the number
of generators, one obtains that every finitely generated R-module has
G-dimension zero. Hence, R is Gorenstein.

For the remainder of this section we restrict our attention to the
properties of coherent Gorenstein rings. In particular, since every
finitely generated projective module is a member of the restricted G-
class, we have:

Proposition 5.3. Let R be a coherent regular ring. Then R is
Gorenstein.
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Thus, every valuation domain is Gorenstein, as are polynomial rings
in an arbitrary number of variables over a field. We note that the
property of being Gorenstein localizes:

Proposition 5.4. Let R be a coherent Gorenstein ring and S a
multiplicatively closed set. Then RS is Gorenstein.

Proof. It is enough to show that if p is a prime ideal of R then Rp is
Gorenstein. Let I be a finitely generated ideal contained in p and m a
maximal ideal containing p. As R is Gorenstein and coherent, we have
by Corollary 3.13 and Corollary 3.7

G̃dimRp Ip ≤ G̃dimRm Im = GdimRm Im < ∞.

Hence, Rp is Gorenstein (and coherent).

We also have:

Proposition 5.5. Let R be a quasi-local coherent ring. The
following are equivalent:

(1) R is Gorenstein.

(2) Every finitely presented R-module has finite G-dimension.

Proof. An ideal I is finitely generated if and only if R/I is finitely
presented. Hence, (2) implies (1) is clear. Suppose R is Gorenstein and
let M be a finitely presented R-module generated by n elements. We
use induction on n to prove G̃dimR M < ∞. This is clear if n ≤ 1.
Suppose n > 1. Then there exists a submodule M ′ of M generated by
n − 1 elements such that M/M ′ is cyclic. As R is coherent and M is
finitely presented, M ′ is also finitely presented. Hence, G̃dimR M ′ and
G̃dimR M/M ′ are finite. By Proposition 3.10, G̃dimR M < ∞.

In [13] a definition for an arbitrary commutative ring to be Cohen-
Macaulay is given which agrees with the usual definition if the ring is
Noetherian. We will show below that every coherent Gorenstein ring
is Cohen-Macaulay. Let R be a ring and x denote a finite sequence
x1, . . . , xn of elements of R. For an R-module M , let Ȟi

x(M) denote
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the ith Čech cohomology of M with respect to x and Hi
x(M) the ith

local cohomology of M (i.e., the ith right derived functor of the (x)-
torsion functor). The sequence x is called weakly proregular if for all
i ≥ 0 and all R-modules M the natural map Hi

x(M) → Ȟi
x(M) is an

isomorphism (cf. [19]). A sequence x of length n is called a parameter
sequence if x is weakly proregular, (x)R �= R, and Hn

x(R)p �= 0 for
all prime ideals containing (x). The sequence x is a strong parameter
sequence if x1, . . . , xi is a parameter sequence for all 1 ≤ i ≤ n. A ring
R is called Cohen-Macaulay if every strong parameter sequence on R
is a regular sequence. It is not known if this property localizes; thus,
we say that R is locally Cohen-Macaulay if Rp is Cohen-Macaulay for
all prime ideals p of R. It is easily seen that locally Cohen-Macaulay
rings are Cohen-Macaulay; see [13] for details.

Proposition 5.6. Let R be a coherent Gorenstein ring. Then R is
locally Cohen-Macaulay.

Proof. Since Rp is coherent Gorenstein for all primes p of R, it
suffices to prove that a coherent quasi-local Gorenstein ring is Cohen-
Macaulay. Let x = x1, . . . , xn be a strong parameter sequence of R.
We proceed by induction on n to show that x is a regular sequence.
Let x′ denote the sequence x1, . . . , xn−1. (In the case n = 1, x′

denotes the empty sequence, which generates the zero ideal.) By way
of contradiction, we assume x′ is a regular sequence but xn is a zero-
divisor on R/(x′). Then there exists a prime p of R such that xn ∈ p
and depth Rp/(x′)Rp = 0 [13, Lemma 2.8]. Hence, depth Rp = n − 1.
By localizing at p, we can assume R is a quasi-local coherent Gorenstein
ring with depth R = n − 1 and x is a parameter sequence of length n.
In particular, Hn

x (R) �= 0. As R is coherent Gorenstein and (x)t is
finitely generated for all t, we have G̃dimR R/(x)t < ∞ for all t. By
Theorem 4.4, G̃dimR R/(x)t ≤ depth R = n − 1 for all t, and thus
Extn

R(R/(x)t, R) = 0 for all t. But then

Hn
x (R) ∼= lim

−→
t

Extn
R(R/(x)t, R) = 0,

a contradiction. Hence, x is a regular sequence and R is Cohen-
Macaulay.
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We next show that the Gorenstein property is preserved by passing to
(and lifting from) a quotient modulo a non-zero-divisor. This certainly
does not hold for regularity. We note also that, in contrast to the
Noetherian case, there are examples of quasi-local Cohen-Macaulay
rings which do not remain Cohen-Macaulay modulo a non-zero-divisor.
(See Example 4.9 of [13].)

Theorem 5.7. Let R be a quasi-local coherent ring with maximal
ideal m and x ∈ m a non-zero-divisor on R. Then R is Gorenstein if
and only if R/(x) is Gorenstein.

Proof. Assume R is Gorenstein. Let J be a finitely generated ideal
of R/(x). Then J = I/(x) for some finitely generated ideal I of R
containing (x). As R is (coherent) Gorenstein, G̃dimR R/I < ∞. By
Theorem 3.19, G̃dimR/(x) R/I < ∞, which implies G̃dimR/(x) J < ∞.
Thus, R/(x) is Gorenstein.

Conversely, assume R/(x) is Gorenstein. Let M be a finitely pre-
sented R-module. Assume first that x is a non-zero-divisor on M .
Then M/xM is a finitely presented R/(x)-module and by Proposition
5.5, G̃dimR/(x) M/xM < ∞. By Proposition 3.17, G̃dimR M < ∞.
If x is a zero-divisor on M let 0 → K → G → M → 0 be a short
exact sequence where G is in G̃(R). As R is coherent, K is finitely
presented. Furthermore, x is a non-zero-divisor on G and hence on K.
Thus, G̃dimR K < ∞. Hence, G̃dimR M < ∞.

Hence, for example, if V is a valuation domain and x ∈ V is a non-
unit non-zero-divisor, then V/xV is Gorenstein.

We now aim to prove that the Gorenstein property passes to finitely
generated polynomial ring extensions, assuming coherence is preserved.
To do this, we first need a folklore result which can be traced at least
as far back as 1966 ([15]; see also [21]). The proof here is of a different
style than the one found in the above references, although the argument
is essentially the same.
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Lemma 5.8. Let R be a ring, x an indeterminate over R, and M
an R[x]-module. There exists a short exact sequence of R[x]-modules

0 → R[x] ⊗R M → R[x] ⊗R M → M → 0.

Proof. Let t be an indeterminate over R[x] and let t act on M via
t · m := xm for all m ∈ M . In this way one can consider M as an
R[x, t]-module. Consider the short exact sequence of R[x, t]-modules

0 → R[x, t] x−t−→ R[x, t] → R[t] → 0.

Applying −⊗R[t] M , we get the short exact sequence of R[x, t]-modules

0 → R[x, t] ⊗R[t] M → R[x, t] ⊗R[t] M → R[t] ⊗R[t] M → 0.

Now, R[x, t]⊗R[t] M ∼= (R[x]⊗R R[t])⊗R[t] M ∼= R[x]⊗R M as R[x, t]-
modules. Thus, we have a short exact sequence of R[x, t]-modules

0 → R[x] ⊗R M → R[x] ⊗R M → M → 0.

Restricting scalars to R[x] we get the desired result.

This leads to another change of rings result for restricted Gorenstein
dimension:

Corollary 5.9. Let R be a ring, x an indeterminate over R, and M
an R[x]-module which is (FP )R

∞. Then G̃dimR[x] M ≤ G̃dimR M + 1.

Proof. Clearly, we may assume G̃dimR M < ∞. Since R[x]
is faithfully flat as an R-module, G̃dimR M = G̃dimR[x] R[x] ⊗R M
by Proposition 3.13. The result now follows from Lemma 5.8 and
Proposition 3.10.

Theorem 5.10. Let R[x] be a polynomial ring over R and
assume R[x] is coherent. Then R is Gorenstein if and only if R[x]
is Gorenstein.

Proof. Suppose R[x] is Gorenstein. As x is a non-zero-divisor
on R, R ∼= R[x]/(x) is Gorenstein (and coherent) by Theorem 5.7.
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Conversely, suppose R is Gorenstein and let P be a maximal ideal of
R[x]. By localizing at q = P ∩ R, we can assume R is quasi-local
coherent Gorenstein (by Proposition 5.4) with maximal ideal m and
P ∩R = m. Now, P = (m, f)R[x] for some monic polynomial f ∈ R[x].
Then R[x]/fR[x] is a free R-module of finite rank. Let J be a finitely
generated ideal of R[x]P . Then J = IP for some finitely generated
(hence, finitely presented) ideal I of R[x]. Consequently, I/fI is a
finitely presented R[x]/fR[x]-module, and hence finitely presented as
an R-module as well. Thus, G̃dimR I/fI < ∞. By Corollary 5.9,
G̃dimR[x] I/fI < ∞. Localizing, we have G̃dimR[x]P J/fJ < ∞.
Since f ∈ P is a non-zero-divisor on both R[x]P and J , we have that
G̃dimR[x]P J < ∞ by Corollary 3.21. Hence, R[x]P is Gorenstein.

It is known that the direct limit of a flat family of coherent regular
rings is coherent regular (e.g., [10, Theorem 6.2.2]). The analogous
result holds for Gorenstein rings:

Proposition 5.11. Let {Ri}i∈Λ be a direct system of commutative
rings over a directed index set Λ. Suppose each Ri is a coherent
Gorenstein ring and the maps Ri → Rj are flat for all i ≤ j. Then
lim−→ Ri is a coherent Gorenstein ring.

Proof. Let S = lim−→ Ri and Q be a prime ideal of S. Since

SQ
∼= lim−→ (Ri)qi, where qi = Q ∩ Ri, we may assume each Ri is quasi-

local. Thus, Ri → S is faithfully flat for all i. Let I be a finitely
generated ideal of S. Then there exists a j ∈ Λ and a finitely generated
ideal J of Rj such that JS = I. Since Rj is coherent Gorenstein and
quasi-local, G̃dimRj Rj/J < ∞. Since S is faithfully flat over Rj , by
Corollary 3.13, G̃dimS S/I < ∞. Hence, S is Gorenstein. Note that
the argument also shows that S is coherent.

As an application, we have the following:

Example 5.12. Let S = k[x1, x2, x3, . . . ]/(x2
1, x

2
2, x

2
3, . . . ), where k

is a field and the xi are variables. Then S ∼= lim−→ Ri where for i ∈ N,

Ri = k[x1, x2, . . . , xi]/(x2
1, x

2
2, . . . , x

2
i ). Since each Ri is a coherent

Gorenstein ring and the maps Ri → Ri+1 are flat for all i, S is coherent
Gorenstein by Proposition 5.11.
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It is well-known that a Noetherian local ring is Gorenstein if and
only if the ring has finite injective dimension. This characterization
can be generalized to quasi-local coherent rings using the notion of
FP-injective dimension as defined by Stenström [20]:

Definition 5.13. Let M be an R-module. The FP-injective
dimension of M is defined by

FP-idR M := inf{n ≥ 0 | Extn+1
R (N, M)=0

for every finitely presented R-module N},
where the infimum of the empty set is defined to be ∞. If FP-idR M = 0
we say M is FP-injective.

Proposition 5.14. Let R be a coherent ring, M an R-module, and
n a nonnegative integer. The following conditions are equivalent:

(1) FP-idR M ≤ n.

(2) Exti
R(N, M) = 0 for all i > n and all finitely presented R-modules

N .

(3) Extn+1
R (R/I, M) = 0 for all finitely generated ideals I of R.

(4) For every exact sequence

0 → M → E0 → E1 → · · · → En−1 → En → 0

such that Ei is FP-injective for 0 ≤ i ≤ n − 1, we have En is FP-
injective.

Proof. See Lemma 3.1 of [20].

Combining this result with Proposition 2.9 we have:

Corollary 5.15. Let R be a coherent quasi-local ring with maximal
ideal m and M an R-module such that mM �= M . Then depth M ≤
FP-idR M .

We now give a characterization of quasi-local Gorenstein rings of finite
depth in terms of FP-injective dimension. (For a proof of this result in
the Noetherian case, see Theorem 4.20 of [1].)
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Theorem 5.16. Let R be a quasi-local coherent ring, and n a
nonnegative integer. The following conditions are equivalent:

(1) FP-idR R = n.

(2) R is Gorenstein and depthR = n.

Proof. Suppose R is Gorenstein and depth R = n. Let M be a
finitely presented R-module. By Theorem 4.4, G̃dimR M ≤ n and
hence Exti

R(M, R) = 0 for all i > n by Proposition 3.5. On the other
hand, Extn

R(R/I, R) �= 0 for some finitely generated ideal I of R by
Proposition 2.9. Therefore, FP-idR R = n.

Conversely, suppose FP-idR R = n. By Corollary 5.15, depth R =
m ≤ n. If R is Gorenstein then m = n as we have shown (2) implies
(1). Let M be a finitely presented R-module and consider

0 → K → Fn−1 → · · · → F1 → F0 → M → 0

where each Fi is a finitely generated free R-module. Since Exti
R(M, R) =

0 for all i > n, it is easily seen that ExtiR(K, R) = 0 for all i > 0. It
suffices to show that K is in G̃(R). In fact, we will show that for any
finitely presented R-module N such that Exti

R(N, R) = 0 for all i > 0,
one has N ∈ G̃(R). Let

0 → C → Gn−1 → Gn−2 → · · · → G1 → G0 → N → 0

be exact where Gi is a finitely generated free R-module for all i. By
Lemma 3.18 the sequence

0 → N∗ → G∗
0 → G∗

1 → · · · → G∗
n−1 → C∗ → 0

is exact. As C∗ is finitely presented (coherence) and FP-idR R = n,
Exti

R(C∗, R) = 0 for i > n. Hence (by the same argument as for K
above), Exti

R(N∗, R) = 0 for i > 0. Now consider the short exact
sequence 0 → L → G0 → N → 0. Then ExtiR(L, R) = 0 for all i > 0
and hence Exti

R(L∗, R) = 0 for i > 0 as well (using L in place of N).
Applying HomR(−, R) twice, one obtains the exactness of

0 → L∗∗ → G∗∗
0 → N∗∗ → 0.

Since the canonical map G0 → G∗∗
0 is an isomorphism, the canonical

map N → N∗∗ is surjective. With L in place of N , we also obtain
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the map L → L∗∗ is surjective. Hence, the map N → N∗∗ is an
isomorphism (by the snake lemma) and N is in G̃(R). Thus, R is
Gorenstein.

We remark that a version of Theorem 5.16 (without reference to
depth) was proved in [7, Theorem 7] using very different methods.
We also note that a polynomial ring over a field in infinitely many
variables localized at a maximal ideal is a coherent quasi-local regular
(hence Gorenstein) ring with infinite FP-injective dimension.

Another equivalent characterization for a local ring R to be Goren-
stein is that R be Cohen-Macaulay and some (equivalently, every) sys-
tem of parameters generate an irreducible ideal. We have already seen
that coherent Gorenstein rings are Cohen-Macaulay. Additionally, we
have the following:

Proposition 5.17. Let R be a quasi-local coherent Gorenstein ring
with depth R = n < ∞. Then every n-generated ideal generated by a
regular sequence is irreducible.

Proof. Since the Gorenstein property is preserved modulo a regular
sequence, it suffices to prove the case n = 0. Suppose (x)∩(y) = (0) for
some x, y ∈ R. Then (0 :R (x)∩ (y)) = R. Consider the exact sequence

0 → R/((x) ∩ (y)) → R/(x) ⊕ R/(y) → R/(x, y) → 0.

Since R is coherent Gorenstein of depth zero, Ext1R(R/(x, y), R) = 0.
Hence, applying HomR(−, R) we obtain the exactness of

0 → (0 :R (x, y)) → (0 :R x) ⊕ (0 :R y) → (0 :R (x) ∩ (y)) → 0.

Thus, R = (0 :R (x) ∩ (y)) = (0 :R x) + (0 :R y). As R is quasi-local,
this implies x = 0 or y = 0.

We remark that in the above proposition, regular sequences of length
n = depth R may not exist. However, one can pass to a faithfully flat
extension (assuming coherence is preserved) to obtain such sequences.
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