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Reversible spin texture in ferroelectric HfO2

L. L. Tao,* Tula R. Paudel, Alexey A. Kovalev, and Evgeny Y. Tsymbal†

Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln,
Nebraska 68588, USA

(Received 1 May 2017; published 30 June 2017)

Spin-orbit coupling effects occurring in noncentrosymmetric materials are known to be responsible for
nontrivial spin configurations and a number of emergent physical phenomena. Ferroelectric materials may
be especially interesting in this regard due to reversible spontaneous polarization making possible a nonvolatile
electrical control of the spin degrees of freedom. Here, we explore a technologically relevant oxide material,
HfO2, which has been shown to exhibit robust ferroelectricity in a noncentrosymmetric orthorhombic phase.
Using theoretical modelling based on density-functional theory, we investigate the spin-dependent electronic
structure of the ferroelectric HfO2 and demonstrate the appearance of chiral spin textures driven by spin-orbit
coupling. We analyze these spin configurations in terms of the Rashba and Dresselhaus effects within the k · p
Hamiltonian model and find that the Rashba-type spin texture dominates around the valence-band maximum,
while the Dresselhaus-type spin texture prevails around the conduction band minimum. The latter is characterized
by a very large Dresselhaus constant λD = 0.578 eV Å, which allows using this material as a tunnel barrier to
produce tunneling anomalous and spin Hall effects that are reversible by ferroelectric polarization.

DOI: 10.1103/PhysRevB.95.245141

I. INTRODUCTION

Crystalline materials lacking space inversion symmetry
exhibit electronic energy bands that are split by spin-orbit
coupling (SOC). This is due to a nonvanishing gradient of the
electrostatic potential coupled to the electron spin through the
intra-atomic SOC. As a result, in noncentrosymmetric crystals
the SOC is odd in the electron’s wave vector (k), as was
demonstrated by Dresselhaus [1] and Rashba [2]. The spin-
momentum coupling lifts Kramers’ spin degeneracy and leads
to a complex k-dependent spin texture of the electronic bands.
The Rashba and Dresselhaus effects have recently aroused
significant interest in conjunction to thin-film heterostructures
where a number of emergent physical phenomena are triggered
by these SOC effects [3]. A particular interest is driven due
to a unique possibility to manipulate the spin degrees by
an external electric field [4,5], which is of great importance
for spintronics, a field of research promising to revolutionize
future electronics [6].

The Rashba effect has been observed on surfaces and
interfaces where space inversion symmetry is violated due
to the structural confinement. For example, surfaces of heavy
metals, such as Au (111) [7] and Bi (111) [8], surfaces of
oxides, such as SrTiO3 (001) [9] and KTaO3 (001) [10], two-
dimensional materials [11–13], and heterostructure interfaces,
such as InGaAs/InAlAs [14] and LaAlO3/SrTiO3 [15], were
demonstrated to exhibit the Rashba splitting. The giant Rashba
effect has also been predicted and observed in bulk materials,
such as BiTeI [16,17] and GeTe [18,19]. The Dresselhaus effect
was originally proposed for bulk zinc-blende and wurtzite
semiconductors, where the spin splitting was predicted to be
proportional to k3 [1]. The spin-momentum coupling linear in
k can also be realized in noncentrosymmetric structures giving
rise to the linear Dresselhaus SOC [20]. For example, the linear
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Dresselhaus term was found to be sizable for indirect-gap
zinc-blende semiconductors, such as AlAs and GaP [21].

The linear SOC can be written in terms of an effective
k-dependent field �(k) affecting the spin σ [22]:

HSO = �(k) · σ , (1)

where �(k) is linear in k and thus HSO preserves the time-
reversal symmetry. The specific form of �(k) depends on the
space symmetry of the system. For example, in the case of the
C2v point group, the Dresselhaus and Rashba SOC fields can be
written as �D(k) = λD(ky,kx,0) and �R(k) = λR(ky,−kx,0),
respectively.

Among noncentrosymmetric materials exhibiting Rashba
and Dresselhaus effects are ferroelectrics, which are charac-
terized by spontaneous polarization switchable by an applied
electric field. It was proposed that in such materials a full
reversal of the spin texture can occur in response to the
reversal of ferroelectric polarization [23]. Such functionality
is interesting in view of potential technological applications
employing, for example, tunneling anomalous and spin Hall
effects [24,25], controlled by ferroelectric polarization.

The original proposal explored properties of ferroelec-
tric semiconductor GeTe [18,23]. Following this theoretical
prediction, a number of other materials were considered as
possible candidates for electrically switchable spin texture.
Among them are metallo-organic halide perovskites, such as
(FA)SnI3 [26–28], hexagonal semiconductors, such as LiZnSb
[29], strained KTaO3 [30], and BiAlO3 [31]. Coexistence of
the Rashba and Dresselhaus SOC effects was predicted for
ferroelectric (FA)SnI3 [26] and BiAlO3 [31].

Despite these advances, several challenges impede exper-
imental studies and practical applications of the proposed
materials. In particular, GeTe has a relatively small band gap
(∼0.5 eV), which leads to large conductivity hindering the fer-
roelectric switching process. Halide perovskites, on the other
hand, suffer from limited structural stability and could hardly
be integrated in the modern semiconductor technologies.
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Also ferroelectricity of these compounds is questionable.
The proposed oxide materials require strain (KTaO3) or high
temperature/pressure (BiAlO3) to be synthetized. It would be
desirable to find a robust ferroelectric material that suffices the
requirements of practical application.

Hafnia (HfO2) is a promising candidate for this purpose.
This material is considered as a favorable gate dielectric in the
metal-oxide-semiconductor field-effect transistor (MOSFET).
This is due to its high dielectric constant (∼25), a large
band gap (∼5.7 eV) that suppresses the leakage current,
and good compatibility with Si. Recently, it was found that
thin films of doped hafnia exhibit pronounced ferroelectric
properties [32–34], which makes this material promising also
for applications in the ferroelectric field-effect transistors and
memories [35], as well as ferroelectric tunnel junctions (FTJs)
[36–40]. The origin of the ferroelectric behavior was attributed
to the formation of a noncentrosymmetric orthorhombic phase
[32,33]. Based on a first-principles search algorithm, two
possible ferroelectric phases were identified in HfO2, namely
orthorhombic polar phases with space-group symmetries of
Pca21 and Pmn21 [41]. The direct experimental evidence
of the ferroelectric Pca21 phase was recently provided by
scanning transmission electron microscopy [42].

The ferroelectric phase of HfO2 is interesting due to
broken inversion symmetry which allows for the Rashba or
Dresselhaus effects. Owing to Hf, which is a heavy 5d element,
a sizable SOC is expected in this material, raising a natural
question about magnitude of these effects. In this paper, we
focus on the orthorhombic Pca21 structural phase of HfO2,
which was proposed by the theory [41] and identified in
the experiment [42]. Using density-functional theory (DFT)
calculations, we predict the formation of chiral spin textures
driven by the Rashba and Dresselhaus effects. The spin
textures are fully reversible with ferroelectric polarization,
which makes this material promising for novel spintronic
applications.

The rest of the paper is organized as follows. In Sec. II,
we describe details of the computational methods. Section III
is devoted to the structural properties of ferroelectric HfO2.
Section IV is focused on the electronic structure and analysis
of band symmetry. The spin textures are analyzed in terms of
the Rashba and Dresselhaus effects within DFT calculations
in Sec. V and a model Hamiltonian approach in Sec. VI. In
Sec. VII, we discuss some implications of our results, which
are summarized in Sec. VIII.

II. COMPUTATIONAL METHODS

We employ DFT calculations utilizing the plane-wave
ultrasoft pseudopotential method [43] implemented in Quan-
tum ESPRESSO [44]. The exchange-correlation functional is
treated in the generalized gradient approximation (GGA) [45].
Self-consistent computations are performed using an energy
cutoff of 680 eV for the plane-wave expansion and 10 × 10 ×
10 Monkhorst-Pack grid for k-point sampling. A 16 × 16 × 16
k-point mesh is used for the calculation of the density of states.
Atomic relaxations are performed in the absence of SOC until
the Hellmann-Feynman forces on each atom become less than
2.6 meV/Å. The ferroelectric polarization is computed using
the Berry phase method [46]. The expectation values of the

spin operators sα(α = x,y,z) are found from

sα = 1
2 〈ψk|σα|ψk〉, (2)

where σα are the Pauli spin matrices and ψk is the spinor
eigenfunction, which is obtained from noncollinear spin
calculations.

III. ATOMIC STRUCTURE

We consider a bulk ferroelectric HfO2 crystal which
belongs to the orthorhombic phase of space group Pca21.
This space group is nonsymmorphic, i.e., it possesses point-
symmetry operations combined with nonprimitive translations
[47]. The Pca21 group contains four symmetry operations:
the identity operation (E); twofold screw rotation Sz which
consists of π/2 rotation around the z axis followed by c/2
translation along the z axis:

Sz : (x,y,z) → (−x,−y,z + 1
2c

)
; (3)

glide reflection M1 which consists of reflection about the y = 0
plane followed by 1

2a translation along the x axis:

M1 : (x,y,z) → (
x + 1

2a,−y,z
)
; (4)

and glide reflection M2 which consists of reflection about the
x = 1

4a plane followed by 1
2c translation along the z axis:

M2 : (x,y,z) → (−x + 1
2a,y,z + 1

2c
)
. (5)

Here a, b, and c are the lattice constants. Figure 1(a) shows
the atomic structure of the orthorhombic HfO2.

The Pca21 phase of HfO2 is characterized by ferroelectric
polarization parallel to the c axis as follows from the C2v

point-group symmetry corresponding to this space group. The
C2v point group contains mirror xz and yz planes, which imply
zero net polarization along the [100] or [010] directions. On
the other hand, reflection about the xy plane does not belong
to this point group. The polar displacements between Hf and
O ions along the c axis yield a finite polarization pointing
in the [001̄] direction, as is evident from Fig. 1(b), showing
projection of the crystal structure to the (100) plane. There
are two topologically equivalent variants of the space group
Pca21 with opposite polarization (pointing in the [001] or

FIG. 1. (a) Crystal structure of bulk HfO2 in the Pca21 or-
thorhombic phase. The polarization P is along the [001̄] direction
as indicated by the red arrow. (b) Projection of the crystal structure
to the (100) plane. Distances along the c direction between Hf and O
atomic planes are shown.
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TABLE I. Relaxed lattice constants and atomic positions for bulk
HfO2.

Space group (no.) Lattice constants (Å)

Pca21 (29) a = 5.234, b = 5.010, c = 5.043

Atom Wyckoff x y z

Hf 4a 0.9668 0.7337 0.1231
O1 4a 0.1350 0.0666 0.2672
O2 4a 0.7288 0.4633 0.8744

[001̄] directions) indicative of the ferroelectric nature of HfO2

in this crystallographic phase.
Table I summarizes the calculated structural parameters

(in the Wyckoff notation) for bulk HfO2 in the orthorhombic
Pca21 phase, which are in good agreement with the previous
results [41,48]. The calculated polarization of 73 μC/ cm2 is
also in line with the previous reported value of 52 μC/cm2

[41].

IV. ELECTRONIC STRUCTURE

Now we investigate the electronic structure of ferroelectric
HfO2. First, we perform non-spin-polarized calculations, i.e.,
without including spin and SOC. Figure 2(a) shows the
calculated band dispersions along the selected k lines in the
first Brillouin zone (shown in the inset). It is evident that
HfO2 is an indirect-band-gap insulator with the valence-band
maximum (VBM) located at the � point and the conduction-
band minimum (CBM) located near the high-symmetry T

point (0, π/b, π/c). The calculated band gap is about 4.6 eV.
This is less than the reported experimental value of about
5.7 eV, due to the well-known deficiency of DFT to describe

FIG. 2. Electronic band structure of HfO2 in absence of
SOC. (a) Band structure along the high-symmetry lines �(0,0,0)-
X(π/a,0,0)-S(π/a,π/b,0)-Y (0,π/b,0)-�(0,0,0)-Z(0,0,π/c)-U (π/

a,0,π/c)-R(π/a,π/b,π/c)-T (0,π/b,π/c)-Z(0,0,π/c). Inset: the
first Brillouin zone with the arrows indicating the k path for the
band-structure calculations. (b) Density of states (DOS) projected
onto the Hf-5d and O-2p orbitals. The Fermi energy is aligned to the
valence-band maximum and is indicated by the horizontal dashed
line.

excited states. Figure 2(b) shows the partial density of states
(DOS) projected onto O-2p orbitals and Hf-5d orbitals. We
see that the valence bands are mainly composed of the O-2p

orbitals, whereas the conduction bands are mainly formed from
the Hf-5d orbitals.

Our calculations find that the electronic bands are double
degenerate along the symmetry lines Z-U -R-T -Z lying at the
Brillouin-zone boundary plane kz = π/c (highlighted in green
in inset of Fig. 2). This double degeneracy is not related to the
d-orbital character of the conduction band. For example, the
states around the T point have eg symmetry and represent two
singlets of the dz2 and dx2-y2 character (denoted by T1 and T ′

1,
respectively, in Fig. 2). The double degeneracy of the bands
in the kz = π/c plane is protected by the nonsymmorphic
symmetry of the Pca21 space group of the HfO2 orthorhombic
phase. This can be understood as follows [49,50].

As was discussed above, the Pca21 group contains a
twofold screw rotation symmetry Sz given by Eq. (3). Applying
this transformation twice we obtain

S2
z : (x,y,z) → (x,y,z + c), (6)

which is simply translation along the z axis by vector (0, 0, c).
For the spinless system, we have S2

z ψk = eikzcψk and hence

S2
z = eikzc. (7)

In addition, the system exhibits time-reversal symmetry T .
Composition of Sz and T defines the antiunitary symmetry
operator � ≡ SzT . Since Sz and T commute and T 2 = 1 for
the spinless system, we find

�2 = S2
z T

2 = eikzc. (8)

It is evident from Eq. (8) that at the Brillouin-zone
boundary, kz = π/c, the wave function changes sign under
this transformation, i.e., �2 = −1. Since � is an antiunitary
operator, which commutes with the Hamiltonian and preserves
the momentum at kz = π/c plane, the two Bloch states ψk and
�ψk are eigenfunctions of the Hamiltonian that are orthogonal
and have the same eigenvalue [51]. This implies that all the
bands at the kz = π/c plane are doubly degenerate.

Figure 3(a) shows the calculated relativistic band structure
of bulk HfO2. Comparing Figs. 2(a) and 3(a), we see that
including spin-orbit coupling leads to a sizable splitting of the
bands. The splitting is especially pronounced along certain
lines in the Brillouin zone, particularly in the kz = 0 and kz =
π/c planes. On the other hand, there are special high-symmetry
lines and points in the Brillouin zone where the splitting is
zero by symmetry. This is, in particular, the case for the �-Z
line, where kx = ky = 0 and hence the effective electric field
associated with the polar displacements along the z axis is
parallel to the wave vector.

The insets in Fig. 3 show the band structure zoomed in
around the VBM and CBM represented by the � and T points,
respectively. The SOC-induced splitting around the T point
(∼100 meV) is significantly larger than that around the �

point (∼5 meV) (note different scales in the insets). As we
will see in Sec. V, the splitting is Rashba-like around the �

point, while it is Dresselhaus-like around the T point.
There is another important difference between the bands

around the VBM and CBM, resulting from their location at
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FIG. 3. Electronic band structure of HfO2 in presence of SOC.
(a) Bands along the high-symmetry lines (shown in the inset of
Fig. 2). Insets: the band structure zoomed in around the � point
near the valence-band maximum (b) and around the T point near the
conduction-band minimum (c). The dashed line denotes the Fermi
energy. (d) Two doubly degenerate bands in the kz = π/c plane
around T point (corresponding to kx = 0 and ky = 0 in the plot). The
bands cross at the T point forming a 3D Dirac point with fourfold
degeneracy.

different symmetry points of the Brillouin zone. The bands
along the R-T and T -Z symmetry lines preserve their double
degeneracy even in the presence of SOC, while the bands along
the X-� and �-S lines are not degenerate (except the � point).

The double degeneracy at the Brillouin-zone boundary,
kz = π/c, follows from �2 = −1 which also holds for a
spin-half system. In this case, Eq. (7) is replaced by

S2
z = −eikzc, (9)

where the minus sign occurs due to the S2
z transformation

involving a 2π rotation, which changes the sign of the spin-
half wave function. In addition, for a noninteger spin system
T 2 = −1, which in combination with Eq. (9) preserves Eq. (8).
Thus, the � symmetry provides the double degeneracy for any
wave vector k in the kz = π/c plane, which is invariant with
respect to �, also in the spinful system. We note that the double
degeneracy is lifted when moving out of the kz = π/c plane
except the high-symmetry T -Y line.

For the wave vector in the kz = π/c plane around the CBM,
there are two doubly degenerate bands crossing at the time
reversal invariant T point [Fig. 3(c)]. This crossing and the
fourfold degeneracy at this point are protected by the symmetry
M1, which is evident from the following consideration [52].
According to Eq. (4), under the M2

1 operation the spatial
coordinate transforms as

M2
1 : (x,y,z) → (x + a,y,z), (10)

whereas the spin component of the wave function changes
its sign, which leads to M2

1 = −eikxa . Therefore, along the
high-symmetry line R-T-R invariant under M1 transformation,
each band can be labeled by its M1 eigenvalue, ie(i/2)kxa or
−ie(i/2)kxa , i.e.,M1ψ

±
k = ±ie(i/2)kxaψ±

k . On the other hand, as
follows from the commutation relation between � and M1, the
two degenerate states ψ±

k and �ψ±
k have the same eigenvalue

of M1:

M1�ψ±
k = −eikxa�M1ψ

±
k = ±ie

i
2 kxa�ψ±

k . (11)

Therefore, when two degenerate bands with different M1

eigenvalues cross, the resulting crossing point is protected,
leading to fourfold degeneracy. At the same time, since T

commutes with M1, the states with different eigenvalues of
M1 are connected by the time-reversal symmetry. This is seen
from

M1T ψ±
k = T [±ie

i
2 kxaψ±

k ] = ∓ie− i
2 kxaT ψ±

k , (12)

which implies that M1 transforms the wave function T ψ±
k

in the same way as ψ∓
−k, and hence T ψ±

k = ψ∓
−k. Therefore,

the symmetry protected crossing of the two degenerate bands
with different M1 eigenvalues must occur at the time reversal
invariant k point, i.e., the T point in our case. Figure 3(d) shows
the electronic band structure around the T point in the kz =
π/c plane. The fourfold degenerate time-reversal invariant T

point is in fact a three-dimensional (3D) Dirac point [53].
At the kz = 0 plane �2 = 1, as follows from Eq. (8), so

that the wave functions ψk and �ψk are no longer orthogonal
and represent the same state. Therefore, the bands around the
VBM [Fig. 3(b)] are not degenerate, except the � point. At the
� point, the energy level is double degenerate due to k = 0
being a time-reversal invariant wave vector, which implies that
the k = 0 state is a Kramers doublet.

V. SPIN STRUCTURE

Now we focus on the spin structure of the bands around
the � point (at the VBM) and the T point (near the CBM).
In both cases, a constant energy line crosses bands with four
different wave vectors, two being closer to and two being
further from the symmetry point. It is convenient to distinguish
these bands as “inner” and “outer” branches. Figures 4(a) and
4(b) show the calculated spin structure for the two branches
around the � point in the kz = 0 plane. The out-of-plane spin
component sz is zero by symmetry, while the in-plane spin
components sx and sy display a pronounced chiral spin texture.
The chirality changes from counterclockwise for the inner
branch to clockwise for the outer branch. It is seen that both
for inner and outer branches the spin is orthogonal to the wave
vector k, which is typical for the Rashba-type SOC.
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FIG. 4. Calculated spin textures in the kz = 0 plane around the �

point at the top of the valence band (a),(b) and in the kz = π/c plane
around the T point at the bottom of the conduction band (c)–(f) for
the inner branches (a),(c),(e) and the outer branches (b),(d),(f). Panels
(c),(e) and (d),(f) corresponds to the two conjugated states within the
double degenerate band. The in-plane spin components sx and sy are
shown by the arrows while the out-of-plane spin component sz is
indicated by color. The reference k point (kx = ky = 0) corresponds
to the � point in (a),(b) and the T point in (c)–(f).

The spin structure around the T point in the kz = π/c plane
exhibits distinctly different features. As is seen from Figs. 4(c)
and 4(d), the angle between the k vector and the spin depends
on the direction of k. The spin is perpendicular to k along the
kx and ky axes but parallel to k along the diagonals (the T-U
direction in the Brillouin zone). This behavior is typical for the
Dresselhaus-type SOC. Furthermore, we see the presence of a
sizable out-of-plane spin component, sz, which is indicated by
color in Figs. 4(c) and 4(d). All three spin components, i.e., sx ,
sy , and sz, change sign between the inner and outer branches,
reflecting the change of the spin direction with respect to the
effective SOC field �(k) at a particular k point [Eq. (1)]. The
sz also changes sign when crossing the ky = 0 line, as will be
explained below using a model Hamiltonian.

As we saw, even in the presence of SOC each of the
spin-split bands represents a doubly degenerate state in the
kz = π/c plane. Figures 4(e) and 4(f) show the respective
spin structures around the T point for the doublet-conjugated
states for inner and outer branches. By comparing Fig. 4(c)
to Fig. 4(e) and Fig. 4(d) to Fig. 4(f), we see that the doubly

degenerate states possess the same in-plane spin components
but opposite out-of-plane spin components. This is explained
by the nonsymmorphic symmetry of the crystal combined
with time-reversal symmetry, as represented by the � ≡ SzT

operator, which transforms the states within each of the
two doubly degenerate bands. The Sz transforms the spin
components according to (sx,sy,sz) → (−sx,−sy,sz), whereas
T transforms s to −s. Combing the two transformations, we
find that within each degenerate band the two spin states
have opposite sz but the same sx and sy . We note that due to
equal population of the �-conjugated states in each of the two
doubly degenerate bands, the ensemble-average value of the
out-of-plane spin component sz is zero, whereas the in-plane
spin components sx and sy remain finite.

We also note that our DFT calculations indicate that around
the T point the two �-conjugated states in each doubly
degenerate band are composed of the d orbitals localized
on the Hf atoms lying in the two different atomic layers
which are separated along the c direction [Fig. 1(b)]. Since
the �-conjugated states have opposite sz components, this
spatial separation creates a local spin polarization at a given k
point. This behavior is reminiscent to that tagged as “hidden
spin polarization” [54].

VI. MODEL

The spin textures around the � and T points can be
understood in terms of an effective k · p Hamiltonian, which
can be deduced from symmetry considerations. Here, we
assume that only linear terms with respect to wave vector
k contribute to the SOC Hamiltonian [55]. The wave-vector
symmetry group of the Pca21 space group at the � point is
C2v , which has twofold rotation C2z around the z axis as well
as two mirror reflections about the xz plane (My) and the yz

plane (Mx). The corresponding transformations for k and σ are
given in Table II. To make the SOC Hamiltonian (1) invariant
under these transformations in the kz = 0 plane, the effective
SOC field must have the form of �(k) = (αky,βkx,0), where
α and β are some constants. Note that the symmetry forbids
having linear in k components proportional to σz and thus the
out-of-plane spin component is zero.

Taking into account these considerations, the effective
Hamiltonian characterizing the electronic and spin structure in
the kz = 0 plane around the � point can be written as follows:

H = E0 + HSO, (13)

where

E0 = h̄2k2
x

2mx

+ h̄2k2
y

2my

(14)

is the free-electron contribution with mx (my) being the
electron effective mass along the kx (ky) direction, and

HSO = αkxσy + βkyσx (15)

is the SOC term. The latter includes the Rashba and Dressel-
haus SOC effects, as can be seen from rewriting Eq. (15) in
the form HSO = λD(kxσy + kyσx) + λR(kxσy − kyσx), where
λD = (α + β)/2 and λR = (α − β)/2 are the Dresselhaus and
Rashba parameters, respectively.
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TABLE II. Transformation rules for wave vector k, and spin (σ ) and sublattice (τ ) Pauli matrices under the C2v point-group symmetry
operations for the �(0,0,0) and T (0, π/b, π/c) points in the Brillouin zone of HfO2 [shown in the inset of Fig. 2(a)]. The wave vector k is
referenced with respect to the high-symmetry point (� and T ) where it is assumed to be zero. K denotes complex conjugation.

� point T point

Symmetry Symmetry
operation (kx , ky , kz) (σx , σy , σz) operation (kx , ky , kz) (σx , σy , σz) (τx , τy , τz)

T = iσyK (−kx , −ky , −kz) (−σx , −σy , −σz) T = iσyτzK (−kx , −ky , −kz) (−σx , −σy , −σz) (−τx , τy , τz)
Sz = iσz (−kx , −ky , kz) (−σx , −σy , σz) Sz = σzτx (−kx , −ky , kz) (−σx , −σy , σz) (τx , −τy , −τz)
M1 = iσy (kx , −ky , kz) (−σx , σy , −σz) M1 = iσy (kx , −ky , kz) (−σx , σy , −σz) (τx , τy , τz)
M2 = iσx (−kx , ky , kz) (σx , −σy , −σz) M2 = σxτx (−kx , ky , kz) (σx , −σy , −σz) (τx , −τy , −τz)

The band energies of Eq. (13) are given by

E±
k = E0 ±

√
α2k2

x + β2k2
y. (16)

By fitting the DFT calculated band structure around the
� point, we find for the Rashba and Dresselhaus parameters
λR = 0.056 eV Å and λD = 0.007 eV Å.

For the T point, the situation is different. Here, additional
sublattice degrees of freedom need to be included in the
consideration to take into account four dispersing bands.
This is conventionally described by a set of Pauli matrices
τα operating in the sublattice space [52]. The wave-vector
symmetry group of the Pca21 space group at the T point is still
C2v , but the symmetry operations now include transformations
both in the spin and sublattice space. These are given in
Table II. Collecting all the terms which are invariant with
respect to the symmetry operations we obtain the effective
Hamiltonian as follows:

HSO = αkxσy + βkyσx + kyσz(γ1τy + γ2τz)

+ kzσy(δ1τy + δ2τz) + χkzτx. (17)

Here γ1, γ2, δ1, δ2, and χ are constants, and the wave
vector k is referenced with respect to the T point where it
is assumed to be zero. This Hamiltonian guarantees double
degeneracy of the bands in the kz = π/c plane [corresponding
to kz = 0 in Eq. (17)], due to symmetry protection: (SzT )2 =
(−iσxτyK)2 = −1. Moving away from that plane [kz 	= 0 in
Eq. (17)] breaks the double degeneracy and splits the bands
into four singlets except the kx = ky = 0 line where the double
degeneracy is preserved.

For kz = 0, the Hamiltonian (17) can be easily diagonalized
in the sublattice space. The eigenvalues of the γ1τy + γ2τz

matrix are ηγ , where γ =
√

γ 2
1 + γ 2

2 and η = ±1. Thus, the
effective SOC Hamiltonian around the T point in the kz = π/c

plane can be represented in the form

HSO = αkxσy + βkyσx + ηγ kyσz. (18)

This is equivalent to the representation (1) with the SOC
field �η(k) = (αky,βkx,ηγ ky), which has the opposite sign
of the z component for different values of η = ±1. The band
energies Ek are degenerate with respect to η, producing two
doublets with energies

E±
k = E0 ± ESO, (19)

where ESO =
√

α2k2
x + (β2 + γ 2)k2

y . The normalized spinor

wave function ψk is given by

ψ±
k = eik·r√

2π (ρ2± + 1)

(
iαkx−βky

ηγ ky∓ESO

1

)
, (20)

where ρ2
± = α2k2

x+β2k2
y

(ηγ ky∓ESO )2 (Ref. [56]). The expectation value

of the spin operator is obtained from s± = 1
2 〈ψ±

k |σ |ψ±
k 〉,

resulting in

(sx,sy,sz)
± = ± 1

2ESO

(βky,αkx,ηγ ky). (21)

As is evident from Eq. (21), the states with different values
of η = ±1 have the opposite sign of the z component of the
spin. Note that the sz changes sign when crossing the ky = 0
line consistent with the DFT calculations [Figs. 4(c)–4(f)].

Using Eq. (19), we fit the electronic band structure around
the T point and obtain the following parameters of the model
Hamiltonian (18): α = 0.605 eV Å, β = 0.550 eV Å, γ =
0.168 eV Å. From α and β we find the Rashba and Dresselhaus
parameters λR = 0.028 eV Å and λD = 0.578 eV Å. It
is evident that the Dresselhaus SOC splitting dominates
the Rashba SOC splitting around the T point. The large
Dresselhaus constant explains the spin texture found from our
DFT calculation and shown in Figs. 4(c)–4(f). This behavior
is nicely reproduced by the k · p model with the λR and λD ex-
tracted from the DFT calculation. The respective spin textures
for η = 1 are shown in Fig. 5, indicating the Dresselhaus-type
feature in spin configuration. The conjugated doublet state
with η = −1 has the same in-plane spin component but the
opposite sign of sz (not shown).

FIG. 5. Calcuated spin textures based on the model of Eq. (18)
for inner ψ+

k (a) and for outer ψ−
k (b) branches. The in-plane spin

components sx and sy , are shown by the arrows while the out-of-plane
spin component sz is indicated by color.
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TABLE III. Calculated Dresselhaus parameters for selected bulk
materials.

Material λD (eV Å) Reference

HfO2 (Pca21) 0.578 this work
AlAs 0.011 [21]
GaP 0.072 [21]
BiAlO3 (R3c) 0.041 [31]
(FA)SnI3 1.190 [26]

VII. OUTLOOK

The Dresselhaus effect is generally found in the bulk
materials with spatial inversion symmetry broken, such as
zinc-blende semiconductors. For comparison, we summarize
in Table III the Dresselhaus parameters λD obtained from DFT
calculations for a few selected bulk systems. We see that the
predicted value of λD for bulk HfO2 is significantly larger than
the values known for nonorganic bulk semiconductors and
oxides. The large λD reported for organic (FA)SnI3 assumes a
specific noncentrosymmetric crystal structure of this material,
which may be difficult to realize in practice due to disorder in
organic cation dipole moments.

HfO2 is a wide band-gap material which can be used as an
insulating barrier in tunnel junctions. The ferroelectric phase of
this material is especially interesting due to the tunneling elec-
troresistance effect [57,58] known as an important functional
property of ferroelectric and multiferroic tunnel junctions
[59]. Due to HfO2 being well compatible with the existing
semiconductor technologies, it can potentially be employed to
develop FTJ-based memories.

The presence of the large SOC coupling effects predicted
in this work opens additional interesting possibilities for using
this material. In ferroelectric HfO2, a full reversal of the spin
texture is expected in response to the reversal of its ferroelectric
polarization P, similar to what was originally proposed for
GeTe [23]. This behavior follows from the fact that the reversal
of P, i.e., the change of P to −P, is equivalent to the space
inversion operation which changes the wave vector from k
to −k but preserves the spin σ . Applying the time-reversal
symmetry operation to this state with reversed polarization,
we bring −k back to k but flip the spin, changing it from σ

to −σ . Thus, the reversed-polarization state is identical to the
original state with the same k but reversed spin σ .

A possible implication of this effect may be found in tunnel
junctions [60]. The Rashba SOC at the interface in a magnetic
tunnel junction has been predicted to produce a tunneling
spin Hall effect and tunneling anomalous Hall effect (AHE)
[24]. This prediction was extended to the presence of the bulk
Dresselhaus contribution in a tunnel junction with a single
ferromagnetic electrode [25]. In particular, it was found that
the magnitude of the tunneling AHE scales linearly with the
Dresselhaus parameter. The large value of λD in HfO2 makes
this material a favorable candidate for observing this effect

experimentally. The presence of ferroelectric polarization
causes the AHE to be reversible, because its sign changes
with the sign of λD and hence P.

Finally, we would like to note that there have been efforts
in using hybrid exchange-correlation functionals to improve
the description of electronic and structural properties of
ferroelectric oxides [61,62]. It would be interesting to explore
how this approach affects the predictions made in our paper.

VIII. SUMMARY

In summary, we have investigated the Rashba and Dres-
selhaus effects in the bulk ferroelectric oxide HfO2 using
first-principles calculations and a k · p Hamiltonian model.
We focused on the orthorhombic Pca21 structural phase of
HfO2 which was previously predicted theoretically [41] and
confirmed experimentally [42]. We found that the calculated
structural parameters and ferroelectric polarization are consis-
tent with those reported previously. Results of our calculations
showed that ferroelectric HfO2 is an indirect-band-gap insula-
tor with the VBM located at the � point and the CBM located
near the high-symmetry T point. The band energies are doubly
degenerate in the kz = π/c plane of the Brillouin zone, which
stems from the nonsymmorphic space group of the crystal. We
found that the time-reversal invariant T point is the Dirac point,
which supports band crossings and the fourfold degeneracy of
the electronic states protected by the crystal symmetry. The
calculated spin textures reveal that the Rashba-type SOC dom-
inates around the VBM, whereas the Dresselhaus-type SOC
dominates around the CBM. The spin splitting induced by SOC
as well as the spin textures are explained by the k · p Hamilto-
nian deduced from symmetry arguments. Importantly, a very
large Dresselhaus parameter of 0.578 eV Å is predicted for the
orthorhombic HfO2, which is at least an order of magnitude
larger than that known for conventional semiconductors and
oxides. The spin textures are fully reversible with polarization
switching, which enables the control of spin-dependent prop-
erties by electric fields. The large Dresselhaus parameter and
the reversible spin structure may have interesting implications
for ferroelectric tunnel junctions based on HfO2, where sizable
spin and anomalous Hall effects are expected, reversible with
ferroelectric polarization. Overall, our results provide the fun-
damental understanding of the Rashba and Dresselhaus effects
in ferroelectric HfO2, revealing interesting functionalities of
this material which could be explored experimentally.
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