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This paper investigated spatiotemporal dynamic pattern of vegetation, climate factor, and their complex relationships
from seasonal to inter-annual scale in China during the period 1982–1998 through wavelet transform method based on
GIMMS data-sets. First, most vegetation canopies demonstrated obvious seasonality, increasing with latitudinal gradient.
Second, obvious dynamic trends were observed in both vegetation and climate change, especially the positive trends.
Over 70% areas were observed with obvious vegetation greening up, with vegetation degradation principally in the Pearl
River Delta, Yangtze River Delta, and desert. Overall warming trend was observed across the whole country (>98%
area), stronger in Northern China. Although over half of area (58.2%) obtained increasing rainfall trend, around a quarter
of area (24.5%), especially the Central China and most northern portion of China, exhibited significantly negative rainfall
trend. Third, significantly positive normalized difference vegetation index (NDVI)–climate relationship was generally
observed on the de-noised time series in most vegetated regions, corresponding to their synchronous stronger seasonal
pattern. Finally, at inter-annual level, the NDVI–climate relationship differed with climatic regions and their long-term
trends: in humid regions, positive coefficients were observed except in regions with vegetation degradation; in arid,
semiarid, and semihumid regions, positive relationships would be examined on the condition that increasing rainfall
could compensate the increasing water requirement along with increasing temperature. This study provided valuable
insights into the long-term vegetation–climate relationship in China with consideration of their spatiotemporal variability
and overall trend in the global change process.

Keywords: vegetation variability; wavelet transform; climate change; non-stationary; normalized difference vegetation
index (NDVI)

1. Introduction

The spatiotemporal patterns of vegetation were perma-
nently changing due to the climatic and anthropogenic
causes. Determining the extent to which climate change
will have influence on ecosystem processes demands
long-term spatiotemporal monitoring of climate variabil-
ity and its ecosystem response. Although some studies
have been conducted in this field based on vegetation
indices (VI) time series data-sets, more studies are
needed to further investigate their complex relationships
varying with spatial, temporal scales and climate regions
(1–5). Additionally, VI time series were usually non-sta-
tionary, i.e. they present different frequency components,
such as seasonal variations, long-term and short-term
fluctuations (6). The character of non-stationarity cannot
be handled by statistical method, such as ordinary least
squares, spectral analysis, and Fourier transform (FT).
Wavelet transform (WT) allows for the automatic locali-
zation of periodic signals, gradual shifts and abrupt inter-
ruptions, trends and onsets of trends in time series (7).
The WT-based methods have been revealed to be effi-
cient in the characterization of the complex spatiotempo-
ral variability of vegetation dynamics (6,8–11).

China was a key vulnerable region of climate change
in the world, with various topography and climate regions,
diverse ecosystems, as well as high population pressure
and long-term human disturbances (12). A number of stud-
ies have already been conducted in China, revealing vege-
tation dynamic and its correlation with climate factors
varying among different altitudinal, latitudinal, and longi-
tudinal gradients and also across different seasons and eco-
systems (3,13–19). These endeavors have improved our
knowledge of climate effect on vegetation in China. For
these studies on vegetation dynamics in China, the tradi-
tional statistical methods were generally adopted. Several
studies took this further and applied non-stationary method
on some regions such as Inner Mongolia and Qinghai-
Tibetan Plateau, China (8,15); however, till now, few of
them evaluated the spatiotemporal explicit vegetation
dynamic and its driving forces with non-stationarity
method across the whole country. A recent study charac-
terized the spatiotemporal non-stationarity in vegetation
dynamics in China during 2001–2011 using the MODIS
enhanced vegetation index data-set (20). However, the
specific spatiotemporal characteristic of vegetation
dynamic and its connection with climate change in the late
twentieth century remain unclear.

*Corresponding author. Email: qiubingwen@fzu.edu.cn

© 2014 Wuhan University

Geo-spatial Information Science, 2014
Vol. 17, No. 3, 170–180, http://dx.doi.org/10.1080/10095020.2014.959095

mailto:qiubingwen@fzu.edu.cn
http://dx.doi.org/10.1080/10095020.2014.959095


To fill this gap, this study investigated the spatiotem-
poral characteristics of vegetation dynamic and its com-
plicate relationships with climatic factors at multiple
temporal scales in China from 1982 to 1998 based on
GIMMS data-sets. The rest of the paper is organized as
follows. In Section 2, the data source and methods were
introduced. In Section 3, the inter- and intra-annual
dynamic pattern of vegetation, climatic factors, and their
multi-scale relationships were presented and discussed.
In section 4, the conclusions were provided.

2. Data sources and methods

2.1. Data source

The 8-km GIMMS data-sets that comprise radiometer
(AVHRR) data during 1982–1998 were used in this
paper. The GIMMS data-sets were originally processed
as 15 day composites using the maximum value proce-
dure to minimize the effects of cloud contamination,
respectively (21). Semimonthly mean temperature and
monthly precipitation data with a spatial resolution of
1 km were generated from 680 weather stations through-
out the country (22). Annual mean temperature over the
study period varies from –17.5 °C in the central Tibetan
Plateau to 25.4 °C in Southern China. Annual precipita-
tion varies from less than 50 mm in the Takelamagan
Desert to above 2000 mm in Southern China. China has
a very diverse topography, from zero near the coastal

area in the east region to the highest peak of the world
in the Tibetan Plateau. We resample the climate data-set
to 8 km in accord with GIMMS normalized difference
vegetation index (NDVI) images.

This paper conducted a close investigation of spatio-
temporal vegetation dynamic in China for the time per-
iod 1982–1998. A detailed investigation was performed
on six primary natural vegetation by a per-pixel strategy
(Figure 1): (I) a deciduous temperate needle-leaved forest
in Xiaoxin’anling Mountains; (II) a temperate meadow
in Inner Mongolia; (III) an alpine meadow in the Tibetan
Plateau; (IV) a broad-leaved subtropical forest in the
Wuyi Mountains; (V) an evergreen broad-leaved tropical
forest in the Yunnan province; (VI) an evergreen broad-
leaved tropical forest in the Hainan province.

2.2. Method

The multi-resolution analysis (MRA) by wavelet trans-
form successively decomposes the original signal into
smaller and larger scale components of the original sig-
nals, also known as detail (D) and approximation (A)
series (20). It has been successfully applied in character-
izing vegetation dynamic based on MODIS and NOAA
time series images, and detailed descriptions could be
found in Refs. (10,20,23). Due to its smoothness of the
reconstructed signal, low loss of computation, and easy
complementation, the Meyer orthogonal discrete wavelet

Figure 1. Location of study area.
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was applied for this purpose (24). The MRA by wavelet
transform was applied to the GIMMS data-sets and semi-
monthly composite temperature, and monthly composite
precipitation time series data-sets from 1982 to 1998.

The period and semiperiod of GIMMS and precipita-
tion data-sets corresponding to the different decomposi-
tion scales for the Meyer wavelet were provided in
Table 1 with vc = 0.67213 and a sampling period of 15
and 30 days, respectively. Several parameters related to
vegetation phenology can be obtained through MRA:
NDVI, NDVImax, NDVImin, ΔNDVI, Tmax, Tmin, and the
trend in the data series, Q (Table 2). NDVI represents
the average vegetation state during the study period.
NDVImax and NDVImin indicate the maximum and mini-
mum level of the NDVI. ΔNDVI denotes the amplitude
of the annual phonological cycle. Tmax and Tmin reveal
the timing of the minimum and maximum NDVI. Q, an
indicator of the magnitude of total change during the
study period, was calculated based on the non-parametric
Sen’s method (25). If Q was significantly different from
zero, we may draw a conclusion that there exists a trend
in the time series.

Pearson’s product moment correlation analysis was
applied to explore the relationship between NDVI and cli-
mate factors. In order to correspond to the precipitation
time series data-sets, the original GIMMS NDVI data-sets
were accumulated on a monthly scale. And, the relation-
ships between wavelet components of NDVI and climate
factors at different scales were explored. The moving
averages of climate factors have been used to detect the
relationship of these factors with vegetation dynamics
(26,27). As climate factors change, the vegetation growth
takes time to response, causing a time lag. The time lag in
vegetation response to climate change has been widely
observed (28–30); however, it differed with different cli-
mate factors and across different regions (16,31). To eval-
uate the time lag between changes in climate change and

vegetation dynamics, a correlation coefficient was com-
puted based on the corresponding month, one month
moving average, and two months moving average of tem-
perature and precipitation, respectively. For these three
coefficients, the period with the strongest coefficient was
found for that pixels and the time lag between NDVI and
climate factors could be decided.

3. Results and discussion

3.1. Spatiotemporal vegetation variability

The inter- and intra-annual time series indicated by A5

and V were computed for the six selected vegetation can-
opies during 1982–1998, respectively (Figure 2). Most
vegetation canopies demonstrated obvious seasonality,
with maximum values in summer and minimum values
in winter. However, the tropical forest in the Yunnan
province in Southwest China demonstrated an opposite
seasonal pattern, with minimum NDVI values observed
in summer season. The tropical forests in subtropical and
tropical regions were observed with relatively longer
growing season compared with those in temperate
regions. Natural vegetation in China demonstrated obvi-
ous seasonality, stronger with latitudinal gradient as indi-
cated by the magnitude of intra-annual component V.
The inter-annual time series (A5) distinguishes the aver-
age vegetation status during the study period. Relatively
higher magnitude of inter-annual vegetation pattern was
observed in the tropical and subtropical broad-leaved for-
est, compared with that in needle-leaved forest and mea-
dow in temperate region. These results were generally
consistent with the related study of vegetation dynamics
in 2001–2011 (20), revealing the consistency of seasonal
vegetation dynamic pattern during the past few decades.

Wavelet transform was performed on the whole
image by a per-pixel strategy based on GIMMS NDVI

Table 1. Period and semiperiod corresponding to the different MRA decomposition levels using the Meyer DWT and sampling
period of the GIMMS and precipitation data-sets.

Level Scale Period of GIMMS (day) Semiperiod of GIMMS (day) Period of rainfall (day) Semiperiod of rainfall (day)

1 2 45 22 89 45
2 4 89 45 178 89
3 8 178 89 357 179
4 16 357 179 714 357
5 32 714 357

Table 2. Parameters computed from wavelet transform.

Parameter Description

NDVI Mean of the inter-annual component A5

NDVImin Percentile 10% of the sum of mean inter-annual and intra-annual variability: NDVImin = P10ðA5 þ V Þ
NDVImax Percentile 90% of the sum of mean inter-annual and intra-annual variability: NDVImax = P90ðA5 þ V Þ
ΔNDVI Range of percentiles 10% and 90% for the intra-annual variability: ΔNDVI =R10,90(V)
Tmax Timing of the maximum NDVI
Tmin Timing of the minimum NDVI
Q Slope of the inter-annual component obtained from the Sen’s method
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data-sets during 1982–1998. Several key parameters
representing spatiotemporal pattern of vegetation
growth were derived (Figure 3). The NDVImin image
(Figure 3(b)) provided distinct contrasted information,
with maximum values in the south China and mini-
mum values in the Northwest China. It is interesting
that extremely high NDVImax values were examined in
the Northeast China (Figure 3(a)). Very distinguished
values were also observed in the ΔNDVI image
(Figure 3(c)) in the North China, with extremely high
values in the Northeast China and very low values
(close to zero) in the Northwest China. In the
East China, ΔNDVI values generally increase with
latitudinal gradient.

The Tmax image (Figure 3(d)) revealed that most pix-
els obtained the maximum values in August, indicating
summer peaking vegetation types. The Tmin image
(Figure 3(e)) illustrated that most pixels obtained mini-
mum values in February and March. However, exceptions
were observed in the Yunnan-Guizhou Plateau, with
minimum values in summer. The phenomenon was proba-
bly associated with the data quality problem, particularly
the heavy cloud cover during summer season, which was
confirmed in MODIS data-sets with pixel reliability (20).

A Q image (Figure 3(f)) based on the non-parametric
Sen’s method (25) was derived for the study area. Most
pixels (70.3%) present positive trends, suggesting
increasing vegetation greenness, as opposed to 12.4%

Figure 2. The intra-annual and the inter-annual component of NDVI time series for temperate forest (a), temperate meadow (b),
alpine meadow (c), subtropical forest (d), tropical forest in Yunnan province (e), and in Hainan province (f).
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areas of negative trends. Strong increasing vegetation
trends (Q > 0.00055) were observed in the Northeast
China, Central China, and north portion of Xinjiang
province. Decreasing vegetation trends were principally
examined for the desert areas, the Pearl River Delta and
Yangtze River Delta. However, according to recent study,
in the early twenty-first century, the northeast China
experienced vegetation degradation, and the Pearl River
Delta and desert regions were not examined with
obvious negative trend (20).

3.2. Trend analysis of temperature and precipitation

Q images of both temperature and precipitation during
1982–1998 were derived (Figure 4). With regard to tem-
perature, overall warming trend was observed across the

whole county (over 98% area). The intensity of climate
warming varies with latitude gradient: stronger increasing
warming trends (Q > 0.00025) were observed on the
North China and slightly increasing warming trends
(0 < Q < 0.00025) were generally examined on South
China and desert regions. Considering precipitation,
increasing rainfall trends were observed on 58.2% pixels,
especially the South China, Southwest China, and East
China (Figure 4(b)). Around a quarter of area (24.5%)
experienced decreasing rainfall trends, principally located
in Central China, Northern Tibetan Plateau, and the north
portion of Northeast China. The serious drought trends
were observed in most Central China and most northern
portion of China. Regions with non no obvious rainfall
trends (17.3%) were generally sandwiched between
them. Therefore, the South China underwent slight

Figure 3. Spatial distribution maps of NDVImax (a), NDVImin (b), ΔNDVI (c), Tmax (d), Tmin (e), and Q (f).
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warming and strong increasing rainfall trend, and the
Central and North China experienced strong warming
and drying trends during 1982–1998.

3.3. Spatiotemporal explicit relationships between
NDVI and climate factors

The correlation analysis was performed on the de-noised
A1, inter-annual and seasonal components of NDVI, and
the temperature time series during 1982–1998, respec-
tively. Spatial distribution images of time lag between
NDVI and climate factors (temperature and precipitation)
were provided in Figure 5. The time lag between NDVI
and climate factors varied with different climate regions
and vegetation types (Figure 5(a)). Regarding the time
lag between NDVI and temperature, almost a half of the
pixels (46%) were examined with 1.5–2 months’ time
lag, located in the West and South China. Other areas
were observed with time lag of less than 1.5 months.
The Yangtze River Delta and the Sichuan Basin were
observed with no obvious time lag (around 18%). Con-
sidering the time lag between NDVI and precipitation
(Figure 5(b)), around one-third of the pixels were exam-
ined with 2 months’ time lag, mainly located in the East
Tibetan Plateau and Yangtze River Delta. Another one-
third of the pixels were observed with 1 month’ time
lag, mainly located in South China, Yunnan-Guizhou
Plateau, desert areas, and north portion of Tibetan

Plateau, while another one-third of the pixels with no
obvious time lag were principally located in Northeast
China and North China plain.

Regarding the relationship between NDVI and tem-
perature, strong positive correlations were obtained from
the de-noised A1 time series (Figure 6(a)) in over 80%
pixels. A similar spatial distribution pattern of NDVI-T
relationship was obtained from the D4 component NDVI
time series, but with even stronger coefficients (Fig-
ure 6(b)). A few pixels with negative NDVI-T relation-
ship were principally located in the Yunnan-Guizhou
Plateau, Southwest China, and some deserts. At inter-
annual level, although over 50% pixels were examined
with positive T–NDVI relationship, only a small propor-
tion (7%) were observed with strong coefficients (>0.7)
(Figure 6(c)). Negative NDVI-T relationship at inter-
annual level principally located in Inner Mongolia,
Xinjiang, Yunnan-Guizhou Plateau, Tibetan Plateau, and
some rapid developing regions such as the Pearl River
Delta and Yangtze River Delta.

Compared with NDVI–temperature relationship, simi-
lar distribution pattern of the NDVI–precipitation coeffi-
cients at the de-noised and seasonal levels (Figure 6(e)
and (f)) were observed. At inter-annual level, around
one half of the pixels were examined with positive corre-
lations (Figure 6(d)). A quarter of the pixels were
observed with negative correlation at inter-annual level,
mainly in Central China, Northern Tibetan Plateau,

Figure 4. Slope of Q for temperature (a) and precipitation (b) derived from wavelet transform.

Figure 5. Spatial distribution of time lags between NDVI and temperature (a) and NDVI and precipitation (b).
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Northeast China, the Pearl River Delta, and Yangtze
River Delta.

Based on the combined analysis of Q and NDVI–cli-
mate coefficient images (Figures 3, 4, and 6), it seemed
that the negative correlations between NDVI and climatic
factors at de-noised and seasonal levels in vegetated
regions were associated with data quality of GIMMS
data-sets. The negative relationships at inter-annual level
were connected with their negative dynamic trends. In
humid regions, negative NDVI–temperature coefficients
were principally located in regions with negative NDVI
trends, and negative NDVI–precipitation coefficients
were mainly associated with the negative dynamics
trends of either NDVI or climatic factors. In arid, semi-
arid, and semihumid regions, negative coefficients would
be obtained when rainfall increase could not compensate
the increasing water requirement with global warming.

3.4. Zoning system

Based on the above results and analysis, 10 parts were
analyzed and discussed below (Figure 7).

Part A: Squeezed between Altai Mountains in the
north and Tianshan Mountains in the south, part A is
located in the arid region with high mountain plateau.
Signals of vegetation growth were fairly strong com-
pared with surrounding areas. Relatively strong positive
vegetation trend was observed in this part, as well as a
slightly positive rainfall trend and strong climate warm-
ing. This result confirms the previous research findings
that a strong signal of climatic shift to warm-humid pat-
tern has been appearing in the western part of Chinese
Tianshan and Qilian Mountains since 1987 (32). Com-
pared with humid region, rainfall plays a significantly
role in plant growth. Vegetation has a strong positive
correlation with precipitation, even at the inter-annual

Figure 6. The spatial distribution of NDVI-climate coefficient at de-noised (a, e), inter-annual (c, d) and seasonal (b, f) scales.
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level. The temperature has a strong positive influence on
the intra-annual vegetation variability and a slightly posi-
tive even negative effect on the long-term vegetation
growth.

Part C: Located in desert region with the least annual
rainfall (below 100 mm), a very slightly increasing rain-
fall trend as well as strongly increasing warming trend
was examined. This slightly increasing precipitation could
not fully complement increasing water requirements
caused by temperature increase. Thus, overall decreasing
vegetation trend was observed. Very weak or no signal of
vegetation growth was presented, along with little connec-
tion with both temperature and precipitation.

Part B: Situated in the middle of part A and C, this
part belongs to the transition type from mountain mea-
dow to desert. Although with only slightly signal of veg-
etation growth in part B, relatively close relationship
with climate factors could be examined. Located in the
arid region, the NDVI–precipitation correlation was
stronger than the NDVI–precipitation correlation at both
intra-annual and inter-annual levels. With an increasing
warming and rainfall trend, slightly increasing vegetation
was also examined.

Part E: The most important natural forest areas in
China, Daxin’anling Mountains, Xiaoxin’anling Moun-
tains, and Changbai Mountains belong to this region.
Very strong signal of plant growth cycles was
observed, with the highest maximum vegetation level
and seasonal patterns across the whole country. A very
strong positive influence from both temperature and
precipitation were examined on the intra-annual vegeta-
tion variability, which was consistent with recent study
based on AVHRR and MODIS data from 1982 to
2009 (33). However, it seemed that precipitation gener-

ally had negative influence on the long-term vegetation
growth. The negative inter-annual NDVI–precipitation
coefficients needed to be further investigated, consider-
ing that the average annual precipitation is below
600 mm and there is no increasing or even a small
portion of decreasing rainfall trend during 1982–1998.
A large portion of this region experienced a decrease
in vegetation, which was confirmed by the trend anal-
ysis. The natural forests in Northeast China suffered
from deforestation as results of agricultural practices,
urbanization, and fire disaster, which was also reported
by related studies (33,34).

Part D: Located in semiarid region, the signal of
vegetation growth cycle and correlation values between
NDVI and climate variables generally increase from west
to east, which agreed with Yang et al. study (8). Overall
very strong climate warming pattern was examined,
especially the north portion. A positive rainfall trend was
also observed in the south portion, as well as a non-sig-
nificant and even a negative rainfall trend in the north
portion. In semiarid region, water was a prerequisite for
vegetation growth. Vegetation growth has very strong
positive correlation with precipitation, even at the inter-
annual level. As a result, an obviously greening up was
also observed in the south portion (northeast of Inner
Mongolia Plateau), which was consistent with Piao et al.
study (28). In semiarid region, the influence of temperate
on vegetation growth was fairly complicate. Temperature
increase might demand more water requirements for veg-
etation growth. With no increasing precipitation and
continuing warming, only slightly increasing or even
negative vegetation trend was observed in the Hulunbuir
Plateau, which was also revealed by Duan et al. study
(35).

Figure 7. Zoning system of vegetation dynamic and its connection with climate factors during 1982−1998.
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Part F: The Taihang Mountains further separate part
F into two portions: (a) the east portion with plains,
including the North China Plain, Northeast China Plain,
and Huanghuai Plain; (b) the west portion with plateau,
principally the Loess Plateau and Ordos Plateau. Strong
signal of plant growth cycles was observed in the east
portion of part F, as well as much weaker vegetation
growth and seasonal patterns in the west portion of part
F. In the east portion of part F, very strong increasing
vegetation trend was obtained, as well as distinct increas-
ing temperature and rainfall trend. The inter-annual
NDVI–climate coefficient and NDVI–precipitation coeffi-
cient were highly spatially heterogeneous. In the Loess
Plateau, inter-annual NDVI variability exhibited very
strong positive connection with the temperature. The
long-term NDVI variability was much influenced by pre-
cipitation in North China Plain, as well as comprehen-
sive connection with both temperature and precipitation
in Northeast China Plain. The findings were consistent
with related studies (33,36,37) and further confirmed that
the inter-annual NDVI–climate relationship varied across
different climate and topographic regions.

Part G: Located in a subtropical and tropical climate
region, perennial good vegetation growth state was gen-
erally observed, as well as strong signal of vegetation
growth cycles. The maximum NDVI was generally
delayed compared with part F, examined on September
and October in the coastal areas, as well as August in
other interior areas. Both strongly decreasing and
increasing vegetation trends were examined. Strongly
decreasing vegetation trend was observed in the rapid
developing regions such as the Pearl River Delta and
Yangtze River Delta, which experienced rapid urbaniza-
tion during the past few decades (18,38). Besides,
decreasing vegetation was also observed in the Wuyi
Mountains and Guangxi Basin, which might be related
to soil erosion, land degradation, and deforesting.
However, obviously greening up was also observed in
China’s interior forest areas such as Yangming Moun-
tains, Qinling Mountains, and Wu Mountains. Vegetation
growth in part G was strongly influenced by intensive
human activities. The findings agreed with other related
studies (17,18,29,39) and further confirmed that vegeta-
tion dynamic in subtropical and tropical climate region
were controlled by the combined effect of both climate
change and human activities, with short-term variability
principally caused by anthropic influence.

Part H: Located in a subtropical and tropical plateau
region, slightly increasing as well as decreasing vegeta-
tion trend was observed. Maximum NDVI was examined
in winter season, obviously delayed compared with sur-
rounding areas. Besides, the rarely negative intra-annual
NDVI–temperature and NDVI–precipitation relationships
in vegetated areas were observed, which has also been
addressed in other studies (14). We further illustrated that
it corresponds to the intra-annual variation of tropical
forest, especially the abnormally minimum values regu-
larly examined during summer period. In tropical forest

regions, with saturated air humidity, the abnormal low
NDVI value in summer season was possibly caused by
cloud cover.

Part I and part J: Both located in alpine plateau cli-
mate zone, parts I and J belong to the semiarid and arid
region, respectively. The average altitude was around
4500 m, namely the roof of the world. The signal of
plant growth cycles was fairly weak (especially in part
J), with delayed maximum NDVI date examined in
autumn. Differed from desert region, vegetation growth
generally had a close connection with temperature (part
I) and precipitation (part I and J). In part I, climate fac-
tors also have strong positive influence on the long-term
plant growth, which was consistent with other recent
studies (13,16). Overall increasing temperature was
observed in both parts I and J, as well as increasing rain-
fall observed in the south portion of part I. Suffered from
the alpine plateau coldness and deficit rainfall, the plant
was very sensible to both temperature and precipitation.
As a result, slightly vegetation increasing trend was
obtained, especially in part I.

3.5. Future work

Future work could be conducted in three aspects: (a)
time series data-sets with better quality and detailed spa-
tial and temporal resolution could be utilized. Although
the 15-day composite GIMMS NDVI data-sets have been
successfully applied to investigate the vegetation
dynamic process, the relatively coarse resolution and
data quality problem limit their further applications. The
GIMMS data-sets in some regions such as the Southwest
China might be seriously disturbed with cloud cover,
generally with minimum NDVI values in summer sea-
son. Climatic time series data-sets with better quality
corresponded to vegetation indices data-sets are also rec-
ommended. (b) Through incorporating land use change
and other eco-climatological factors into the study might
better account for spatiotemporal vegetation variability
across the whole country in the context of ecosystem
complexity. (c) As the response of vegetation growth to
climate changes were nonlinear, complicate, and spatio-
temporal interactive, combined modeling from micro to
macro scales which can deal with the mechanistic eco-
system processes was urgently needed.

4. Conclusions

This study revealed the spatiotemporal dynamic pattern
of vegetation, climate factor, and their complex relation-
ships from seasonal to inter-annual scales across the
whole country of China during the period 1982–1998
using the wavelet analysis method based on GIMMS
data-sets. The following conclusions could be drawn: (a)
most vegetation canopies demonstrated obvious seasonal-
ity, increasing with latitudinal gradient. (b) There existed
obvious trend of both vegetation dynamic and climate
change. With general vegetation greening up across the
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whole country (over 70% areas), the vegetation decreas-
ing trends were principally located in the Pearl River
Delta, Yangtze River Delta, and desert. Overall warming
trend was observed across the whole country, stronger in
Northern China. Considering precipitation, increasing
rainfall trends were observed on more than one-half
areas (58.2%), and decreasing rainfall trends were
obtained in Central China, Northern Tibetan Plateau, and
Northeast China (24.5%). (c) Significantly, positive
NDVI–climate relationships were generally observed on
the de-noised time series in vegetated areas, correspond-
ing to their synchronous stronger seasonal pattern. (d) At
inter-annual level, the NDVI–climate relationship dif-
fered with climatic regions and their long-term trends: in
arid and semiarid region, a strong positive relationship
would be examined on the condition that increasing rain-
fall could compensate the increasing water requirement
along with increasing temperature; in humid region, neg-
ative relationship would be observed in areas with their
nonsynchronous dynamic patterns, especially vegetation
degradation and decreasing rainfall trends.
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