
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

2002

Global Existence and Non-existence Theorems for
Nonlinear Wave Equations
David R. Pitts
University of Nebraska-Lincoln, dpitts2@unl.edu

Mohammad A. Rammaha
University of Nebraska-Lincoln, mrammaha1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Pitts, David R. and Rammaha, Mohammad A., "Global Existence and Non-existence Theorems for Nonlinear Wave Equations"
(2002). Faculty Publications, Department of Mathematics. 135.
https://digitalcommons.unl.edu/mathfacpub/135

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub/135?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages


Global Existence and Non-existence Theorems for
Nonlinear Wave Equations

DAVID R. PITTS & MOHAMMAD A. RAMMAHA

ABSTRACT. In this article we focus on the global well-posedness
of an initial-boundary value problem for a nonlinear wave equa-
tion in all space dimensions. The nonlinearity in the equation
features the damping term |u|k|ut|m sgn(ut) and a source term
of the form |u|p−1u, where k, p ≥ 1 and 0 < m < 1. In ad-
dition, if the space dimension n ≥ 3, then the parameters k, m
and p satisfy p, k/(1−m) ≤ n/(n−2). We show that whenever
k +m ≥ p, then local weak solutions are global. On the other
hand, we prove that whenever p > k +m and the initial en-
ergy is negative, then local weak solutions blow-up in finite time,
regardless of the size of the initial data.

1. INTRODUCTION

In quantum field theory and certain mechanical applications, various examples of
the evolution equation

(1.1) utt −∆u+R(x, t,u,ut) = F(x,u),
satisfying the structural conditionsvR(x, t,u,v) ≥ 0,R(x, t,u,0) = F(x,0) =
0, and F(x,u) ∼ |u|p−1u for large |u| arise (cf. Jörgens [11] and Segal [26]).

In this paper, we study the long-time behavior of solutions to an initial-
boundary value problem for a nonlinear wave equation of the form (1.1). Of
central interest is the relationship of the source and damping terms to the behav-
ior of solutions.

Throughout the paper, assume thatΩ is an open, bounded, connected domain
in Rn with a smooth boundary ∂Ω = Γ . Further assume Γ is the union of two
disjoint, connected n − 1-dimensional manifolds Γ0 and Γ1. Our interest in this
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article is focussed on the initial-boundary value problem,

(1.2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

utt −∆u+ |u|k |ut|m sgn(ut) = |u|p−1u, in Ω× (0, T),
u(x,0) = u0(x), ut(x,0) = u1(x), in Ω,
u(x, t) = 0 on Γ0 × (0, T),
∂u
∂n
(x, t) = h(x, t), on Γ1 × (0, T),

where 0 < m < 1, k, p ≥ 1, h ∈ C1([0,∞), L2(Γ1)), and ∂/∂n denotes the
outward normal derivative on Γ1. Hypotheses on the initial data u0 and u1 are
given in (2.2) below.

It is well-known that when the damping term |u|k|ut|m sgn(ut) is absent,
the source term |u|p−1u drives the solution of (1.2) to blow-up in finite time
([6, 16, 22, 30]). In addition, if the source term |u|p−1u is removed from the
equation, then damping terms of various forms are known to yield existence of
global solutions, (cf. [2, 3, 10]). However, the interaction between the damping
and source terms is often difficult to analyze, as one can see from the work in
[5, 17, 19, 24, 28].

The purpose of this paper is to establish sharp results on the long-time behav-
ior of solutions to the initial-boundary value problem (1.2). Our main results are
Theorems 4.1, 5.1 and 6.1. First, in Theorem 4.1 we construct a local weak solu-
tion to (1.2) by using a standard Galerkin scheme based on the eigenfunctions of
the Laplacian. However, there are several technical difficulties in the passage to the
limit. One difficulty lies in showing that the sequence of approximate solutions
{uN} satisfies

|u′N(t)|m sgn(u′N(t))→ |u′(t)|m sgn(u′(t)) weakly in L2(Ω).
Uniqueness of solutions does not follow from the theory of ordinary differential
equations, and presents another difficulty. Our next main result, Theorem 5.1,
shows that the every local weak solution to (1.2) is global, provided k +m ≥ p.
The proof of Theorem 5.1 relies on obtaining an energy-type estimate for the
sequence of the approximate solutions which holds for each bounded time interval
[0, T]. Finally, in Theorem 6.1 we use an argument similar to the one in [5] to
prove that every local weak solution to (1.2) with negative initial energy blows-
up in finite time, regardless of the size of the initial data. Moreover, we obtain a
precise upper bound for the life span of the solution in terms of the initial data
and the other parameters in the equation.

It should be noted here that our approach for establishing the existence of a
local weak solution does not directly extend to the case when m > 1. Indeed, for
the case m > 1, the existence of local solutions requires different type of a priori
estimates, and therefore the casem > 1 is not addressed in this paper.

Of particular relevance to our results in this article are those of Georgiev and
Todorova [5] and Levine and Serrin [17]. We also note the fundamental work of
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Lasiecka and Triggiani [14, 15] and Lions and Strauss [21]. In [5] the authors
analyzed the global regularity of solutions to a similar equation, but with the more
regular damping term |ut|m−1ut. Although the blow-up result obtained in [5]
is for large data, their proof can be modified to yield the same blow-up result
for small initial data. In [17], Levine and Serrin proved several abstract theorems
on the global nonexistence of solutions to a large class of nonlinear hyperbolic
equations. However, their results are not applicable to the initial-boundary value
problem (1.2) due the lack of smoothness in the nonlinearity. For the same reason,
a standard fixed-point argument to establish the existence of weak solutions to
(1.2) does not apply.

2. PRELIMINARIES

In this section we introduce some notation, definitions, and the technical assump-
tions that are necessary for the remaining sections of the paper. Let L2(Ω), L2(Γ1),
etc. denote the standard Lebesgue spaces and Hs(Ω), Hs(Γ0), Hs(Γ1), . . . , denote
the standard Sobolev spaces. By Hs(Γ) we mean the space Hs(Γ0) ×Hs(Γ1), and
by Hs0,Γ0(Γ), s ≥ 0, we mean the subspace of Hs(Γ) that is given by Hs0,Γ0(Γ) =
{0} ×Hs(Γ1). Also, for s > 1

2 we set

Hs0,Γ0(Ω) = {u ∈ Hs(Ω) | u |Γ0 = 0},

where the evaluation on Γ0 is taken in the sense of traces. For u ∈ Hs(Ω) we
denote by γu the trace operator (whenever defined) on Γ , i.e., γu = u|Γ . Also,
we set γ1u = u|Γ1 .

Let X and Y be Banach spaces with X ⊂ Y . We write X ↩ Y if the injection
i : X → Y is continuous. Also, we denote by L(X, Y) the space of all continuous
linear operators from X to Y .

Throughout the paper, we let A : L2(Ω) → L2(Ω) be the operator given by:
A = −∆ with its domain

D(A) =
{
u ∈ H2(Ω) : u

∣∣Γ0 = ∂u∂n
∣∣∣∣Γ1 = 0

}
.

Also, we let R : L2
0,Γ0(Γ) → L2(Ω) be the Dirichlet-Neumann map, which is given

by: Rh = w if and only if

∆w = 0 in Ω, w
∣∣Γ0 = 0,

∂w
∂n

∣∣∣∣Γ1 = h.
It is well known that A is positive, self-adjoint, and A is the inverse of a compact
operator. Moreover, A has the infinite sequence of positive eigenvalues {λn | n =
1,2, . . . } and a corresponding sequence of eigenfunctions {en | n = 1,2, . . . }
that forms an orthonormal basis for L2(Ω). Namely, if u ∈ L2(Ω), then u =
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n=1unen, where the convergence is in L2(Ω), with ‖u‖2

L2(Ω) =
∑∞
n=1 |un|2

and un = 〈u, en〉L2(Ω).
The powers of A are defined as follows: As : D(As) ⊆ L2(Ω) → L2(Ω),

Asu =∑∞
n=1 λsnunen, with the domain of As given by

D(As) =
{
u ∈ L2(Ω) | u = ∞∑

n=1

unen,
∞∑
n=1

λ2s
n |un|2 <∞

}
.

We remark here that the results of Grisvard [8] and Seeley [25] give the following
characterization for the fractional powers of A:

(2.1) D(As) =



H2s(Ω), 0 ≤ s < 1
4 ;

H2s
0,Γ0(Ω), 1

4 < s <
3
4 ;{

u ∈ H2s(Ω) : u
∣∣Γ0 = 0,

∂u
∂n

∣∣∣∣Γ1 = 0

}
, 3

4 < s ≤ 1.

Moreover, D(A1/4) ↩ H1/2(Ω), D(A3/4) ↩ H3/2
0,Γ0(Ω), and the norm ‖u‖Hs(Ω) is

equivalent to (
∑∞
n=1 λsn|un|2)1/2. Therefore, we set

∥∥u∥∥2
Hs(Ω) =

∞∑
n=1
λsn|un|2.

Let S(t) and C(t) be the sine and cosine operators associated with A. Specif-
ically, S(t), C(t) : L2(Ω) → L2(Ω) are given by S(t) = A−1/2 sin(A1/2t) and
C(t) = cos(A1/2t).

The following assumptions will be valid throughout the paper:

u0 ∈ H1
0,Γ0(Ω), u1 ∈ L2(Ω),(2.2)

k, p ≥ 1, 0 <m < 1, and p,
k

1−m ≤ n
n− 2

if n ≥ 3.(2.3)

Finally, the following Sobolev imbeddings will be used frequently in the paper:

(2.4)

H
1
0,Γ0(Ω)↩ Lq(Ω), for 1 ≤ q ≤ 2n

n− 2
, n ≥ 3,

H1
0,Γ0(Ω)↩ Lq(Ω), for 1 ≤ q <∞, n = 1,2.

Also, throughout the paper we set:

G(u,u′) = |u|k |u′|m sgn(u′), g(u′) = |u′|m sgn(u′), f (u) = |u|p−1u.

We shall use the weak formulation of the problem to define what we mean by
a solution to the initial-boundary value problem (1.2).
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Definition 2.1. Let u0 ∈ H1
0,Γ0(Ω), u1 ∈ L2(Ω). We say that u is a weak

solution to the initial-boundary value problem (1.2) on [0, T] if

u ∈ L2(0, T ,H1
0,Γ0(Ω)), u′ ∈ L2(0, T , L2(Ω))

and u satisfies:

(2.5) 〈u′(t),ϕ〉L2(Ω) − 〈u1,ϕ〉L2(Ω) +
∫ t

0
〈A1/2u(s),A1/2ϕ〉L2(Ω) ds

+
∫ t

0

[
〈G(u(s),u′(s)),ϕ〉L2(Ω) − 〈f(u(s)),ϕ〉L2(Ω)

]
ds

−
∫ t

0
〈h(s), γ1ϕ〉L2(Γ1) ds = 0,

for all ϕ ∈ H1
0,Γ0(Ω) and almost every t ∈ [0, T].

In order for us to obtain certain estimates, we now derive the integral equa-
tions that must be satisfied by a weak solution to the initial-boundary value prob-
lem (1.2). Let v(t) = u(t) − w(t), where w(t) = Rh(t). Then, v formally
satisfies the abstract initial value problem:

v′′ +Av = −w′′ + f(v +w)−G(v +w,v′ +w′) on (0, T),(2.6)

v(0) = u0 −w(0), v′(0) = u1 −w′(0).(2.7)

Thus, by the variation of parameters formula, we have

v(t) = C(t)(u0 −w(0))+ S(t)(u1 −w′(0))(2.8)

−
∫ t

0
S(t − τ)[w′′(τ)− f(u(τ))+G(u(τ),u′(τ))]dτ.

Formal integration by parts yields

(2.9) u(t) = C(t)(u0 − Rh(0))+ S(t)u1 + Rh(t)−
∫ t

0
C(t − τ)Rh′(τ)dτ

+
∫ t

0
S(t − τ)[f (u(τ))−G(u(τ),u′(τ))]dτ.

By differentiating (2.9), one has

(2.10) u′(t) = C(t)u1 −AS(t)(u0 − Rh(0))+
∫ t

0
AS(t − τ)Rh′(τ)dτ

+
∫ t

0
C(t − τ)[f (u(τ))−G(u(τ),u′(τ))]dτ.
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At this end we let

U0(t) = C(t)(u0 − Rh(0))+ S(t)u1 + Rh(t)(2.11)

−
∫ t

0
C(t − τ)Rh′(τ)dτ,

V0(t) = C(t)u1 −AS(t)(u0 − Rh(0))(2.12)

+
∫ t

0
AS(t − τ)Rh′(τ)dτ.

The following regularity results are well-known (for example, see [14, 15, 20]),
and thus their proofs are omitted.

Lemma 2.2. For s ≥ 0, we have
(i) C(·) ∈ L(D(As), C([0, T],D(As))),

(ii) S(·) ∈ L(D(As), C([0, T],D(As+1/2))),
(iii) R ∈ L(L2

0,Γ0(Γ),H3/2
0,Γ0(Ω)).

Remark 2.3. In view of Lemma 2.2 and the fact that

h ∈ C1([0,∞), L2(Γ1)),
it is easy to see that U0 ∈ C([0,∞),H1

0,Γ0(Ω)), and V0 ∈ C([0,∞), L2(Ω)).
Moreover, it is not too difficult to show that if u ∈ L2(0, T ,H1

0,Γ0(Ω)), u′ ∈
L2(0, T , L2(Ω)), and u satisfies the integral equations:

u(t) = U0(t)+
∫ t

0
S(t − τ)[f (u(τ))−G(u(τ),u′(τ))] dτ,(2.13)

u′(t) = V0(t)+
∫ t

0
C(t − τ)[f (u(τ))−G(u(τ),u′(τ))] dτ,(2.14)

then u is a weak solution to (1.2) in the sense of Definition 2.1. Moreover, the
converse is also valid. The proof of this fact is similar to that of Remark 2.1 in [2]
and thus it is omitted.

3. APPROXIMATE SOLUTIONS

Our first step is to construct the sequence of approximate solutions to the initial
boundary value problem (1.2) and obtain the necessary estimates for the passage
to the limit, without further restriction on the damping or source terms. Let
{ek}∞k=1 be the orthonormal basis for L2(Ω), as described in Section 2. Let PN
be the orthogonal projection of L2(Ω) onto the linear span of {e1, . . . , eN}. Let
uN(t) =

∑N
k=1uN,k(t)ek be a weak solution to the Galerkin system associated
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with the initial-boundary value problem (1.2), i.e., uN(t) satisfies the initial value
problem:

d
dt
〈u′N(t), ek〉L2(Ω) + 〈A1/2uN(t),A1/2ek〉L2(Ω) − 〈h(t), γ1ek〉L2(Γ1)
+ 〈PNG(uN(t),u′N(t)), ek〉L2(Ω) − 〈PNf(uN(t)), ek〉L2(Ω) = 0,

(3.1)

uN,k(0) = u0
k, u′N,k(0) = u1

k,(3.2)

for k = 1, 2 . . . , N, where u0
k = 〈u0, ek〉L2(Ω) and u1

k = 〈u1, ek〉L2(Ω). Now, (3.1)
and (3.2) are equivalent to:

u′′N,k(t)+ λkuN,k(t) = 〈h(t), γ1ek〉L2(Γ1)
− 〈PNG(uN(t),u′N(t)), ek〉L2(Ω) + 〈PNf(uN(t)), ek〉L2(Ω),(3.3)

uN,k(0) = u0
k, u′N,k(0) = u1

k,(3.4)

for k = 1, 2 . . . , N.
Since (3.3), (3.4) is an initial value problem for a second order N ×N system

of ordinary differential equations with continuous nonlinearities in the unknown
functions uN,k and their derivatives u′N,k, it follows from the Cauchy-Peano The-
orem that for every N ≥ 1, (3.3), (3.4) has at least one solution uN,k defined on
[0, TN], for some TN > 0. Moreover, for 1 ≤ k ≤ N, uN,k ∈ C2[0, TN], and they
satisfy the following integral equation on [0, TN]:

(3.5) uN,k(t) = u0
k cosλ1/2

k t +u1
kλ

−1/2
k sinλ1/2

k t

+
∫ t

0
λ−1/2
k sinλ1/2

k (t − τ)HN,k(τ)dτ,

for k = 1, 2 . . . , N, and where

HN,k(τ) = 〈h(τ), γ1ek〉L2(Γ1) − 〈PNG(uN(τ),u′N(τ)), ek〉L2(Ω)
+ 〈PNf(uN(τ)), ek〉L2(Ω).

Now by noting the definition of the Dirichlet-Neumann map Rh(t) = w(t), we
have

(3.6) 〈h(τ), γ1ek〉L2(Γ1) = 〈A1/2w(τ),A1/2ek〉L2(Ω) = λk〈Rh(τ), ek〉L2(Ω).
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Therefore, by using (3.6) and integration by parts, the first term in the convolution
in (3.5) is given by

∫ t
0
λ−1/2
k sinλ1/2

k (t − τ)〈h(τ), γ1ek〉L2(Γ1) dτ(3.7)

=
∫ t

0
λ1/2
k sinλ1/2

k (t − τ)〈Rh(τ), ek〉L2(Ω) dτ
= 〈Rh(t), ek〉L2(Ω) − cosλ1/2

k t〈Rh(0), ek〉L2(Ω)
−
∫ t

0
cosλ1/2

k (t − τ)〈Rh′(τ), ek〉L2(Ω) dτ.
It follows easily from (3.5), (3.7), and the definitions of the sine and cosine oper-
ators that uN satisfies the following integral equations on [0, TN]:

uN(t) = UN,0(t)+
∫ t

0
S(t − τ)PN[f(uN(τ))−G(uN(τ),u′N(τ))]dτ,(3.8)

u′N(t) = VN,0(t)+
∫ t

0
C(t − τ)PN[f(uN(τ))−G(uN(τ),u′N(τ))]dτ,(3.9)

where

UN,0(t) = C(t)PN(u0 − Rh(0))+ S(t)PNu1 +PNRh(t)

−
∫ t

0
C(t − τ)PNRh′(τ)dτ,

VN,0(t) = C(t)PNu1 −AS(t)PN(u0 − Rh(0))

+
∫ t

0
AS(t − τ)PNRh′(τ)dτ.

A priori estimates. Here, we shall show that TN can be replaced by some
T > 0, for all N ≥ 1. In the remaining parts of the paper, we shall refer to the
following Hilbert spaces repeatedly:

XT = L2(0, T , L2(Ω)) and YT = L2(0, T ,H1
0,Γ0(Ω)).

Lemma 3.1. There exists a constant T > 0 such that the sequence of approximate
solutions {uN} satisfies the following:

(i) {uN} is bounded in YT ;
(ii) {u′N} is bounded in XT ;

(iii) PN|u′N|m sgn(u′N) is bounded in L2(0, T , L2/m(Ω)).
Proof. Fix T0 > 0. First note that by using Lemma 2.2, it is easy to check

that UN,0 ∈ C([0, T0],H1
0,Γ0(Ω)) and VN,0 ∈ C([0, T0], L2(Ω)). Also, we note
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that PNu0 → u0 in H1
0,Γ0(Ω), and PNu1 → u1 in L2(Ω). Therefore, it fol-

lows from Lemma 2.2 that UN,0 → U0 in C([0, T0],H1
0,Γ0(Ω)) and VN,0 → V0 in

C([0, T0], L2(Ω)) as N → ∞. So, there exists a constant M > 0 such that for all
N,

sup
t∈[0,T0]

‖UN,0(t)‖H1
0,Γ0 (Ω) ≤ sup

t∈[0,T0]
‖U0(t)‖H1

0,Γ0 (Ω) +M ≡ α ,(3.10)

sup
t∈[0,T0]

‖VN,0(t)‖L2(Ω) ≤ sup
t∈[0,T0]

‖V0(t)‖L2(Ω) +M ≡ β.(3.11)

It should be noted here that in (3.10) and (3.11), the constants α and β depend
on T0. It follows from (3.8) and Lemma 2.2 that, for all t ∈ [0, T0] and all N ≥ 1,

(3.12) ‖uN(t)‖H1
0,Γ0 (Ω) ≤ ‖UN,0(t)‖H1

0,Γ0 (Ω)
+
∫ t

0
‖S(t − τ)PN[f(uN(τ))−G(uN(τ),u′N(τ))]‖H1

0,Γ0 (Ω) dτ
≤ α+

∫ t
0
‖f(uN(τ))−G(uN(τ),u′N(τ))‖L2(Ω) dτ.

However, by using Hölder’s inequality, (2.3), and (2.4), one has

‖f(uN(τ))−G(uN(τ),u′N(τ))‖L2(Ω)(3.13)

≤ ‖ |uN(τ)|p−1uN(τ)‖L2(Ω) + ‖ |uN(τ)|k |u′N(τ)|m‖L2(Ω)
≤ ∥∥uN(τ)∥∥p2p + ∥∥u′N(τ)∥∥m2 ∥∥uN(τ)∥∥k2k/(1−m)
≤ C[∥∥uN(τ)∥∥pH1

0,Γ0 (Ω) +
∥∥u′N(τ)∥∥m2 ∥∥uN(τ)∥∥kH1

0,Γ0 (Ω)
]
,

for some positive constant C = C(m,k,Ω). It follows from (3.12) and (3.13) that

(3.14) ‖uN(t)‖H1
0,Γ0 (Ω) ≤ α+ C

∫ t
0

[∥∥uN(τ)∥∥pH1
0,Γ0 (Ω)

+ ∥∥u′N(τ)∥∥m2 ∥∥uN(τ)∥∥kH1
0,Γ0 (Ω)

]
dτ.

Similarly, we have

(3.15) ‖u′N(t)‖L2(Ω) ≤ ‖VN,0(t)‖L2(Ω)
+
∫ t

0
‖C(t − τ)PN[f(uN(τ))−G(uN(τ),u′N(τ))]‖L2(Ω) dτ
≤ β+

∫ t
0
‖f(uN(τ))−G(uN(τ),u′N(τ))‖L2(Ω) dτ ≤
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≤ β+ C
∫ t

0
[‖uN(τ)‖pH1

0,Γ0 (Ω) + ‖u′N(τ)‖m2 ‖uN(τ)‖kH1
0,Γ0 (Ω)]dτ.

Therefore, it follows from (3.14) and (3.15) that

(3.16) ‖uN(t)‖H1
0,Γ0 (Ω) + ‖u′N(t)‖L2(Ω)

≤ α+ β+ C
∫ t

0
[‖uN(τ)‖pH1

0,Γ0 (Ω) + ‖u′N(τ)‖m2 ‖uN(τ)‖kH1
0,Γ0 (Ω)]dτ.

Let yN(t) := 1+‖uN(t)‖H1
0,Γ0 (Ω)+‖u′N(t)‖L2(Ω) and σ = max{p,k+m}. Then,

for t ∈ [0, T0] we have

(3.17) yN(t) ≤ 1+α+ β+ C
∫ t

0
yN(τ)σ dτ.

Hence, by using a standard comparison theorem, (3.17) yields that yN(t) ≤ z(t),
where z(t) = [(1+α+β)1−σ −C(σ −1)t]−1/(σ−1) is the solution to the Volterra
integral equation

(3.18) z(t) = 1+α+ β+ C
∫ t

0
z(τ)σ dτ.

Although z(t) blows-up in finite time (since σ > 1), there exists a time T > 0,
T < T0 such that yN(t) ≤ z(t) ≤ C for all t ∈ [0, T] and all N ≥ 1. This
shows that {uN} is bounded in YT and {u′N} is bounded in XT . Consequently,
PN|u′N|m sgn(u′N) is also bounded in XT and in L2(0, T , L2/m(Ω)), by Hölder’s
inequality. ❐

The following compactness theorem is a special case of Aubin’s compactness the-
orem which can be found in [27], for example.

Compactness Theorem. Let XT and YT be the Hilbert spaces as described above.
Let Y be the space of functions Y = {u ∈ YT , u′ ∈ XT} endowed with the natural

norm ‖u‖2
Y = ‖u‖2

YT + ‖u′‖2
XT . Then the imbedding Y i

↩ XT is compact.

Now, by using Lemma 3.1 and the compactness theorem above, we can extract
a subsequence of {uN} (still denoted by {uN}) and find functions u and η with
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u ∈ YT , u′ ∈ XT and η ∈ L2(0, T , L2/m(Ω)) ⊂ XT such that:

(3.19)



uN → u strongly in XT ,

uN → u weakly in YT ,

u′N → u′ weakly in XT ,

PN|u′N|m sgn(u′N)→ η weakly in XT

uN(t)→ u(t) strongly in L2(Ω) for almost all t ∈ [0, T],
uN(t)→ u(t)weakly in H1

0,Γ0(Ω) for almost all t ∈ [0, T],
u′N(t)→ u′(t) weakly in L2(Ω) for almost all t ∈ [0, T],
uN(., t)→ u(., t) point-wise a.e. Ω, for almost all t ∈ [0, T].

Before passing to the limit we shall need some auxiliary lemmas. First, let us
introduce the following temporary notation:

F(s) = |s|k,
and

Fj(s) =
{|s|k; |s| < j,
jk; |s| ≥ j.

Also, we let Ωj,v := {x ∈ Ω : |v(x)| ≥ j}.
Lemma 3.2. With k satisfying (2.3), then Fj(·) → F(·) in L2(Ω), uniformly

on bounded sets in H1
0,Γ0(Ω). More specifically, given ε > 0 and L > 0, then there

exists j0 ≥ 1, such that for all v ∈ H1
0,Γ0(Ω) with ‖v‖H1

0,Γ0 (Ω) ≤ L, we have

(3.20)
∥∥Fj(v)− F(v)∥∥2

L2(Ω) =
∫
Ωj,v |j

k − |v(x)|k |2 dx < ε2,

for all j ≥ j0.

Proof. Let v ∈ H1
0,Γ0(Ω) with ‖v‖H1

0,Γ0 (Ω) ≤ L. Then,

∥∥Fj(v)− F(v)∥∥2
L2(Ω) =

∫
Ωj,v |j

k − |v(x)|k |2 dx(3.21)

≤ 2
∫
Ωj,v (j

2k + |v(x)|2k)dx.
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With the assumptions on k, we can choose q such that 2k < q <∞, when n = 1,
2; and 2k < q ≤ 2n/(n− 2), when n ≥ 3. Then,

(3.22)
∫
Ωj,v j

q dx = jq|Ωj,v| ≤ ∫Ωj,v |v(x)|q dx ≤ C
∥∥v∥∥qH1

0,Γ0 (Ω) ≤ CLq,

where |Ωj,v| denotes the Lebesgue measure of Ωj,v . In particular, we have

(3.23) |Ωj,v| ≤ CLqj−q, j = 1,2 . . . .

Therefore,

(3.24)
∫
Ωj,v j

2k dx ≤ CLqj−q+2k, j = 1,2 . . . .

Moreover, by using Hölder’s inequality, (2.4) and (3.23), we have∫
Ωj,v |v(x)|

2k dx ≤ ∥∥v∥∥2k
2k/(1−m) |Ωj,v|m ≤ C∥∥v∥∥2k

H1
0,Γ0 (Ω) |Ωj,v|m(3.25)

≤ C1+mL2k+mqj−mq.

It follows from (3.24), (3.25) and (3.21) that there exists j0 ≥ 1 such that

(3.26)
∥∥Fj(v)− F(v)∥∥2

L2(Ω) ≤ 2(CLqj−q+2k + C1+mL2k+mqj−mq) ≤ ε2,

for all j ≥ j0, and the proof is complete. ❐

Lemma 3.3. Let {uN} be the sequence of approximate solutions satisfying (3.19).
Then, for any k ≥ 1 satisfying (2.3), we have

(3.27) |uN(t)|k → |u(t)|k strongly in L2(Ω) for almost all t ∈ [0, T].
Proof. Let k ≥ 1 and satisfying (2.3). Let L > 0 be such that, for all t ∈

[0, T] and all N ≥ 1,∥∥uN(t)∥∥H1
0,Γ0 (Ω) and

∥∥u(t)∥∥H1
0,Γ0 (Ω) ≤ L.

We choose q as in the proof of Lemma 3.2 and j0 large enough so that

(3.28)
∥∥Fj0(v)− F(v)

∥∥2
L2(Ω) =

∫
Ωj0,v

|jk0 − |v(x)|k |2 dx <
ε2

16
,

and

(3.29) 8
∫
Ωj0,v

j2k
0 dx ≤ 8CLqj−q+2k

0 <
ε2

16
,
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for all v ∈ H1
0,Γ0(Ω) with ‖v‖H1

0,Γ0 (Ω) ≤ L. Now, for all N ≥ 1, we have

‖ |uN(t)|k − |u(t)|k ‖L2(Ω) = ‖F(uN(t))− F(u(t))‖L2(Ω)(3.30)

≤ ‖F(uN(t))− Fj0(uN(t))‖L2(Ω)
+ ‖Fj0(uN(t))− Fj0(u(t))‖L2(Ω)
+ ‖Fj0(u(t))− F(u(t))‖L2(Ω)

<
ε
2
+ ‖Fj0(uN(t))− Fj0(u(t))‖L2(Ω).

For fixed t ∈ [0, T], let

Ω1,j0,N = {x : |uN(t)|, |u(t)| < j0},Ω2,j0,N = {x : |uN(t)| < j0, |u(t)| ≥ j0},Ω3,j0,N = {x : |uN(t)| ≥ j0, |u(t)| < j0},Ω4,j0,N = {x : |uN(t)|, |u(t)| ≥ j0}.

Now, by using Lemma 3.2, one has

(3.31)
∥∥Fj0(uN(t))− Fj0(u(t))

∥∥2
L2(Ω)

= ∥∥Fj0(uN(t))− Fj0(u(t))
∥∥2
L2(Ω1,j0 ,N )

+ ∥∥Fj0(uN(t))− Fj0(u(t))
∥∥2
L2(Ω2,j0 ,N )

+ ∥∥Fj0(uN(t))− Fj0(u(t))
∥∥2
L2(Ω3,j0 ,N )

.

However, for all N ≥ 1

∥∥Fj0(uN(t))− Fj0(u(t))
∥∥2
L2(Ω2,j0 ,N )

=
∫
Ω2,j0,N

| |uN(t)|k − jk0 |2 dx(3.32)

≤ 4
∫
Ω2,j0,N

j2k
0 dx

≤ 4
∫
Ωj0,u(t)

j2k
0 dx <

ε2

32
,

where we have used (3.29). Similarly, one has

∥∥Fj0(uN(t))− Fj0(u(t))
∥∥2
L2(Ω3,j0 ,N)

<
ε2

32
.(3.33)

Since uN(., t)→ u(., t) point-wise a.e. Ω as N → ∞, for almost all t ∈ [0, T] and
χΩ1,j0 ,N

(x)| |uN(t)|k−|u(t)k| |2 < 4j2k
0 (where χΩ1,j0 ,N

denotes the characteristic
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function on Ω1,j0,N), then by the dominated convergence theorem, there exists an
N0 ≥ 1 such that, for all N ≥ N0, we have∥∥Fj0(uN(t))− Fj0(u(t))

∥∥2
L2(Ω1,j0 ,N)

(3.34)

=
∫
Ω χΩ1,j0 ,N

(x)| |uN(t)|k − |u(t)k| |2 dx < ε
2

16
.

Finally, it follows from (3.30), (3.31) and (3.32)-(3.34) that

(3.35) ‖ |uN(t)|k − |u(t)|k ‖L2(Ω) < ε.
For all N ≥ N0 and almost all t ∈ [0, T], which completes the proof. ❐

The following Lemma is an immediate consequence of Lemma 3.3.

Lemma 3.4. The sequence of approximate solutions {uN} satisfies:

(3.36) PN|uN|k |u′N|m sgn(u′N)→ |u|kη weakly in XT .

Proof. The fact that |u(t)|kη(t) ∈ L2(Ω) for almost all t ∈ [0, T] follows
easily from Hölder’s inequality. The convergence in (3.36) follows easily by using
Lemma 3.3 and a density argument. ❐

Lemma 3.5. Let p ≥ 1 satisfying (2.3). Then, there exists a subsequence of
{uN}, still denoted by {uN}, such that, for almost all t ∈ [0, T]

|uN(t)|p−1uN(t)→ |u(t)|p−1u(t) strongly in L2(Ω),(3.37)

for p ≥ 1, n = 1, 2; and for 1 ≤ p < n/(n − 2), n ≥ 3. Moreover, the mode of
convergence in (3.37) is replaced by weakly in L2(Ω), if p = n/(n− 2), n ≥ 3.

Proof. Here, the proof is similar to the proof of Lemma 3.3, and thus will not
be repeated. However, from the proof of Lemma 3.3, we only need the restriction
that 1 ≤ p < n/(n− 2) when n ≥ 3 to deduce (3.37). Moreover, if p =
n/(n − 2), then obviously p − 1 < n/(n − 2), and one has |uN(t)|p−1 →
|u(t)|p−1 strongly in L2(Ω). The fact that |uN(t)|p−1uN(t) is bounded in L2(Ω)
yields the second statement of the lemma. ❐

Now, the sequence of approximate solutions in (3.19) satisfies

〈u′N(t), ek〉L2(Ω) − 〈PNu1, ek〉L2(Ω)(3.38)

+
∫ t

0
〈A1/2uN(s),A1/2ek〉L2(Ω) ds

+
∫ t

0
[〈PNG(uN(s),u′N(s)), ek〉L2(Ω) − 〈PNf(uN(s)), ek〉L2(Ω) ds]

−
∫ t

0
〈h(s), γ1ek〉L2(Γ1) ds = 0,
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for all k = 1, 2 . . . , N, and almost every t ∈ [0, T].
By letting N → ∞, and by using (3.19) and Lemmas 3.4, 3.5, one finds that

the limit function u satisfies

〈u′(t),ϕ〉L2(Ω) − 〈u1,ϕ〉L2(Ω) +
∫ t

0
〈A1/2u(s),A1/2ϕ〉L2(Ω) ds(3.39)

+
∫ t

0
[〈|u(s)|kη(s),ϕ〉L2(Ω) − 〈f(u(s)),ϕ〉L2(Ω)]ds

−
∫ t

0
〈h(s), γ1ϕ〉L2(Γ1) ds = 0,

for all ϕ ∈ H1
0,Γ0(Ω) and almost every t ∈ [0, T]. In view of Remark 2.3, then u

satisfies the integral equations

u(t) = U0(t)+
∫ t

0
S(t − τ)[f (u(τ))− |u(τ)|kη(τ)]dτ,(3.40)

u′(t) = V0(t)+
∫ t

0
C(t − τ)[f (u(τ))− |u(τ)|kη(τ)]dτ,(3.41)

where U0 and V0 are given in (2.11) and (2.12). Therefore, we deduce that u ∈
C([0, T],H1

0,Γ0(Ω)) and u′ ∈ C([0, T], L2(Ω)). Moreover, u satisfies the initial-
boundary value problem,

(3.42)



utt −∆u+ |u|kη = |u|p−1u, in Ω× (0, T),
u(x,0) = u0(x), ut(x,0) = u1(x), in Ω,
u(x, t) = 0, on Γ0 × (0, T),
∂u
∂n
(x, t) = h(x, t), on Γ1 × (0, T).

In addition, we have the following lemma.

Lemma 3.6. Let u0 ∈ H1
0,Γ0(Ω), u1 ∈ L2(Ω), η ∈ L2(0, T , L2/m(Ω)) and

u be a weak solution to the initial-boundary value problem (3.42). Then, u′′ ∈
L2(0, T , (H1

0,Γ0(Ω))′).
Proof. Let 〈·, ·〉 denote the standard pairing of (H1

0,Γ0(Ω))′ and H1
0,Γ0(Ω).

Then, it follows from (3.39) that

|〈u′′(t),ϕ〉| =
∣∣∣∣ ddt 〈u′(t),ϕ〉

∣∣∣∣ = ∣∣∣∣ ddt 〈u′(t),ϕ〉L2(Ω)
∣∣∣∣

≤ |〈A1/2u(t),A1/2ϕ〉L2(Ω)| + |〈|u(t)|kη(t),ϕ〉L2(Ω)|
+|〈f(u(t)),ϕ〉L2(Ω)| + |〈h(t), γ1ϕ〉L2(Γ1)|
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for all ϕ ∈ H1
0,Γ0(Ω) and for almost all t ∈ [0, T].

However, by the Cauchy-Schwarz inequality and Hölder’s inequality, we have

|〈u′′(t),ϕ〉|
≤ C‖ϕ‖H1

0,Γ0 (Ω)(‖A1/2u(t)‖L2(Ω) + ‖ |u(t)|kη(t)‖L2(Ω))
+ C‖ϕ‖H1

0,Γ0 (Ω)
∥∥u(t)∥∥pL2p(Ω) + ‖h(t)‖L2(Γ1) ‖γ1ϕ‖L2(Γ1)

≤ C‖ϕ‖H1
0,Γ0 (Ω)

(‖u(t)‖H1
0,Γ0 (Ω) + ‖η(t)‖L2/m(Ω) ∥∥u(t)∥∥kL2k/(1−m)(Ω)

+ ∥∥u(t)∥∥pH1
0,Γ0 (Ω) + ‖h(t)‖L2(Γ1))

for all ϕ ∈ H1
0,Γ0(Ω) and for almost all t ∈ [0, T]. Therefore, for almost every

t ∈ [0, T]

(3.43)
∥∥u′′(t)∥∥2

(H1
0,Γ0 (Ω))′

≤ C(∥∥u(t)∥∥2
H1

0,Γ0 (Ω) +
∥∥η(t)∥∥2

L2/m(Ω) ∥∥u(t)∥∥2k
H1

0,Γ0 (Ω)
+ ∥∥u(t)∥∥2p

H1
0,Γ0 (Ω) +

∥∥h(t)∥∥2
L2(Γ1)),

for some constant C. Hence, the lemma follows from (3.43). ❐

4. LOCAL SOLUTIONS

In this section, we shall show that the initial-boundary value problem (1.2) has
a unique local solution under the general restrictions on the damping and source
terms. We accomplish this by first showing that η = g(u′) and then prove unique-
ness. Specifically, we have the following Theorem.

Theorem 4.1. Let u0 ∈ H1
0,Γ0(Ω), u1 ∈ L2(Ω), and h ∈ C1([0,∞), L2(Γ1)).

Then there exists a constant T > 0 such that the initial-boundary value problem (1.2)
has a unique weak solution on [0, T] with

u ∈ C([0, T];H1
0,Γ0(Ω)) and u′ ∈ C([0, T];L2(Ω)).

Proof. The proof follows immediately from the previous section and from
Lemma 4.4 and Lemma 4.5 below. ❐

We start by deriving an energy identity for the approximate solutions {uN}.
By multiplying equation (3.3) by u′N,k(t), summing from 1 to N, and integrating
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from 0 to t, we obtain

EN(t) := 1
2
(∥∥u′N(t)∥∥2

L2(Ω) + ∥∥A1/2uN(t)
∥∥2
L2(Ω))(4.1)

− 1
p + 1

∥∥uN(t)∥∥p+1
Lp+1(Ω) − 〈h(t), γ1uN(t)〉L2(Γ1)

+
∫ t

0
〈h′(τ), γ1uN(τ)〉L2(Γ1) dτ

+
∫ t

0
〈|uN(τ)|kg(u′N(τ)),u′N(τ)〉L2(Ω) dτ = EN(0).

Due to the fact that u, the solution of the initial-boundary value problem
(3.42), is not sufficiently regular, obtaining the energy identity in Lemma 4.2 is
not straightforward. However, by modifying the proof of Lemma 8.3 of Lions and
Magenes [20], Lemma 4.2 follows. Thus, its proof is omitted.

Lemma 4.2. Let u ∈ C([0, T],H1
0,Γ0(Ω)) and u′ ∈ C([0, T], L2(Ω)) such

that u is a weak solution to the initial-boundary value problem (3.42). Then u
satisfies

E(t) := 1
2
(∥∥u′(t)∥∥2

L2(Ω) + ∥∥A1/2u(t)
∥∥2
L2(Ω))− 1

p + 1
∥∥u(t)∥∥p+1

Lp+1(Ω)(4.2)

− 〈h(t), γ1u(t)〉L2(Γ1) +
∫ t

0
〈h′(τ), γ1u(τ)〉L2(Γ1) dτ

+
∫ t

0
〈|u(τ)|kη(τ),u′(τ)〉L2(Ω) dτ = E(0).

Lemma 4.3. Let v ∈ H1
0,Γ0(Ω) be fixed, and k ≥ 1 satisfying (2.3). Let g(ϕ) =

|ϕ|m sgn(ϕ). Then the mapping ϕ → |v|kg(ϕ) generates a monotone operator
from L2(Ω) into L2(Ω). More precisely,

〈|v|k[g(ϕ)− g(ψ)],ϕ −ψ〉L2(Ω) ≥ 0,

for all ϕ, ψ ∈ L2(Ω), and every fixed v ∈ H1
0,Γ0(Ω). Moreover, the mapping

λ , 〈|v|kg(ϕ + λψ), µ〉L2(Ω) is continuous from R to R for every fixed ϕ, ψ,
µ ∈ L2(Ω), and v ∈ H1

0,Γ0(Ω).
Proof. The first statement is trivial and follows easily from the monotonicity

of the function g(ϕ) = |ϕ|m sgn(ϕ). The second statement of the lemma also
follows easily from the fact that g is Hölder continuous with |g(ϕ) − g(ψ)| ≤
2|ϕ −ψ|m, for all ϕ, ψ ∈ R. ❐

Lemma 4.4. Let u ∈ C([0, T],H1
0,Γ0(Ω)) and u′ ∈ C([0, T], L2(Ω)) such

that u is a weak solution to the initial-boundary value problem (3.42). Then, η =
g(u′).
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Proof. Since PNu0 → u0 in H1
0,Γ0(Ω) and PNu1 → u1 in L2(Ω), it follows

from (2.3) and (2.4) that ‖PNu0‖Lp+1(Ω) → ‖u0‖Lp+1(Ω). Moreover, by the con-

tinuity of the mapping H1
0,Γ0(Ω) γ1→ L2(Γ1), we have γ1PNu0 → γ1u0 in L2(Γ1).

Now, since

EN(0) = 1
2
(∥∥PNu1∥∥2

L2(Ω) + ∥∥A1/2PNu0∥∥2
L2(Ω))

− 〈h(0), γ1PNu0〉L2(Γ1) − 1
p + 1

∥∥PNu0∥∥p+1
Lp+1(Ω),

then,

(4.3) lim
N→∞

EN(0) = E(0) = 1
2
(∥∥u1∥∥2

L2(Ω) + ∥∥A1/2u0∥∥2
L2(Ω))

− 〈h(0), γ1u0〉L2(Γ1) − 1
p + 1

∥∥u0∥∥p+1
Lp+1(Ω).

Therefore, for almost all t ∈ [0, T], we have

(4.4) lim inf
N→∞

EN(t) = lim
N→∞

EN(0) = E(0) = E(t).

We remark here that by virtue of the proof of Lemma 3.3, one can conclude that
‖uN(t)‖Lp+1(Ω) → ‖u(t)‖Lp+1(Ω), for almost all t ∈ [0, T]. Therefore, it follows
from (3.19) and (4.1) that

E(t) = lim inf
N→∞

EN(t)(4.5)

≥ 1
2

lim inf
N→∞

∥∥u′N(t)∥∥2
L2(Ω) + 1

2
lim inf
N→∞

∥∥A1/2uN(t)
∥∥2
L2(Ω)

− 1
p + 1

∥∥u(t)∥∥p+1
Lp+1(Ω) − 〈h(t), γ1u(t)〉L2(Γ1)

+
∫ t

0
〈h′(τ), γ1u(τ)〉L2(Γ1) dτ

+ lim inf
N→∞

∫ t
0
〈|uN(τ)|kg(u′N(τ)),u′N(τ)〉L2(Ω) dτ

≥ 1
2
∥∥u′(t)∥∥2

L2(Ω) + 1
2
∥∥A1/2u(t)

∥∥2
L2(Ω)

− 〈h(t), γ1u(t)〉L2(Γ1) +
∫ t

0
〈h′(τ), γ1u(τ)〉L2(Γ1) dτ

+ lim inf
N→∞

∫ t
0
〈|uN(τ)|kg(u′N(τ)),u′N(τ)〉L2(Ω) dτ.
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Therefore, (4.5) and (4.2) yield

∫ t
0
〈|u(τ)|kη(τ),u′(τ)〉L2(Ω) dτ(4.6)

≥ lim inf
N→∞

∫ t
0
〈|uN(τ)|kg(u′N(τ)),u′N(τ)〉L2(Ω) dτ ≥ 0.

Now, let ϕ ∈ C0(Ω× [0, T]) be arbitrary. Since

lim
N→∞

〈|u(τ)|kg(ϕ(τ)),u′N(τ)〉 = lim
N→∞

〈|uN(τ)|kg(ϕ(τ)),u′N(τ)〉,

then (4.6) implies

(4.7)
∫ t

0
〈|u(τ)|k[η(τ)− g(ϕ(τ))],u′(τ)−ϕ(τ)〉L2(Ω) dτ

≥ lim inf
N→∞

∫ t
0
〈|uN(τ)|k[g(u′N(τ))− g(ϕ(τ))],u′N(τ)−ϕ(τ))〉L2(Ω) dτ.

Therefore, Lemma (4.3) and (4.7) yield

(4.8)
∫ t

0
〈|u(τ)|k[η(τ)− g(ϕ(τ))],u′(τ)−ϕ(τ)〉L2(Ω) dτ ≥ 0,

for all ϕ ∈ C0(Ω × [0, T]). By density, (4.8) holds for all ϕ ∈ L2(0, T , L2(Ω)).
By choosing ϕ(t) = u′(t)− λψ(t), where λ ≥ 0, then (4.8) yields

(4.9)
∫ t

0
〈|u(τ)|k[η(τ)− g(u′(τ)− λψ(τ))],ψ(τ)〉L2(Ω) dτ ≥ 0,

for all λ ≥ 0 and for allψ ∈ L2(0, T , L2(Ω)). By letting λ→ 0+ and using Lemma
4.3, one has

(4.10)
∫ t

0
〈|u(τ)|k[η(τ)− g(u′(τ))],ψ(τ)〉L2(Ω) dτ ≥ 0,

for all ψ ∈ L2(0, T , L2(Ω)). In particular, by letting ψ(t) = g(u′(t)) − η(t),
then (4.10) shows that g(u′(t)) − η(t) = 0 almost everywhere in Ω, for almost
all t ∈ [0, T]. ❐

Lemma 4.5. Let v1, v2 ∈ C([0, T],H1
0,Γ0(Ω)) and v′1, v′2 ∈ C([0, T], L2(Ω))

such that v1 and v2 are weak solutions to the initial-boundary value problem (1.2).
Then, v1 = v2.



1498 DAVID R. PITTS & MOHAMMAD A. RAMMAHA

Proof. Let v = v1 − v2. Let L > 0 be such that ‖vj‖C([0,T],H1
0,Γ0 (Ω)) ≤ L and

‖v′j‖C([0,T],L2(Ω)) ≤ L, for j = 1, 2. First, we note that v ∈ C([0, T],H1
0,Γ0(Ω)),

v′ ∈ C([0, T], L2(Ω)) and v satisfies the following initial-boundary value prob-
lem

(4.11)



vtt −∆v +G(v1, v′1)−G(v2, v′2) = f(v1)− f(v2),
in Ω× (0, T),

v(x,0) = 0, vt(x,0) = 0, in Ω,
v(x, t) = 0 on Γ0 × (0, T),
∂v
∂n
(x, t) = 0, on Γ1 × (0, T).

By an argument similar to the proof of Lemma 4.2, we have

(4.12)
1
2
(∥∥v′(t)∥∥2

L2(Ω) + ∥∥A1/2v(t)
∥∥2
L2(Ω))

= −
∫ t

0
〈G(v1(τ), v′1(τ))−G(v2(τ), v′2(τ)), v

′(τ)〉L2(Ω) dτ
+
∫ t

0
〈f(v1(τ))− f(v2(τ)), v′(τ)〉L2(Ω) dτ.

However, by Lemma 4.3, and the use of the elementary inequality

| |a|k − |b|k| ≤ C|a− b|(|a|k−1 + |b|k−1),

for some constant C > 0, all k ≥ 1, and all a, b ∈ R, we have

− 〈G(v1, v′1)−G(v2, v′2), v
′〉L2(Ω)(4.13)

= −〈|v1|k[g(v′1)− g(v′2)]+ g(v′2)[|v1|k − |v2|k], v′〉L2(Ω)
≤ −〈g(v′2)[|v1|k − |v2|k], v′〉L2(Ω)
≤ C〈|v′2|m |v1 − v2| [|v1|k−1 + |v2|k−1], |v′|〉L2(Ω).

Now, for space dimensions n ≥ 3, we choose

α = 2
m
, β = 2n

n− 2
, γ = 2n

(n− 2)(k− 1)
, δ = 2n

2(n+ k)−n(m+ k) .

By recalling (2.3), it easy to see that α, β, γ, δ are Hölder’s conjugate exponents,
and in particular 1 < δ ≤ 2. Therefore, by using the generalized Hölder inequality
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and (2.4), we have

〈|v2(τ)′|m |v1(τ)− v2(τ)| |vj(τ)|k−1, |v′(τ)|〉L2(Ω)(4.14)

≤ ∥∥v′2(τ)∥∥m2 ‖v(τ)‖2n/(n−2) ‖vj(τ)‖k−1
2n/(n−2) ‖v′(τ)‖δ

≤ C∥∥v′2(τ)∥∥m2 ‖v(τ)‖H1
0,Γ0 (Ω)

∥∥vj(τ)∥∥k−1
H1

0,Γ0 (Ω) ‖v′(τ)‖2

≤ CLm+k−1‖v′(τ)‖2 ‖v(τ)‖H1
0,Γ0 (Ω)

≤ C[∥∥v′(τ)∥∥2
2 +

∥∥v(τ)∥∥2
H1

0,Γ0 (Ω)
]

for all τ ∈ [0, T] and j = 1, 2.
Similarly, by noting that p ≤ n/(n− 2) is equivalent to n(p − 1) ≤

2n/(n− 2), then we have

〈f(v1(τ))− f(v2(τ)), v′(τ)〉L2(Ω)(4.15)

= 〈|v1(τ)|p−1v1(τ)− |v2(τ)|p−1v2(τ), v′(τ)〉L2(Ω)
≤ C〈|v1(τ)− v2(τ)|[|v1(τ)|p−1 + |v2(τ)|p−1], |v′(τ)|〉L2(Ω)
≤ C‖v(τ)‖2n/(n−2) ‖v′(τ)‖2

[∥∥v1(τ)
∥∥p−1
n(p−1) +

∥∥v2(τ)
∥∥p−1
n(p−1)

]
≤ C‖v(τ)‖H1

0,Γ0 (Ω) ‖v′(τ)‖2
[∥∥v1(τ)

∥∥p−1
H1

0,Γ0 (Ω) +
∥∥v2(τ)

∥∥p−1
H1

0,Γ0 (Ω)
]

≤ C[∥∥v′(τ)∥∥2
2 +

∥∥v(τ)∥∥2
H1

0,Γ0 (Ω)
]
.

We remark here that the estimates in (4.14)-(4.15) are also valid for the space
dimensions n = 1, 2, by a similar argument. Therefore, it follows from (4.12)-
(4.15) that

(4.16)
∥∥v′(t)∥∥2

2 +
∥∥v(t)∥∥2

H1
0,Γ0 (Ω) ≤ C

∫ t
0

[∥∥v′(τ)∥∥2
2 +

∥∥v(τ)∥∥2
H1

0,Γ0 (Ω)
]
dτ,

for t ∈ [0, T]. Hence, by Gronwall’s inequality

∥∥v′(t)∥∥2
2 +

∥∥v(t)∥∥2
H1

0,Γ0 (Ω) = 0, for t ∈ [0, T]. ❐

5. GLOBAL SOLUTIONS

In this section we shall show that every local weak solution to the initial-boundary
value problem (1.2) is a global solution provided k +m ≥ p. More specifically,
we have the following theorem.
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Theorem 5.1. Let k, m and p satisfy (2.3). Assume that k +m ≥ p, u0 ∈
H1

0,Γ0(Ω), u1 ∈ L2(Ω), and h ∈ C1([0,∞), L2(Γ1)). Then for any T > 0, the
initial-boundary value problem (1.2) has a unique weak solution on [0, T] with

u ∈ C([0, T];H1
0,Γ0(Ω)) and u′ ∈ C([0, T];L2(Ω)).

Proof. The theorem will follow immediately from Lemma 5.2 below. The
a priori bounds for the approximate solutions in Lemma 5.2, followed by the
application of the results in Sections 3 and 4 allow us to pass to the limit and
obtain a weak solution to (1.2) on any time interval [0, T]. ❐

Lemma 5.2. Let k, m and p satisfy (2.3). If k+m ≥ p then on any bounded
time interval [0, T], the sequence of the approximate solutions {uN} is bounded in
YT and {u′N} is bounded in XT .

Proof. Let

eN(t) = 1
2
(∥∥u′N(t)∥∥2

L2(Ω) + ∥∥A1/2uN(t)
∥∥2
L2(Ω)),(5.1)

FN(t) = eN(t)+ 1
p + 1

∥∥uN(t)∥∥p+1
Lp+1(Ω),(5.2)

σN(t) = 〈h(t), γ1uN(t)〉L2(Γ1) −
∫ t

0
〈h′(τ), γ1uN(τ)〉L2(Γ1) dτ.(5.3)

We shall show that FN(t) remains bounded for bounded time. First, we note that
(4.1) yields

e′N(t) =
∫
Ω |uN(t)|p−1uN(t)u′N(t)dx(5.4)

−
∫
Ω |uN(t)|k |u′N(t)|m+1 dx +σ ′N(t).

Therefore,

F ′N(t) = 2
∫
Ω |uN(t)|p−1uN(t)u′N(t)dx(5.5)

−
∫
Ω |uN(t)|k |u′N(t)|m+1 dx + σ ′N(t).

By Hölder’s and Young’s inequalities, we have
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∣∣∣∣(5.6)

≤
∫
Ω |uN(t)|p−(p−m)/(m+1)|uN(t)|(p−m)/(m+1) |u′N(t)|dx

≤
(∫

Ω |uN(t)|p−m |u′N(t)|m+1 dx
)1/(m+1)

×
(∫

Ω |uN(t)|p+1 dx
)m/(m+1)

≤ ε
∫
Ω |uN(t)|p−m |u′N(t)|m+1 dx + 1

2
C0

∫
Ω |uN(t)|p+1 dx,

for some constant C0 > 0 that depends on ε and m. By taking ε = 1
2 , then we

have

F ′N(t) ≤ C0

∫
Ω |uN(t)|p+1 dx +

∫
Ω |uN(t)|p−m |u′N(t)|m+1 dx(5.7)

−
∫
Ω |uN(t)|k |u′N(t)|m+1 dx + σ ′N(t)

=
∫
Ω |u′N(t)|m+1(|uN(t)|p−m − |uN(t)|k)dx

+ C0

∫
Ω |uN(t)|p+1 dx +σ ′N(t)

= I1N(t)+ I2N(t)+ C0

∫
Ω |uN(t)|p+1 dx + σ ′N(t),

where

I1N(t) =
∫
{x∈Ω : |uN(t)|>1}

|u′N(t)|m+1(|uN(t)|p−m − |uN(t)|k)dx,
and

I2N(t) =
∫
{x∈Ω : |uN(t)|≤1}

|u′N(t)|m+1(|uN(t)|p−m − |uN(t)|k)dx.

Since k ≥ p −m, I1N(t) ≤ 0. By Hölder’s and Young’s inequalities

I2N(t) ≤ 2
∫
Ω |u′N(t)|m+1 dx ≤ C1

∥∥u′N(t)∥∥m+1
L2(Ω)(5.8)

≤ C1
∥∥u′N(t)∥∥2

L2(Ω) + C2,

for some constants C1, C2 > 0. Therefore, it follows from (5.7) that

F ′N(t) ≤ C1
∥∥u′N(t)∥∥2

L2(Ω) + C0
∥∥uN(t)∥∥p+1

p+1 + C2 + σ ′N(t)(5.9)

≤ bFN(t)+ C2 +σ ′N(t),
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for some constant b > 0.
By multiplying (5.9) by e−bt and integrating from 0 to t, we obtain

e−btFN(t) ≤
(
FN(0)− σN(0)+ C2

b

)
+ e−btσN(t)(5.10)

+ b
∫ t

0
e−bτσN(τ)dτ.

However,

FN(0)+ |σN(0)|(5.11)

= 1
2
(∥∥PNu1∥∥2

L2(Ω) + ∥∥A1/2PNu0∥∥2
L2(Ω))

+ 1
p + 1

∥∥PNu0∥∥p+1
Lp+1(Ω) + |〈h(0), γ1PNu0〉L2(Γ1)|

≤ ∥∥u1∥∥2
L2(Ω) + ∥∥u0∥∥2

H1
0,Γ0 (Ω)

+ C(∥∥u0∥∥p+1
H1

0,Γ0 (Ω) + ‖h(0)‖L2(Γ1) ‖u0‖H1
0,Γ0 (Ω)

)
:= C3.

Now, we estimate σN(t) as follows:

|σN(t)| ≤ ‖h(t)‖L2(Γ1) ‖γ1uN(t)‖L2(Γ1)(5.12)

+
∫ t

0
‖h′(τ)‖L2(Γ1) ‖γ1uN(τ)‖L2(Γ1) dτ

≤ C
(

1
4ε
∥∥h(t)∥∥2

L2(Γ1) + ε
∥∥uN(t)∥∥2

H1
0,Γ0 (Ω)

)
+ C

∫ t
0

(
1
4ε
∥∥h′(τ)∥∥2

L2(Γ1) + ε
∥∥uN(τ)∥∥2

H1
0,Γ0 (Ω)

)
dτ

≤ q(t)+ 1
2
FN(t)+ 1

2

∫ t
0
FN(τ)dτ,

where q(t) = C2( ∥∥h(t)∥∥2
L2(Γ1) +

∫ t
0

∥∥h′(τ)∥∥2
L2(Γ1) dτ) and ε = 1/(4C).

Now, it follows from (5.10)-(5.12) that

1
2
e−btFN(t)(5.13)

≤ C2

b
+ C3 + e−btq(t)+ 1

2
e−bt

∫ t
0
FN(τ)dτ

+ b
∫ t

0
e−bτ

(
q(τ)+ 1

2

[
FN(τ)+

∫ τ
0
FN(s)ds

])
dτ ≤
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≤ C4 + e−btq(t)+ b
∫ t

0
e−bτq(τ)dτ + 2+ b

2

∫ t
0
e−bτFN(τ)dτ

:= Q(t)+ 2+ b
2

∫ t
0
e−bτFN(τ)dτ,

whereQ(t) = C4+e−btq(t)+b
∫ t

0
e−bτq(τ)dτ and C4 = C2

b +C3. By Gronwall’s

inequality,

(5.14)
1
2
e−btFN(t) ≤ Q(t)+ (2+ b)e(2+b)t

∫ t
0
Q(τ)dτ.

Thus, (5.14) shows that FN(t) remains bounded for every t > 0, which completes
the proof. ❐

6. BLOW-UP OF SOLUTIONS

Throughout this section, we assume that p > k+m, and for simplicity, we assume
h(t) ≡ 0. In particular, the energy identity (4.2) in Lemma 4.2 becomes

(6.1) E(t) := 1
2
(∥∥u′(t)∥∥2

L2(Ω) + ∥∥A1/2u(t)
∥∥2
L2(Ω))− 1

p + 1
∥∥u(t)∥∥p+1

Lp+1(Ω)
+
∫ t

0

∫
Ω |u(τ)|k |u′(τ)|m+1 dx dτ = E(0).

Let

F(t) = ∥∥u(t)∥∥2
L2(Ω),(6.2)

H(t) = −1
2
(∥∥u′(t)∥∥2

L2(Ω) + ∥∥A1/2u(t)
∥∥2
L2(Ω))+ 1

p + 1
∥∥u(t)∥∥p+1

Lp+1(Ω).(6.3)

Our main result in this section is the following theorem.

Theorem 6.1. Let u ∈ C([0, T),H1
0,Γ0(Ω)) and u′ ∈ C([0, T), L2(Ω)) such

that u is a weak solution to the initial-boundary value problem (1.2) in the sense of
Definition 2.1. If p > k +m and H(0) > 0, then T is necessarily finite, i.e., u
cannot be continued for all t > 0.

Proof. First, (6.1) yields that

H′(t) =
∫
Ω |u(t)|k |u′(t)|m+1 dx ≥ 0.

Therefore,

(6.4) 0 < H(0) ≤ H(t) ≤ 1
p + 1

∥∥u(t)∥∥p+1
Lp+1(Ω),
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for 0 ≤ t < T .
Let α = min{(p− (k+m))/(m(p+1)), (p−1)/(2(p+1))}. In particular,

0 < α < 1
2 . Let K and L be the constants given by

(6.5)
K = 2|Ω|(p−k−m)/((m+1)(p+1)) and

L = (p + 1)(k+m+1)/(m(p+1))

(p − 1)1/m
H(0)α−(p−k−m)/(m(p+1))

Let 0 < ε < 1 be small enough so that

(6.6) 1−α− εK1+1/mL ≥ 0.

Later, we may need to adjust ε again.
In the remainder of the proof, most generic constants will be denoted by C,

C0, . . . ; they may depend on various parameters, but they are totally independent
from ε and the initial data, and they may change from line to line.

First, we note that (6.6) implies

(6.7) H(0) ≥ Cεθ,

where θ =m(p + 1)/(p − (k+m)−αm(p + 1)) > 0.
As in [5], we let

y(t) = H(t)1−α + εF ′(t).(6.8)

Due to Lemma 3.6 and the work thereafter, one has u′′ ∈ C([0, T), (H1
0,Γ0(Ω))′).

Consequently, F ′′(t) exists for t ∈ [0, T) and

F ′′(t) = 2
(∥∥u′(t)∥∥2

L2(Ω) − ∥∥A1/2u(t)
∥∥2
L2(Ω) + ∥∥u(t)∥∥p+1

Lp+1(Ω)
)

(6.9)

− 2
∫
Ω |u(t)|ku(t)g(u′(t))dx.

It follows from (6.8)-(6.9) that

y ′(t) = (1−α)H(t)−αH′(t)+ 4ε
∥∥u′(t)∥∥2

L2(Ω) + 4εH(t)(6.10)

+ 2ε
p − 1
p + 1

∥∥u(t)∥∥p+1
Lp+1(Ω) − 2ε

∫
Ω |u(t)|ku(t)g(u′(t))dx.
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Since p > k+m, then by Hölder’s inequality∣∣∣∣∫Ω |u(t)|ku(t)g(u′(t))dx
∣∣∣∣(6.11)

≤
∫
Ω |u(t)|k+1−km/(m+1)|u(t)|km/(m+1)|u′(t)|m dx

≤
(∫

Ω |u(t)|k |u′(t)|m+1 dx
)m/(m+1)

×
(∫

Ω |u(t)|k+m+1 dx
)1/(m+1)

≤ 1
2
KH′(t)m/(m+1)∥∥u(t)∥∥(k+m+1)/(m+1)

Lp+1(Ω) ,

where K is as given in (6.5). However, Young’s inequality and (6.11) yield

(6.12)
∣∣∣∣∫Ω |u(t)|ku(t)g(u′(t))dx

∣∣∣∣ ≤ 1
2
K
[

1
δ
H′(t)+ δm∥∥u(t)∥∥k+m+1

Lp+1(Ω)
]
,

where δ > 0 is to be chosen later. Therefore, it follows from (6.10) and (6.12)
that

(6.13) y ′(t) ≥
[
(1−α)H(t)−α − K ε

δ

]
H′(t)+ 4ε

∥∥u′(t)∥∥2
L2(Ω)

+ 4εH(t)+ 2ε
p − 1
p + 1

∥∥u(t)∥∥p+1
Lp+1(Ω) − Kεδm

∥∥u(t)∥∥k+m+1
Lp+1(Ω).

By choosing δ = [(p − 1)/((p + 1)K)‖u(t)‖p−k−m
Lp+1(Ω)]1/m, then

ε
p − 1
p + 1

∥∥u(t)∥∥p+1
Lp+1(Ω) −Kεδm

∥∥u(t)∥∥k+m+1
Lp+1(Ω) = 0.

Therefore, we have

y ′(t) ≥
[
(1−α)H(t)−α − K ε

δ

]
H′(t)+ 4ε

∥∥u′(t)∥∥2
L2(Ω)(6.14)

+ 4εH(t)+ εp − 1
p + 1

∥∥u(t)∥∥p+1
Lp+1(Ω).

Since H(t) ≤ 1/(p + 1)‖u(t)‖p+1
Lp+1(Ω), then

(6.15) (1−α)H(t)−α −K ε
δ

= H−α(t)
[

1−α− K ε
δ
H(t)α

]
≥ H(t)−α

[
1−α− εK1+1/m (p + 1)1/m−α

(p − 1)1/m
∥∥u(t)∥∥(k+m−p+αm(p+1))/m

Lp+1(Ω)
]
.
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Furthermore, since ‖u(t)‖Lp+1(Ω) ≥ [(p+1)H(0)]1/(p+1) > 0 and α was chosen
so that k+m− p +αm(p + 1) ≤ 0, then it follows from (6.15) that

(6.16) (1−α)H(t)−α −K ε
δ

≥ H(t)−α

×
[

1−α− εK1+1/m (p + 1)(k+m+1)/(m(p+1))

(p − 1)1/m
H(0)α−(p−k−m)/(m(p+1))

]
≡ H(t)−α[1−α− εK1+1/m L] ≥ 0,

by our choice of ε in (6.6). Therefore, (6.14) and (6.16) yield

(6.17) y ′(t) ≥ εC[H(t)+ ∥∥u′(t)∥∥2
L2(Ω) + ∥∥u(t)∥∥p+1

Lp+1(Ω)
]
,

for t ∈ [0, T) and where C > 0 is a constant that does not depend on ε. In
particular (6.17) shows that y(t) is increasing on [0, T), with

y(t) = H(t)1−α + εF ′(t) ≥ H(0)1−α + εF ′(0).(6.18)

If F ′(0) ≥ 0, then no further condition on ε is needed. However, if F ′(0) < 0,
then we further adjust ε so that 0 < ε ≤ −H(0)1−α/(2F ′(0)). In any case, one
has y(t) > 0, for t ∈ [0, T).

Finally, we show that y(t) satisfies the differential inequality

(6.19) y ′(t) ≥ ε1+σC0y(t)1/(1−α), 0 ≤ t < T ,

where C0 is some positive constant and σ = θ(1− 2/((1− 2α)(p + 1))) ≥ 0.
If F ′(t) ≤ 0 for some t ∈ [0, T), then for such values of t we have

(6.20) y(t)1/(1−α) = [H(t)1−α + εF ′(t)]1/(1−α) ≤ H(t).

Thus, (6.20) and (6.17) show that (6.19) is valid for all t ∈ [0, T) for which
F ′(t) ≤ 0. If t ∈ [0, T) is such that F ′(t) > 0, then (6.19) will be valid, if for
such values of t ∈ [0, T) the following inequality holds

H(t)+ ∥∥u(t)∥∥p+1
Lp+1(Ω) +

∥∥u′(t)∥∥2
L2(Ω)(6.21)

≥ εσC[H(t)1−α + εF ′(t)]1/(1−α).

So, assume that F ′(t) > 0, and let β = 1/(1−α). Since 1 < β < 2 and 0 < ε < 1,
then by convexity

(6.22) [H(t)1−α + εF ′(t)]β ≤ 2β−1[H(t)+ F ′(t)β].
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However, since p ≥ 1, we have

F ′(t)β =
(

2
∫
Ωu(t)u′(t)dx

)β
≤ C(‖u(t)‖L2(Ω) ‖u′(t)‖L2(Ω))β(6.23)

≤ C∥∥u(t)∥∥β
Lp+1(Ω)

∥∥u′(t)∥∥βL2(Ω).
Since 2/β = 2(1−α) > 1, by using Young’s inequality, we obtain

(6.24) F ′(t)β ≤ C(∥∥u′(t)∥∥2
L2(Ω) + ∥∥u(t)∥∥2β/(2−β)

Lp+1(Ω)
)
.

Now, by recalling ‖u(t)‖p+1
Lp+1(Ω) > (p + 1)H(0) > 0 and by noting that α ≤

(p−1)/(2(p+1)) is equivalent to 2β/(2−β) := 2/(1−2α) ≤ p+1, then there
exists a constant C1 > 0 that is independent of ε and the initial data, such that

∥∥u(t)∥∥2β/(2−β)
Lp+1(Ω) ≤ C1H(0)2/((1−2α)(p+1))−1∥∥u(t)∥∥p+1

Lp+1(Ω).(6.25)

Since 2/((1− 2α)(p + 1))− 1 ≤ 0, then it follows from (6.7) that

(6.26)
∥∥u(t)∥∥2β/(2−β)

Lp+1(Ω) ≤ Cε−σ
∥∥u(t)∥∥p+1

Lp+1(Ω),
where

σ = θ
(

1− 2
(1− 2α)(p + 1)

)

= m
p − (k+m)−αm(p + 1)

(
p + 1− 2

(1− 2α)

)
≥ 0.

Thus, it follows from (6.26) and (6.24) that

(6.27) F ′(t)1/(1−α) ≤ Cε−σ (∥∥u′(t)∥∥2
L2(Ω) + ∥∥u(t)∥∥p+1

Lp+1(Ω)
)
.

By combining (6.22) and (6.27), then (6.21) follows. Consequently (6.19) holds,
and therefore, y(t) = H(t)1−α + εF ′(t) blows up in finite-time T , where

(6.28) T < Cε−1−σy(0)−α/(1−α). ❐

Remark 6.2. If F ′(0) ≥ 0, then (6.28) yields the following upper bound for
the life span of the solution

(6.29) T < Cε−1−σ [H(0)1−α + εF ′(0)]−α/(1−α) ≤ Cε−1−σH(0)−α.
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However, if F ′(0) < 0, then (6.29) is still valid, since we have chosen ε in the
proof of Theorem 6.1 so that 0 < ε ≤ −H(0)1−α/(2F ′(0)). Now, if the initial
data is sufficiently small, then in view of (6.7), ε ∼ H(0)1/θ, and therefore we
have

T < CH(0)−α−1/θ−σ/θ(6.30)

= CH(0)−(p−(k+m))/(m(p+1))−(1−2/((1−2α)(p+1)).
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