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Abstract 
Agent-based modeling holds great potential as an analytical tool. Agent-
based models (ABMs) are, however, also vulnerable to critique, as they of-
ten employ stylized social worlds, with little connection to the actual envi-
ronment in question. Given these concerns, there has been a recent call to 
more fully incorporate empirical data into ABMs. This article falls in this tra-
dition, exploring the benefits of using sampled ego network data in ABMs of 
cultural diffusion. Thus, instead of relying on full network data, which can 
be difficult and costly to collect, or no empirical network data, which is con-
venient but not empirically grounded, we offer a middle-ground, one com-
bining ABMs with recent work on network sampling. The main question is 
whether this approach is effective. We provide a test of the approach us-
ing six complete networks; the test also includes a range of diffusion mod-
els (where actors follow different rules of adoption). For each network, we 
take a random ego network sample and use that sample to infer the full net-
work structure. We then run a diffusion model through the known, com-
plete networks, as well as the inferred networks, and compare the results. 
The results, on the whole, are quite strong: Across all analyses, the diffu-
sion curves based on the sampled data are very similar to the curves based 
on the true, complete network. This suggests that ego network sampling 
can, in fact, offer a practical means of incorporating empirical data into an 
agent-based model. 

Keywords: ego networks, network sampling, agent-based models, diffusion 
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Agent-based modeling holds great promise as an analytical tool in the 
social sciences (Macy and Flache 2009; Sterman 2006). Agent-based 
models (ABMs) rely on simulation as a means of analysis, offering an 
alternative to traditional statistical techniques (Macy and Willer 2002; 
Railsback and Volker 2011). A researcher specifies a virtual world, 
where actors are seeded with certain characteristics and set to inter-
act based on a system of behavioral rules; macrolevel outcomes ulti-
mately emerge out of these individual-level interactions (De Marchi 
and Page 2014; Hedström and Bearman 2009; Miller and Page 2007). 
Agent-based modeling is a useful tool for a number of reasons (see 
Axtel 2000). First, ABMs offer a social laboratory of sorts, where key 
conditions are allowed to vary, but all else can be held constant, allow-
ing the researcher to pinpoint plausible causal mechanisms and gener-
ate testable hypotheses (Hedström and Ylikoski 2010; Manzo 2007).1 

Second, ABMs encourage analytical clarity, as the researcher must be 
explicit about their assumptions and theoretical model (Manzo 2007). 
And third, ABMs capture aspects of social life that are difficult to rep-
resent in traditional statistical models, such as the (nonlinear) rela-
tionship between microlevel interactions and emergent collective out-
comes (Bonabeau 2002; Mabry et al. 2008). 

The cost of an ABM is that one must typically make do with a styl-
ized hypothetical world, often quite divorced from actual social con-
ditions (Boero and Squazzoni 2005; Hedström and Manzo 2015). Such 
models are tractable and useful for specifying a theoretical model, but 
the results are vulnerable to critique, especially in fields with a heavy 
empirical bent (Richiardi et al. 2006). Recent work has responded to 
this concern by pushing for more empirically grounded models, mod-
els that wed simulation approaches with empirical data on the pop-
ulation and setting of interest (Bruch and Axtell 2015; Hedström and 
Manzo 2015). Empirical data can be used to inform the simulation it-
self or as a validation tool (Windrum, Fagiolo, and Moneta 2007). In 
either case, the simulations are constrained by the empirical evidence, 
making it more likely that the theoretical conclusions are valid and 
apply to the population/setting of interest (e.g., see Liu and Bearman 
2015; Manzo 2013; Verdery 2015). 

This article falls in this tradition, exploring the feasibility and re-
turns of using sampled network data in ABMs (see also Rolfe 2014). 
Specifically, we explore empirically grounded ABMs in the context 
of diffusion models (the ABM) and ego network data (the empirical 
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data). Past work has used simulation models to characterize the dif-
fusion, or spread, of cultural items (new products, innovations, ideas, 
etc.) through social networks (e.g., Centola 2015; Gondal 2015). Such 
simulations are based on a virtual world of interacting actors who 
follow a set of prespecified rules and are thus ABMs. Actors will, for 
example, adopt or drop a behavior probabilistically, based on the be-
havioral traits of their social partners, as well as the rules surround-
ing adoption. 

The problem with these studies, from an empiricist point of view, 
is that the network structure used in the simulation is typically not 
based on empirical data. The network used may then be criticized as 
unrealistic or arbitrary. As a response to such concerns, one would 
ideally use the actual network structure that corresponds to the pop-
ulation of interest (e.g., Adams and Schaefer 2016; Wang et al. 2017). 
Such data can be very difficult to collect, however, as this requires in-
formation on all actors and all ties between actors (i.e., a full census 
of the population; Krivitsky and Morris 2015; Smith 2012).2 These data 
may not be available and may not be cost-effective to collect, particu-
larly when the point is to seed a realistic network in an ABM. 

We consider the potential of a middle ground: where one uses in-
dependently sampled ego network data to infer a realistic full net-
work, which is then employed in an ABM. Thus, instead of relying on 
full network data (most accurate but difficult to collect) or no empir-
ical network data (least realistic but most convenient), the approach 
combines ABMs with recent work on network sampling (Luke and 
Stamatakis 2012).3 Ego network data, in particular, are an ideal choice 
because they are so easy to collect. Individuals are randomly sampled 
from the population of interest, answering questions about themselves 
(such as demographic information) and the people they are socially 
connected to, or their network alters (such as friends or confidants; 
Marsden 1987; Smith, McPherson, and Smith-Lovin 2014). The data 
collection burden is low, as the data are based on a sample (rather 
than a census) and independent respondents (thus, it is unnecessary 
to identify and interview the named social contacts). 

The “middle-ground” approach proposed here thus has the advan-
tage of employing widely available, easy to collect data, while, poten-
tially, still yielding a realistic network structure by which to seed an 
ABM. The validity of such an approach is dependent on getting realis-
tic looking networks from independently sampled data. Traditionally, 
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this has been a very difficult task. Global network structure, by def-
inition, depends on all of the ties between all of the actors; sampled 
data, in contrast, only provide bits, or pieces, of the network. Here, 
we apply the framework of Smith (2012), which uses exponential ran-
dom graph models (ERGMs) to make global network inference from 
ego network data. 

The question is whether a sampling approach will be effective in 
the context of ABMs of diffusion. Past work has tested a sampling ap-
proach on the features of the network (e.g., can we use ego network 
data to estimate transitivity?) but has not considered diffusion pro-
cesses directly (Smith 2015). Such tests miss the behavioral, stochas-
tic component at the heart of an ABM, where different adoption rules 
(i.e., under what conditions will an actor adopt a new product?) com-
bine with the network structure to yield different diffusion outcomes. 
It is thus an open question if a diffusion simulation based on sampled 
data can yield the same insights as if one had the full network (see 
also Rolfe 2014). 

We begin this article with a background section on ABMs of cul-
tural diffusion, before turning to sections on ego network sampling 
and the inferential approach. We then discuss the test of the method 
before moving to the results. 

ABMs of Cultural Diffusion 

Past work on ABMs and diffusion has typically been applied to prob-
lems of disease spread or cultural transmission (e.g., Keeling and 
Eames 2005; Kitts 2006; Rocha, Liljeros, and Holme 2011). The basic 
question is how an outcome of interest (HIV, a new product) moves 
through a population via a social network, where an “infected” case 
can pass on the item to someone they are connected to, for exam-
ple, through sexual contact. Here, we focus on the case of cultural 
transmission, such as adopting a new product. We focus on cul-
ture as a motivating example as much of the theoretical work using 
ABMs in sociology has focused on such outcomes (e.g., Baldassari 
and Bearman 2007; Mark 1998; Mäs and Flache 2013). Additionally, 
cultural models of diffusion rarely employ empirical data (compared 
to models of disease spread where this much more common; e.g., 
Merli et al. 2015; Morris et al. 2009), making the test particularly 
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appropriate. Practically, this means focusing on networks and dif-
fusion processes that are appropriate for cultural, but not necessar-
ily disease, transmission.  

Past work on cultural diffusion has, itself, employed a wide range 
of networks and diffusion processes. A network sampling approach 
will be useful in different ways to different approaches, and we split 
the discussion into different sections based on the type of simulation. 

Models Employing a Known Network Structure to Explore  
Cultural Change 

One tradition in the agent-based modeling literature begins with a 
social network of desired, or known, properties and uses that net-
work as the basis for the diffusion model. Here, the network is used 
to explore cultural change in the population. The network is typi-
cally held constant as actors adopt or drop cultural items across time 
based on interactions with other actors. The focus is thus on inter-
personal processes, like influence and distancing, that shape the dis-
tribution of cultural items across the simulated population, given the 
network structure. For example, Centola and Macy (2007) use small-
world networks to explore diffusion processes in the context of com-
plex contagion. Small-world networks have certain signature features, 
with shortcuts between well-defined groups, or high clustering but 
short overall path length (Watts 1999). Centola and Macy (2007) ex-
plore the diffusion potential in such networks, comparing simple con-
tagion (where a product could be passed on with only one friend al-
ready adopting) to complex contagion— where the product of interest 
is viewed as risky or uncertain, so that actors need more than one of 
their friends, or multiple signals, to take on the item of interest be-
fore they will consider doing so.4 

More recent work by DellaPosta, Shi, and Macy (2015) uses a simi-
lar approach to explore cultural consumption across social space. They 
use a similar network structure but a somewhat more elaborate dif-
fusion model, one that draws on McPherson’s (1983, 2004) ecological 
model. They build a simulation where actors are positively influenced 
(so convergence) by those close in social space and negatively influ-
enced (so divergence) by those who are distant in social space. The 
simulation proceeds by allowing the behaviors to evolve while hold-
ing the network structure fixed. The basic idea is that such processes 



Smith & Burow in Sociological Methods & Research (2018)       6

can lead to amplified correlations between demographic characteris-
tics and cultural items (see also Mark 2003). 

A network sampling approach is directly useful for models that 
employ known network structures to explore cultural change. These 
models depend on having a realistic network structure in the simu-
lation, making a sampling approach directly applicable. A researcher 
could collect an ego network sample, infer the full network, and use 
that network as the basis for the diffusion simulation. The advantage 
of such an approach is that the researcher no longer has to come up 
with and justify the network used in the diffusion simulation; one 
could simply take the inferred network, based on the actual data, and 
use that as a realistic network structure within the simulation. Argu-
ments over the chosen network (e.g., does it have realistic features?) 
would be cut off from the start. 

Models Generating Networks From Microrules 

Other work in the ABM tradition allows the networks to emerge within 
the simulation itself, rather than using a given network as a starting 
point (e.g., Carley 1991; Centola et al. 2007). Here, the researcher spec-
ifies the underlying mechanisms that make a tie more or less likely to 
form between two actors (e.g., sharing some demographic or cultural 
characteristic), varying the strength of those mechanisms in the course 
of the analysis. The network structures that emerge do not have pre-
determined structural properties, as in studies using an a priori net-
work structure, but are dependent on the range of behavioral rules 
specified in the simulation. For example, DiMaggio and Garip (2011) 
use simulation to explore network externalities. The model is designed 
for cases where the adoption of a new product or innovation, such as 
the Internet, depends on the number of people in ones’ immediate so-
cial network that has already adopted (thus a local threshold model of 
adoption; see also Granovetter 1978). The simulation varies two main 
parameters: the nature of this threshold effect and the strength of ho-
mophily on demographic dimensions like race and education (control-
ling the tendency for similar individuals to interact).5 Centola (2015) 
uses a similar setup to explore the effect of homophily on diffusion in 
the context of complex contagion (see also Gondal 2015). 

A network sampling approach can be used to inform generative 
models in a number of ways. First, a researcher could use the ego 
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network data to inform the simulation itself. The ego network data 
are thus used to inform the rules of interaction employed in the simu-
lation. In this case, the inferred network (from the ego network data) 
serves to constrain the simulation, showing the range of input param-
eters that are empirically realistic. Second, the inferred network could 
be used to judge the output of the simulation. Here, the inferred net-
work is used as a gold standard, showing which generated networks 
are consistent with the empirical data. The inferred network is not 
used in the simulation itself but is rather used after the fact as a check. 
The question is what set of microrules could have yielded the inferred 
network structure and cultural diffusion curves.6 

Coevolution of Network Ties and Behavioral/Cultural Items 

Many ABMs are specifically concerned with the coevolution of network 
ties and behavioral (or cultural) items (Mark 1998; Baldassari and 
Bearman 2007). Here, actors change their behavior while simultane-
ously adding and dropping ties. Much of the literature on network/be-
havioral coevolution falls in the stochastic actor-based model (SABM) 
tradition (Snijders, Van de But, and Steglich 2010). SABMs use simu-
lation to estimate parameters on complete, longitudinal network data 
(Steglich, Snijders, and Pearson 2010). The model takes the observed 
network at time T and T + 1 and asks what processes (e.g., selection/
influence) could account for shifts in network ties and behaviors (e.g., 
alcohol use) over time (e.g., Schaefer, Haas, Bishop 2012). SABMs are 
primarily used to estimate parameters, but it possible to employ these 
models as a general simulation framework. The researcher would use 
an empirically grounded model to explore the coevolution of network 
ties and behaviors under different theoretical conditions (Schaefer, 
Adams, and Haas 2013; Wang et al. 2017). For example, Adams and 
Schaefer (2016) demonstrate the effect of increasing/decreasing peer 
influence on the level of smoking across schools (using complete lon-
gitudinal network data to parameterize the base model). 

Our test of a network sampling approach does not, ultimately, fall 
in this tradition despite the potential use of ego network data within 
SABMs and similar models.7 Instead, we focus on simulations where 
the network structure is held fixed and only the item of interest (i.e., 
a new product) is allowed to shift over time. We focus on this “static” 
test for two reasons. First, using a static network makes it easier to 
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assess a network sampling approach. In a dynamic network model, 
the network updates over time based on the specified model; the net-
work may wander far from the original, inferred network (reflecting, 
in part, the parameters of the ABM itself), making it hard to directly 
assess a sampling approach. Second, and more substantively, a fixed 
network structure is often used in simulations (e.g., DellaPosta et al. 
2015). For example, a fixed network makes it easier to see how behav-
ioral rules combine with network structure to affect global outcomes; 
for example, a small-world network may be conducive to quick dif-
fusion under simple but not complex, contagion (Centola and Macy 
2007; Rolfe 2014). This opens up questions of how different contexts 
facilitate or hinder diffusion and why we might expect differential 
adoption across subgroups (DiMaggio and Garip 2011). By using a 
fixed network, we can test if a sampling approach can be applied to 
such questions, reflecting the joint effect of network structure and 
adoption behavior on diffusion. 

Ego Network Sampling 

This article explores the payoff of using sampled network data to in-
form ABMs of diffusion. Sampled ego network data are used to infer 
complete network structures, which are then used within an ABM. 
We test this approach by running diffusion models through inferred 
networks (based on sampled data), asking how close those simula-
tions are to the analogous simulation on the full, true network. If the 
sample-based simulations are close to the true simulations, then a re-
searcher could plausibly seed an ABM using a bit of sampled data—
rather than trying to collect full census data or using no empirical 
network at all. 

A sample-based approach only makes sense, of course, if it is possi-
ble to make inference about the network structure from sampled data. 
We present a short background section on network sampling before 
presenting a test of the approach. 

Figure 1 outlines the basics of ego network sampling. Panel 1 in 
Figure 1 plots a typical, complete network structure. This is the ideal 
case. A researcher has collected information on all nodes, or actors, 
and all ties between nodes in the network. This information is suffi-
cient to map out the paths between nodes in the network as well as 
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to measure other global network features of interest. A complete net-
work could also be used within an ABM, for example, serving as the 
network structure in a simulation exploring cultural diffusion. 

Many times, however, it will be impractical to collect complete net-
work data. The network may be too large or the resources too scant to 
interview everyone in the network. In such cases, one must make in-
ference from a sample. There are a number of ways of sampling a net-
work and thus reducing the data collection burden of the researcher 
(Handcock and Gile 2010; Thompson and Frank 2000). We focus on 
the simplest option, an ego network sample, as ego network data are 
(a) easy to collect data and (b) surprisingly rich, offering useful in-
formation that can be used to infer the global features of the network 
(Smith 2012). 

Ego network data are based on a random sample of respondents, 
where each respondent reports on their local social network. Panel 1 
highlights a hypothetical ego network sample from the full network. 
The gray nodes, our egos, represent the randomly sampled respon-
dents (a subset of all individuals in the network). The white nodes 
are the nonrespondents, while the black nodes are the named alters 

Figure 1. Example of an ego network sample from full network. (Panel 1) Full net-
work with sampled ego networks highlighted. (Panel 2) Sampled Ego Networks. 
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(e.g., friends) of the respondents. The black nodes are themselves not 
interviewed, but the researcher will receive information about them 
indirectly via the respondent’s reports on each alter. We may know, 
for example, if the named alters know each other or not. An ego net-
work sample will thus provide information on the gray nodes and the 
black nodes, offering independent pieces of the full network. These 
independent pieces are plotted in panel 2. Note that the survey does 
not collect identifying information on the named alters (i.e., the black 
nodes). This means that the sampled pieces of the network cannot be 
connected. It also means that the ego network data cannot be used to 
map particular edges in the network. We may know if ego has a dense 
personal network, but we cannot tell which nonsampled respondents 
are friends. 

Ego network sampling thus poses a difficult inferential problem, as 
all of the network information must be “filled in” (as opposed to a sim-
ple missing data problem; Kossinets 2006; Smith and Moody 2013). 
The question is how to take information on the respondents and the 
named alters, or the sampled pieces of the network, and make infer-
ence about the structure of the entire network, here, for the purpose 
of incorporating a realistic network structure into an ABM. 

Background on Inferential Approach 

We draw on the work of Smith (2012), which provides a simulation 
solution to the problem of network inference. The basic idea is to take 
independently sampled ego network data, extract as much information 
as possible, and use that information to make inference about the full 
network structure. The simulation produces a set of networks that are 
consistent with all of the local information found in the sampled data. 
Networks that are consistent with the local information are likely to 
have similar global features as the real network. The approach is ulti-
mately effective because it utilizes so much of the information found 
in the ego network survey. 

An ego network survey will, most simply, provide data on the de-
mographic characteristics of the respondents (gender, race/ethnic-
ity, education, etc.). This makes it possible to generate networks with 
the correct demographic composition. An ego network survey will, 
more importantly, ask the respondents to list their alters, or those 
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individuals they are socially connected to (e.g., friends, discussion 
partners, sources of social support). For example, in Figure 1, the re-
spondents in the middle row would list five and two alters, respec-
tively. This information offers an estimate of the degree distribution, 
describing the number of alters per respondent. The data also offer 
information on differential degree, showing the mean degree by de-
mographic groups (putting together the information on degree and 
the demographic characteristics of the respondents). 

Ego network data also provide information on the named alters. 
Ego network surveys will typically ask the respondents to describe the 
demographic characteristics of the alters such as gender, age, or ed-
ucation. This alter demographic information can be paired with the 
respondent demographic information to measure homophily, or the 
tendency for demographically similar individuals to be socially con-
nected (McPherson, Smith-Lovin, and Cook 2001; Smith et al. 2014). 
One can ask if the respondents and alters share the same gender, age, 
education, and so on. Similarly, the data capture the mixing between 
demographic groups, showing the frequency of social ties between 
each group. For example, are ties between college graduates and high 
school graduates more/less likely than ties between college graduates 
and PhD holders? 

Ego network surveys also ask respondents to report on the ties 
between alters. Respondents will report on the existence of a tie be-
tween alters 1 and 2, 1 and 3, and so on (often limited to a small num-
ber of alters, say five, to limit respondent burden). The alter–alter tie 
data capture the local structural tendencies surrounding the focal re-
spondents. Do individuals tied to ego also know each other, so that 
a friend of a friend (ego) is also a friend (Goodreau, Kitts, and Mor-
ris 2009)? Smith (2012) offered a novel characterization of the al-
ter–alter tie data. Most work relies on density (the number of ties in 
the ego network divided by the number possible) to measure ego net-
work structure (Fischer 1982; Mardsen 1987). Ego network density 
does not, however, offer a precise enough measure for the simulation: 
Many networks with the same (mean) local density have very differ-
ent global network features (Smith 2012). Ultimately, the generated 
networks are based on the sampled information, making it important 
that the measure of local network structure is sufficiently discerning. 

The measure by Smith (2012) uses the alter–alter tie data to con-
struct a distribution of ego network configurations. Figure 2 plots the 
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ego network configuration distribution for the network plotted in Fig-
ure 1; note that the plot is limited to four alters for the sake of space, 
but the actual distribution is not limited to four alters. The histogram 
presents the ego network configurations on the x-axis and the pro-
portion in the network on the y-axis. Each respondent is categorized 
as a distinct configuration based on the size of the ego network and 
the pattern of ties between alters. For example, the top ego in Figure 
1 would fall into the fourth configuration from the left (as they have 
three alters with no ties between them). A distributional approach of-
fers a more discriminating measure than density because it captures 
the full pattern of ties within the ego network. Ego networks of the 
same size and density can have different structural patterns, but this 
is missed using traditional summary measures. See Smith (2012) for 
technical details on how to place each ego into a structural type. 

The simulation approach constructs full networks that are con-
sistent with each piece of information extracted from the ego net-
work sample: the degree distribution, differential degree, homophily, 
and the ego network configuration distribution. The generated net-
works are thus heavily constrained by the empirical data, making it 

Figure 2. Example of ego network configurations. This figure is based on a hypothet-
ical ego network configuration distribution. Ego is not included in the ego network 
types. We only include ego network types of size 4 or less to make the figure legible. 
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more likely to have the same global features as the true network. The 
method draws on ERGM to simulate the networks. We briefly discuss 
ERGMs before turning to the approach itself. 

ERGMs 

ERGMs are statistical models used to test hypotheses about network 
structure/ formation (Hunter et al. 2008; Wasserman and Pattison 
1996). Formally, define a network, Yij, over the set of nodes N (N = 1, 
2, . . . , n), where Yij

 = 1 if a tie exists and 0 otherwise. Define y as the 
observed network. Y is then a random graph on N, where each pos-
sible tie, ij, is a random variable. The ERG models the Pr(Y = y). The 
“independent variables” are counts of local structural features in the 
network (Goodreau et al. 2009; Robins et al. 2007), such as number 
of ties and homophily (e.g., the number of ties that match on gender). 
The model can be written as: 

P(Y = y) =
 exp(θT g(y)

                                                               κ(θ)

where g(y) is a vector of network statistics, θ is vector of parameters, 
and κ(θ) is a normalizing constant. 

ERGMs are generally used to test hypotheses about the formation 
of a network, but it is also possible (and increasingly common) to sim-
ulate networks based on a specified model (e.g., Morris et al. 2009; 
Robins, Pattison, and Woolcock 2005). The coefficients reflect the ef-
fect of different local processes on tie formation. These coefficients 
can then be used to predict the presence/absence of a tie between ac-
tors in a generated network. A researcher must specify two items prior 
to the simulation: The model terms and coefficients used to gener-
ate the network. Here, the goal is to construct networks that are con-
sistent with the local information found in the ego network sample. 
The model is thus specified with the ego network data in mind. The 
model terms are based on the information available from the survey, 
while the coefficients should generate networks with the same local 
features as observed in the ego networks. 
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Simulation Approach 

The simulation approach uses ERGM to generate networks consistent 
with the sampled data. We describe the approach in general terms 
here, but see Smith’s (2012, 2015) study for technical details. 

The simulation begins by constructing a network of size N (the size 
of the population of interest) with the correct degree distribution. The 
degree distribution is estimated from the sampled data. Demographic 
characteristics are then assigned to the nodes in the generated net-
work. The assigning of characteristics is done to be consistent with 
the empirical data. Nodes from the simulated network are matched 
to sampled respondents with the same degree; each selected node is 
assigned the characteristics of that respondent. This ensures that de-
mographic groups with higher degree in the sample also have higher 
degree in the simulated network (thus making sure that differential 
degree is correct in the generated networks). 

The next step is to estimate the initial ERGM coefficients. The 
model includes homophily terms for every demographic dimension 
available in the empirical data (specifically the full mixing matrix for 
each dimension). The homophily coefficients are estimated using case 
control logistic regression (Smith et al. 2014). The degree distribution 
and differential degree (incorporated while seeding the initial net-
work) are maintained throughout the simulation as well. The model 
will also include a term for geometrically weighted edgewise-shared 
partner (GWESP) distribution. GWESP captures the distribution of 
shared partners (if i is tied to j, how many common friends do i and j 
have?), capturing higher order transitivity in the network, or the ten-
dency for local clusters to emerge. The coefficient for GWESP is set 
at an initial value and updated during the simulation as the method 
searches for the best-fitting network.8 

The framework takes the ERGM coefficients, terms, and con-
straints and simulates an initial network using the seeded network 
as a starting point. This network is evaluated on how well it captures 
the ego network configuration distribution seen in the sampled data. 
The method uses a w2 value to compare the ego network configura-
tions found in the simulated network to the distribution seen in the 
sample. A small w2 value suggests that the ego network configurations 
found in the simulated network are found at the same rates as in the 
sample. The initial coefficient on GWESP is then updated to find a 
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better fitting network, where a better fitting network means having 
an ego network configuration distribution that more closely matches 
the true distribution (conditioned on the other local features in the 
sampled data). Note that the homophily coefficients must be updated 
as the simulation looks for a better fitting network (see Smith 2012). 
The homophily rates in the simulated network are compared to the 
rates in the sampled data to ensure that there are no discrepancies 
as GWESP changes. Formally, a case control model is used to update 
the coefficients, comparing the true rate of homophily in the sample 
to the rate in the simulated network and adjusting accordingly. The 
whole process is repeated until it is not possible to improve the fit by 
updating GWESP and/or the homophily coefficients. 

As a final step, the framework simulates networks from the best 
coefficients found during the search process. The framework keeps all 
generated networks with a w2 statistic that is below a certain thresh-
old (i.e., within 30 points of the minimum w2 value based on the best-
fitting network). The final product is thus a set of candidate networks 
that are consistent with the local, sampled data. The networks will 
match on the degree distribution, differential degree, homophily, and 
the ego network configuration distribution. A researcher may then use 
all of the candidate networks in their analysis (i.e., run ABMs through 
each generated network). Alternatively, for simplicity, they may limit 
their analysis to a single network; for example, selecting the best-fit-
ting network among the set of candidate networks. The selected net-
work can then be used to measure global network features of inter-
est or, as in this article, to employ as a realistic network in an ABM. 

Analytical Setup: Testing the Method 

The core question of this article is whether this approach will be use-
ful for ABMs, so that a diffusion simulation based on sampled data 
will yield the same insights as if one had the full network. If so, then 
it would be worthwhile to collect ego network data, infer the full net-
work structure, and use that to condition an ABM. There are six ba-
sic steps to testing the validity of a sampling approach: (1) select 
a known, complete network as a test case; (2) run an ABM of dif-
fusion through the known, complete network; (3) take an ego net-
work sample from the complete network; (4) generate a full network 
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consistent with the ego network data; (5) run an ABM (same as in step 
2) through the inferred network from step 4; and (6) compare the dif-
fusion estimates from the sampled data (step 5) to the estimates from 
the known, complete network (step 2). 

Selecting Known, Complete Networks 

The first step in the test is to gather a set of networks to act as the 
complete, known networks. It is necessary to have complete networks 
in order to assess the validity of the approach. The complete networks 
serve as a baseline to judge if the sample-based diffusion results are 
valid. The exact networks chosen are not especially crucial, as the in-
puts to the test (the sample) come from the network of interest, and 
the test is thus self-contained, that is, we only care if the method can 
replicate a given network from a sample on that population. It is none-
theless important to have networks with a variety of features, as it is 
important to see if the method is inappropriate for certain settings. 
We thus use synthetic, generated networks as our test cases. Gener-
ated networks are ideal as they can be fully controlled, yielding the de-
sired properties for each network. This makes it easier to compare the 
results across networks and to pinpoint where the method does, and 
does not, work. The networks include 700 nodes and are based on a 
symmetric relationship; for concreteness, we can assume that a tie is 
defined by friendship. The networks are based on an empirical school 
setting, as the network follows the size and demographic distribution 
of one Add Health network (e.g., McFarland et al. 2014). The networks 
have the same race and grade distribution as in the empirical data. 

We generate four different networks. Each network has the same 
basic composition but different network features. We specifically vary 
two network features known to be important for diffusion processes: 
density and transitive closure (Moody and Benton 2016). Density cap-
tures the total number of edges in the network relative to the number 
possible. Transitivity captures the proportion of two steps that also in-
clude a direct tie; or, is a friend of a friend also a friend? Each network 
contains 700 nodes with the same distribution of race and grade but 
with different levels of density and transitivity. In the case of simple 
contagion (so one infected alter is enough to pass on the “disease”), 
denser networks with low transitivity should have faster global dif-
fusion. This is the case as there are more nonredundant ties, or more 
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edges reaching out to individuals in socially distant groups (and more 
technically, there is a higher number of independent paths; Moody and 
White 2003). We include a variety of networks to test if the approach 
can differentiate networks with different features; that is, can we tell 
if the network in question has high/low diffusion potential just us-
ing sampled data? More generally, the variation in network structure 
makes it easier to judge the validity of the sampling approach, as we 
can see how the approach fares under different conditions. 

We include two levels of density and two levels of transitivity: high 
density, low transitivity; high density, high transitivity; low density, 
low transitivity; and low density, high transitivity. The four networks 
are plotted in Figure 3. The first network, high density, low transitiv-
ity, has density of .015 and transitivity of .012. This amounts to a ran-
dom network with a mean degree of 10.26. In Figure 3, it is clear that 
the network is dense (as there a large number of edges) and has little 
group structure. Moving to the right, the high density, high transitivity 

Figure 3. Networks used in testing a sampling approach.  
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network has the same mean degree (10.26) but a much higher level of 
transitivity. The rate of transitive closure is .306, so that 30 percent 
of all possible triangles are closed. At a more aggregate level, the high 
level of transitivity yields strong group divisions. The bottom two net-
works have the same basic form, but the density decreases from .015 
to .007, with mean degree of 5.13. The low density, low transitivity 
network has transitivity of .012, while the low density, high transitiv-
ity network has transitivity of .307. 

Thus, we have four networks, varying systematically by density 
and transitivity. The high-density networks have the same density, the 
high-transitivity networks have the same transitivity, and so on. This 
facilitates comparison, as the networks share everything in common 
except the level of density or transitivity. 

The generated networks thus have the advantage of offering a con-
trolled set of comparisons. There are, however, potential drawbacks 
to using synthetic networks: Most crucially, the networks may be un-
realistic, offering a too simple “toy” test of the approach. With this 
concern in mind, we have also included the original, raw Add Health 
network in the set of test networks. Here, the network features are 
not set a priori but are determined solely by the nomination data in 
the original survey. 

We must also recognize that the Add Health–based networks rep-
resent a test of the approach on relatively small networks, only 700 
nodes, while many studies want to explore the properties of larger 
networks (where the returns to sampling are largest). We thus present 
an additional analysis on a much larger network, the Colorado Springs 
drug-user network, size = 5,492. The results are presented in Online 
Appendix B and offer an important supplement to the main analysis. 

ABM of Cultural Diffusion 

Step 2 runs an ABM of diffusion through the complete networks from 
step 1. This serves as the baseline by which to judge the sample-based 
results. The model of diffusion is based on a simple premise that there 
exists a new product or innovation and that this product can be passed 
on through social ties (i.e., individuals introduce new products to their 
friends). The actors in our ABM are the 700 students in the seeded 
network. The network structure, and thus the interaction partners 
of our actors, is held fixed throughout the simulation. We assume a 
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simple contagion process, so that the probability of “infection,” or tak-
ing up the new product, is based solely on the probability of direct 
transmission from actor i to actor j (Keeling and Eames 2005). Thus, 
the product can be adopted even if an actor only has one friend who 
has adopted. We also assume that it is possible to drop the product 
once adopted. Actors that have “recovered,” or dropped the product, 
are susceptible to adopting again in the future. 

The simulation begins with one randomly selected seed, desig-
nated as the first adopter in T1 (time period 1). In T2 (the second time 
period), our first adopter interacts with their immediate neighbors. 
The neighbors are introduced to the new product within this inter-
action, with each neighbor adopting the new product with probabil-
ity p, set at different values in different analyses. We run three differ-
ent analyses, setting the probability of adoption at .1, .2, and .3. There 
are two goals here: first, to make sure that the results are robust to 
model specification; and second, to see if a sampling approach can 
capture the substantive changes in diffusion that result from shifts in 
adoption behavior. More formally, if i is tied to j and i has already ad-
opted the product, then j takes up the product with probability p (.1, 
.2, or .3). Once the product is adopted, an actor has .2 probability of 
“recovering” or no longer using the product of interest. Every actor 
who has already adopted considers dropping the product after every 
time period. The analysis is run over 30 time periods. Each time pe-
riod allows new individuals to adopt (if they are connected to some-
one already adopting the innovation) and current adopters to drop the 
product. The results from the simulation are summarized as the pro-
portion adopting after each time period, or a cumulative distribution 
of adopters. The whole process is repeated 1,000 times, and we sum-
marize the results as the mean over the 1,000 runs. For step 2, the 
diffusion model is run through the five known, complete networks. 

Sampling Setup 

The third step in the analysis takes ego network samples from the 
true, complete networks. This serves as input for step 4, where 
we make inference about the full network structure from sampled 
data. We assume that a 25 percent ego network sample is taken for 
each network. Our hypothetical survey thus has 175 respondents 
(for each network). The survey is hypothetical in the sense that no 
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respondents are actually interviewed and all information on the sam-
pled actors is taken from the true network. We assume that the fol-
lowing information is “collected,” mimicking a typical ego network 
survey: the number of alters for each respondent, the race and grade 
of each respondent, the race and grade of each named alter, and re-
ports on the ties between the named alters. The alter–alter tie infor-
mation and the alter characteristics are restricted to only five alters 
in order to mimic actual surveys where time and fatigue are often 
a problem (e.g., Burt 1984). As this is not an actual survey, the five 
alters are randomly selected from the set of all alters for that “re-
spondent” (acting as the five alters they chose to report on). There 
is no limit, however, on the number of named alters. This process is 
repeated 100 times for each network. Each time through we take a 
new sample from the original network, making it possible to assess 
variability due to sampling. 

Using Sampled Ego Network Data to Infer Full Networks 

Step 4 takes the sampled ego network data (for each network/sam-
ple) and uses the simulation approach by Smith (2012) to make infer-
ence about the full network. This means generating networks consis-
tent with the local properties found in the sampled data. In this case, 
we assume that the researcher only keeps one generated network (per 
sample) to be used in the ABM. 

Running Agent-based Diffusion Model on Inferred Networks 

Step 5 takes the best-fitting networks from step 4 (one for each net-
work/ sample) and runs the same agent-based diffusion model as in 
step 2. The parameters and setup are exactly the same. The only thing 
that is different is the network structure used within the simulation. 
In step 2, the simulation uses the complete, known networks. In step 
5, the simulation uses the networks inferred from the sampled data. 
Again, we run the simulation 1,000 times for each network, summa-
rizing the results as the proportion adopted after each time period. 
We again take the mean over the 1,000 iterations. Note that there are 
100 × 3 × 5 estimates, as there are 100 samples, three adoption prob-
abilities, and five networks in the analysis. 
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Compare Diffusion Estimates From Sample to Diffusion Estimates 
From Known Network 

The final step in the analysis compares the sample-based diffusion es-
timates (step 5) to the population-based diffusion estimates (step 2). 
We compare the distribution of adopters based on the sampled data 
to the distribution of adopters based on the complete networks. The 
distribution of adopters is measured as the proportion of adopters af-
ter each time period. 

Results 

We begin the results section by looking at the true diffusion curves. 
The results are based on the five known, complete networks and repre-
sent the standard by which the sampling-based results will be judged. 
In particular, it is important to note the differences across networks 
and adoption rates, so we can determine if the sampling approach is 
working as intended. Figure 4 plots the empirical diffusion curves. 
There are three subplots, corresponding to the three adoption proba-
bilities used in the diffusion simulations. The y-axis plots the propor-
tion of people in the network that have adopted the new product (us-
ing the mean over the 1,000 iterations).9 The x-axis captures the time 
periods in the simulation. 

Figure 4 clearly shows the effect of network structure on diffu-
sion processes (Moody and Benton 2016). Looking within subplots, it 
is clear that the network with high density and low transitivity (the 
green line) has the fastest diffusion rates through the network. This 
is the case as the diffusion simulation is based on simple contagion. 
For example, looking at the third subplot (where adoption is equal to 
.3), we can see that the proportion adopting the innovation increases 
quite rapidly, with a sharp increase between periods 5 and 7. The net-
work reaches saturation (so that the proportion adopting does not in-
crease after that period) by the eighth time period, with a saturation 
proportion around .8. The high-density, high-transitivity network (the 
blue line) has the same basic shape, but the diffusion curve is consid-
erably less steep and saturation happens later. The high-density, high-
transitivity network has slower diffusion as the network has stronger 
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group divisions, meaning it takes longer for a new product to exit a 
group once enmeshed (as most ties go within the group). Diffusion 
still happens quite fast, however, as the network is so dense that an 
absolutely high number of ties connect distant groups, facilitating 
global diffusion. 

The low-density networks have curves even further to the right 
of the plot, indicating slower rates of adoption. The low-density, low-
transitivity network (the red line) can be directly compared to the 
high-density, low-transitivity network (the green line). Both are ran-
dom networks with low levels of transitivity; they only differ in the 
total number of edges. Looking at the red line (low density, low tran-
sitivity) in the third subplot (adoption probability equal to .3), satu-
ration does not occur until time period 15, twice as long as with the 
high-density, low-transitivity network. The low-density, low-transi-
tivity network also has slower diffusion than the high-density, high-
transitivity network. The low-density network has slower diffusion 
because fewer new adoptions are possible in each time period (due to 
the low number of social connections). The low-density, high-transi-
tivity network (the black line) offers the extreme case of slow adop-
tion: The overall density is low and strong group divisions make dif-
fusion difficult. The saturation point does not occur until time period 
25 (looking at the high adoption subplot). 

Figure 4. True diffusion curves by adoption probability. 
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Finally, the empirical Add Health network (the gray line) falls 
somewhere in the middle of the four curves. The empirical network 
has higher density than the low-density networks but lower density 
than the high-density networks (with mean degree of 8.74). Similarly, 
the transitivity in the empirical network is in between the values of 
the low/high-transitivity networks (.189). The diffusion rates are thus 
in between those of the constructed networks. 

Figure 4 also clearly shows the importance of adoption behavior 
in structuring the diffusion curves. For all networks, the pace of dif-
fusion is faster when the adoption probability is higher. This effect is 
particularly strong in the low-density networks. For example, for the 
low-density, low-transitivity network (the red line), the proportion 
adopting at period 30 is .247 when the adoption probability is .1, .611 
when it is .2, and .716 when it is .3. The effect of adoption behavior is 
similar, but weaker, in the high-density networks. Here, for example, 
in the high-transitivity network, the proportion adopting at period 30 
goes from .603 to .812 as we move from .1 to .3 adoption probability. 

Sampling Results 

The sample-based results are plotted in Figures 5–7, one figure for 
each adoption probability (low = .1, medium = .2, high = .3). Each fig-
ure has ten lines, with two lines for each network: a solid line corre-
sponding to the diffusion curves based on the known, complete net-
work; and a dotted line corresponding to the diffusion curves based 
on the sampled data. Curves from the same network (true and sample 
based) have the same color (e.g., green is the high-density, low-tran-
sitivity network). For each figure, we compare the solid and dotted 
lines, showing the difference between the true and estimated values 
(the true lines are the same as in Figure 4). Note that the sample-
based lines correspond to the means over all 100 samples. We con-
sider sampling variability below. 

The results in Figures 5–7 are quite encouraging: The estimated 
values are, on average, very close to the true diffusion curves. Across 
all figures, the dotted lines very closely approximate the true diffu-
sion curves and this is true for each network. Note also that the fit 
for the empirical Add Health network (the gray line) is quite good, on 
par with the synthetic networks. We can thus be confident that the re-
sults are not dependent on using synthetic networks. The results are 
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Figure 6. Comparing diffusion curves from true networks to sampled-based esti-
mates (medium-adoption probability). 

Figure 5. Comparing diffusion curves from true networks to sampled-based esti-
mates (low-adoption probability). 
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also consistent across adoption probabilities: The sample-based dif-
fusion curves closely approximate the true values as the probabilities 
of adoption increase. This suggests that sampled network data can 
be used to explore the effect of adoption behavior and network struc-
ture on diffusion. For example, just based on the ego network data, 
it is clear that adoption behavior has the greatest effect on diffusion 
in the low-density networks. It is also clear that diffusion is faster in 
high-density, low-transitivity networks. This initial snapshot is impor-
tant, suggesting the potential payoff from a sampling approach. The 
results suggest that a researcher could run a diffusion simulation us-
ing sampled data and return the same results as if they had used the 
full network. The researcher would know, just from the sample, what 
kind of social world they are investigating: whether it is a world of 
quick diffusion and saturation or a world of slower diffusion and in-
complete adoption. 

We present more formal results in Figures 8–11. There is one fig-
ure for each network. The three subplots present the true proportion 
adopting (dots), the mean sample estimate (dotted line), and the 95 
percent error bounds (solid lines), such that 95 percent of the sample 

Figure 7. Comparing diffusion curves from true networks to sampled-based esti-
mates (high-adoption probability).
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estimates fall within that bound. We also include an online appendix 
figure (Figure A1) that presents the relative bias for each adoption 
probability and network. Relative bias is defined as: 

E(estimates) – true value
     true value

We start with the high-density, low-transitivity network. It is clear 
from Figure 8 that the sample-based results closely approximate the 
true diffusion curves (i.e., the black dots fall close to the sample es-
timates) and do so with relatively little variation. The bias is quite 
small across all adoption probabilities. For example, the bias is un-
der 1 percent for every time period when the adoption probability is 
set at .3. Similarly, the mean level of bias (over all 30 time periods) 
is .006 when the rate is set at .2. This suggests, on average, that the 
sample-based estimates will yield the same proportion of adopters 

Figure 8. High-density, low-transitivity diffusion curve results. 
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as in the full network. The variation is also quite modest. The high-
est variation occurs in those periods that constitute the upward slope 
of the diffusion curve—those in-between moments between very low 
adoption and saturation. It is not surprising that the variance is high-
est here. Large changes occur in this transition phase, meaning sam-
ple-to-sample variation in the takeoff point (when the adoptions rates 
start to increase rapidly) leads to variation in the proportion adopting. 
The variation is relatively small even for this transition phase, how-
ever. For example, with high adoption (.3), time period 6 has the high-
est variance across samples with a standard error of .025. The true 
value is .489, while 95 percent of the sample estimates fall between 
.44 and .53. The results are similar for the other adoption probabili-
ties, for example, the highest standard error is .026 when the adop-
tion probability is set to 1.   

The high-density, high-transitivity network offers a more difficult 
test and is presented in Figure 9. The bias here is still quite low, with 

Figure 9. High-density, high-transitivity diffusion curve results. 
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the median bias over the 30 time periods under 1 percent for the high 
adoption analysis (adoption probability = .3). For example, in period 4, 
the true proportion of adopters is .045, while the mean value over the 
samples is .046, a bias under 1 percent. The bias is, however, higher 
than with the high-density, low-transitivity network. The low-tran-
sitivity network has bias under 1 percent for all time periods; this is 
not the case for the high-transitivity network, where seven periods 
have bias exceeding 1 percent (with a mean of .036 for those seven 
periods). Similarly, the median bias (over the 30 periods) for the low 
adoption analysis is .018, higher than with the low-transitivity net-
work (only .008 median bias). The high-transitivity network yields 
higher bias for two reasons: First, the underlying network structure 
is harder to capture from sampled data; and second, the diffusion 
curve itself spends more days in a transition phase (where the adop-
tion rate starts to pick up quickly), and this region is the most diffi-
cult to accurately estimate. The variance is also considerably higher 
than under the low-transitivity case, with standard errors ranging 
from .00001 to .063 in the high adoption case. The highest standard 
error under the low-transitivity case is only .025. We see similar re-
sults in the low and medium adoption analysis, with median stan-
dard errors (over the 30 days) of .019 and .028. The analogous values 
in the low-transitivity network are .005 and .012. The variance and 
bias are, however, low enough that the estimates provided by a net-
work sampling approach still offer an excellent approximation of the 
true network, particularly when the goal is to seed a realistic looking 
network for an ABM. For example, for period 12, the true proportion 
who adopt in the full network is .788 in the high adoption analysis, 
while the mean in the samples is .781, a bias under 1 percent. 95 per-
cent of the estimates fall between .71 and .81.10 For the low adoption 
analysis, 95 percent of the estimates fall between .11 and .18 (with a 
true value of .144) for period 12, sufficient to show the effect of adop-
tion behavior on diffusion.  

How does a sampling approach do when density is lower? Figure 
10 presents the low-density, low-transitivity results. Like the high-
density, low-transitivity network, the bias is low. For the high adop-
tion case, the bias is under 3 percent for every single time period and 
under 1 percent for most (with a median under 1 percent). For exam-
ple, for period 11, the proportion adopting from the true, complete net-
work is .573, while the mean over the samples is .568, a bias under 1 



Smith & Burow in Sociological Methods & Research (2018)      29

percent. The bias is similarly low when the probability of adoption is 
low. The mean bias over the 30 periods is under 1 percent. For exam-
ple, at period 20, the true value is .094, while 95 percent of the sam-
ple-based estimates fall between .068 and .119 (with a mean of .093). 
These estimates are sufficient to show the effect of adoption behav-
ior on diffusion: Under medium adoption, 95 percent of the estimates 
fall between .556 and .623 for period 20 and the true value is .596. 

Figure 11 presents the results for the low-density, high-transitivity 
network. The results are largely consistent with the other networks. 
The median bias is .011, .019, and .008 in the low, medium, and high 
adoption probability analyses. For example, for the medium adoption 
analysis, the true proportion adopted is .187 in period 15, while the 
mean over the samples is .190, a bias of 1.5 percent. The standard er-
rors are, however, often higher than in the previous networks. For the 
medium adoption analysis, there is a median standard error of .032 

Figure 10. Low-density, low-transitivity diffusion curve results. 
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over all time periods compared to .013 in the low-density, low-transi-
tivity network or .019 in the high-density, high-transitivity network. 
For example, for period 15, 95 percent of the sample values fall be-
tween .133 and .258. The high adoption estimates are also uncertain, 
with 95 percent of the values falling between .38 and .58 for the same 
period (note this is still sufficient to show the effect of adoption be-
havior on diffusion). The low-density, high-transitivity network has 
higher variance, in part, because it converges slower to a saturation 
point, where the variance across samples is higher. 

Exploring Assumptions Through Additional Analyses 

The results presented thus far are encouraging. A sampled-based ap-
proach can effectively mimic the diffusion curves from the true net-
work, making it possible to capture the effect of network structure 

Figure 11. Low-density, high-transitivity diffusion curve results. 
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and adoption behavior on diffusion. The results are, however, based 
on a constrained test of the approach. For example, the analysis has 
thus far been restricted to a simple diffusion model and has not con-
sidered alternative diffusion processes. Similarly, the analysis has as-
sumed that the ego network data are measured without error. We ex-
amine each of these issues in turn, rerunning the analysis to examine 
the consequence of each assumption. 

Alternative Diffusion Model: Homophily Based 

We begin this supplemental section by replicating the analysis with 
a different diffusion model. The analysis thus far has followed sim-
ple diffusion, where the probability of adoption is the same across all 
i–j pairs, as long as they are socially connected. A more complicated 
behavioral model could relax this assumption, allowing the probabil-
ity of adoption to vary across pairs of tied actors. For example, adop-
tion may be more likely to occur when two people share a characteris-
tic. Thus, individuals are more likely to mimic the behavior of friends 
who are similar to themselves (Centola 2011).11 In this way, homoph-
ily (the tendency for similar actors to interact) has a dual effect on 
diffusion, where it shapes the network itself (creating social divisions 
based on demographic characteristics) as well as the adoption prob-
ability (Centola 2015; Salathé and Khandelwal 2011). The question is 
whether a sampling approach can capture the diffusion curves in this 
more complicated scenario. 

Our homophily-based diffusion model extends the original model 
by allowing the probability of adoption to vary, depending on whether 
i and j share a key characteristic. We define the key characteristic as 
being in the same grade in school. Formally, we rerun the analysis as 
before, setting the probability of in-group adoption at .2 and out-group 
adoption at .1. If i is tied to j, and j has adopted the product, then i 
adopts with probability .1 if j is not in the same grade, and .2 if j is in 
the same grade. The networks are the same as in the main analysis. 

Figure 12 presents the results for our homophily diffusion model. 
The results are presented as before, with simple plots describing the 
diffusion curves for each network (taking the mean over the sam-
ples). There are two subplots. The left-hand plots the simple diffu-
sion results, where the adoption probability is the same within grade 
as across grade (set at .1). The right-hand plots the homophily results, 
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where the adoption probability within grade is double the adoption 
rate across grades. The simple diffusion results serve as a baseline for 
the homophily results. 

Figure 12 clearly shows the effect of adoption behavior on dif-
fusion. The true diffusion curves (the solid lines) show very differ-
ent patterns across the two subplots. For example, under simple 
diffusion, the low-density, low-transitivity network has a steeper 
diffusion curve than the low-density, high-transitivity network (so 
diffusion happens faster). The exact opposite happens in the ho-
mophily simulation. This is the case as the high-transitivity net-
work has higher levels of homophily on grade (so individuals who 
are friends tend to be in the same grade) than the low-transitivity 
network. Under simple diffusion, homophily on grade creates bar-
riers to diffusion, and networks that approach random mixing will 
have the fastest rate of diffusion. In the homophily simulation, the 
social divisions on grade actually facilitate diffusion (as within-grade 

Figure 12. Comparing simple diffusion with homophily-based diffusion. 
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adoption is more likely), creating an incubator for the product to 
spread widely (Centola 2011). 

The dotted lines in Figure 12 represent the sampled-based diffusion 
curves under our two scenarios. Looking at the homophily results, the 
sampled-based lines closely approximate the true curves. For example, 
the bias in the homophily analysis is the same as with simple diffu-
sion for the two low-transitivity networks. The bias is also low in the 
two high-transitivity networks, although slightly higher than in the 
simple diffusion case. For example, with the high-density, high-tran-
sitivity network, the median bias (over the 30 time periods) is .017 
in the simple diffusion case but .034 in the homophily-based analy-
sis. Similarly, in the low-density, high-transitivity network (the black 
line), we see a median bias of .01 in the simple diffusion case but .018 
in the homophily analysis. 

More generally, the sample-based analysis offers the same con-
clusions as the true ABM based on the known networks. For example, 
just using the sample data, it is clear that the low-density, low-tran-
sitivity network has faster diffusion than the low-density, high-tran-
sitivity network under simple diffusion but not homophily-based dif-
fusion. Thus, the effect of network structure on diffusion depends 
crucially on the assumed behavior of adoption, and this is captured 
just using the sampled data. 

Measurement Error 

The second additional analysis looks at the problem of measurement 
error. Thus far, the analysis has assumed that the input ego network 
data are collected without error, where respondents accurately re-
port on their alters as well as the connections between those alters. 
Past work has raised doubts about this assumption, discussing the 
possible sources of bias in ego network data (Brewer et al. 2005; 
Feld and Carter 2002). There may, for example, be bias in the alter–
alter ties (Almquist 2012). Respondents report secondhand on re-
lationships between alters. Respondents may, however, not always 
know if their friends, for example, are friends themselves. An un-
certain respondent may simply guess if a tie exists or, alternatively, 
may include/exclude ties to make their network cognitively consis-
tent (e.g., adding ties to minimize intransitive relations; Krackhardt 
and Kilduff 1999). 
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The question is how well a network sampling approach fares in 
the face of measurement error. Here, we rerun the main analysis but 
induce error into the “reported” ego network data. We specifically 
focus on the alter–alter ties, as they may be particularly prone to 
misreporting. 

The error generation process takes a simple form. We assume that 
respondents report on all of their alter–alter ties, but that some of 
those reports are actually guesses, where the respondent is unsure if 
a tie exists or not. To simulate guessing, we take a draw from a bino-
mial distribution with probability set to .5 (i.e., flipping a fair coin), 
setting the alter–alter tie to 0 or 1 depending on the simulated draw 
(see Smith and Faris 2015, for a similar procedure). We run this mea-
surement error analysis under three levels of error: .05 (low), .15 
(medium), and .25 (high). Thus, under high error, 25 percent of the 
alter–alter ties (randomly selected) are guesses, with no necessary re-
lationship to the actual network. This error-filled ego network data 
serve as input into the simulation. The rest of the analysis is the same 
as before, with simple diffusion and our four synthetic networks. We 
set the adoption probability to .3 to simplify the discussion. The re-
sults are presented in Figure 13 as a set of relative bias plots (analo-
gous to Online Appendix Figure A1). 

The results suggest that measurement error does, in fact, nega-
tively impact the sampled-based estimates of diffusion. Looking at 
Figure 13, the relative bias increases as the level of measurement er-
ror increases. The bias is, however, generally modest, even when 25 
percent of the alter–alter ties are guesses. For example, the median 
bias (over the 30 days) in the low-density, low-transitivity network 
is .005 under no measurement error, .025 under .05 error, .039 un-
der .15 error, and .084 under .25 error. Similarly, for the high-den-
sity, high-transitivity network, the median bias goes from .008 under 
no measurement error to .031 under .25 measurement error. Specific 
estimates can, however, have much higher bias under conditions of 
high error. For example, with the low-density, low-transitivity net-
work, the bias for period 10 is .015 with no measurement error but 
.171 with .25 measurement error. Practically, the results suggest that 
a sampling approach can be used to inform ABMs under conditions of 
imperfect respondent reporting; one must, however, be wary of pos-
sible bias if very high levels of error are suspected. 
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Conclusion 

Agent-based modeling holds great promise as a theoretical and ana-
lytical tool for the social sciences. Simulation models make it easier 
to specify theories that are based on systems of interdependent, in-
terconnected actors (Macy and Willer 2002). Agent-based modeling 
is, nonetheless, open to certain criticisms, particularly in disciplines 
with a heavy empirical focus (Bruch and Atwell 2015). For those of a 
purely empirical bent, a simulation can be dismissed as “mere” the-
ory or simply a demonstration of an idea, but not a result. An ABM 
not rooted in real-world data and conditions is particularly vulnera-
ble to such critiques. Given these concerns, there has been a recent 
call to more fully incorporate empirical data into ABMs, making the 
virtual world that actors inhabit mirror the actual conditions of the 

Figure 13. Effect of measurement error in alter–alter ties on diffusion estimates. 
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social environment (e.g., Bruch and Atwell 2015; Hedström and Manzo 
2015). This article falls into this tradition, asking about the payoff of 
incorporating ego network data into ABMs of diffusion. Is it worth-
while to collect a small ego network sample, use the data to infer a 
complete network, and then use the inferred network as a basis for 
ABMs of cultural transmission? We test this idea by creating an ABM 
of diffusion, where actors are exposed to new cultural items via their 
friends. We run different diffusion processes through the true net-
works and the inferred networks (based on the sampled data) and 
compare the results. 

The results are, on the whole, encouraging. Across all test net-
works, the diffusion curves based on the sampled data are very simi-
lar to the curves based on the true, complete network. The bias in the 
estimates (for the proportion adopting at a given time point) is gener-
ally under 1 percent and almost always under 3 percent. The variance 
of the estimates is also generally modest, meaning that sample to sam-
ple, there are similar results. Importantly, the sample estimates yield 
the same substantive conclusions as the true, known networks. For 
example, the low-density, low-transitivity network has faster diffu-
sion than the low-density, high-transitivity network under simple dif-
fusion but not homophily-based diffusion. The sample estimates alone 
are sufficient to make such conclusions and, more generally, to capture 
the effect of network structure and adoption behavior on diffusion. 

It is important to recognize that not every estimate has ideal prop-
erties, despite the generally encouraging results. For example, the esti-
mates can have high standard errors, particularly for the low-density, 
high-transitivity network. A researcher concerned about the variance 
of the diffusion estimates could, most directly, collect more data, thus 
reducing the uncertainty in the network structure. Alternatively, they 
could tweak the ABM to reduce the uncertainty in the simulation; for 
example, increasing the number of initial seeds or varying the adop-
tion probability. Additionally, it is important to note that the specific 
takeoff point (or timing) of the diffusion process can be difficult to 
capture when there is measurement error in the input data; the final 
level of adoption is more consistently measured across all sampling/ 
measurement conditions. 

Overall, the results suggest that ego network sampling can offer 
a practical means of incorporating empirical data into an ABM (Rolfe 
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2014). The data are easy to collect and widely available (as the data 
are based on independently sampled cases) but still yield excellent 
approximations of the true diffusion curves. A researcher collecting 
sampled ego network data and the full census (all actors and all ties 
between actors) would arrive at very similar results; here, concern-
ing the rates of adoption of a new cultural product. Thus, a researcher 
would not have to collect full network data to employ a realistic net-
work in their ABM. 

There are a number of ways that ego network data could be incor-
porated into an ABM, depending on the substantive and theoretical 
setup used in the analysis. In each case, the goal is to limit the num-
ber of variables in the simulation that may feel arbitrary from a crit-
ical point of view. 

First, and most directly, ego network data could be used in much 
the same way as in this article: A researcher could collect an ego net-
work sample, infer the full network, and use that network as the ba-
sis for a diffusion simulation. Here, the researcher avoids having to 
come up with (and justify) the network structure over which the dif-
fusion model is run (i.e., small-world network, power law, etc.; Flache 
and Macy 2011; Hamil and Gilbert 2010; Rahmandad and Sterman 
2008). Such a strategy is most appropriate for projects interested in 
stratification/diffusion outcomes where the network structure can 
assumed to be (more or less) fixed, while the behavioral model is al-
lowed to vary. The sampled data would be collected on the particular 
population(s) of interest. If it is not feasible to collect sampled data, it 
may still be possible to use data from a similar population, given the 
wide availability of ego network data. 

Second, ego network data could be used to explore the joint dy-
namics of culture and structure (Adams and Schaefer 2016; Centola et 
al. 2007; Wang et al. 2017). Simulations that allow both network ties 
and cultural consumption to update over time (i.e., network ties may 
be added or broken through time while a product may be adopted or 
dropped) could use a network inferred from ego network data as a 
starting point for the model. This would condition the ABM on a re-
alistic network, thus holding fixed a very large variable in the model 
(i.e., the starting point in the simulation). This will make it easier to 
demonstrate how endogenous network processes affect the outcome 
of interest.12 
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Third, ego network data could be used in purely generative mod-
els, where the network structure emerges within the simulation, based 
on the interactions of the seeded actors (e.g., Baldassarri and Bear-
man 2007; Centola 2015; Gondal 2015). With purely generative mod-
els, there is no a priori network substrate; rather, a set of local rules 
determine the nature of the interactions and these interactions de-
termine the features of the macronetwork structure. An ego network 
sampling approach could be used in two ways to inform generative 
ABMs. First, a researcher could use the ego network data to inform 
the simulation itself. Here, the researcher would use the ego network 
data to inform the rules (or range of rules) dictating interactions in 
the simulation (i.e., taboos on certain interactions; tendency for tran-
sitive closure, etc.). Second, the inferred network structure could be 
used solely to judge the output of the simulation, showing which gen-
erated networks, or region of networks, are consistent with the em-
pirical data. Thus, the inferred network is not used in the simula-
tion itself but is rather used after the fact as a check (e.g., Schreiber 
and Carley 2013). This would show what set of microrules could have 
given way to the observed network structure and/or diffusion curves. 

The approach, while promising, rests on a number of assumptions. 
For example, we assume that measurement error in the ego network 
data is not severe enough to badly bias the estimates of diffusion. Our 
own results suggest that measurement error in the alter–alter ties be-
comes problematic only at very high levels of misreporting. Future 
work could consider other kinds of measurement error as well as tac-
tics to minimize bias (e.g., Marin and Hampton 2007). For example, 
respondents given an ego network survey may list fewer alters than 
they actually have (Marin 2004). Such “forgetting” will distort the 
number of alters listed and thus the inferred degree distribution. Sim-
ilarly, many studies truncate the number of alters one can list, but this 
too can lead to a distortion in the degree distribution (Smith 2015). 

We also make a number of assumptions about the network em-
ployed in the ABM. We assume that the network is static and undi-
rected. Future work could relax these assumptions, testing a sampling 
approach in a wider range of circumstances. Additionally, we only con-
sider a single sampling scenario, where a researcher samples a large 
portion of a small network (25 percent of a size 700 network). We ex-
amine this last assumption more carefully in the Appendix. We rep-
licate the entire analysis using a much larger network, the Colorado 
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Springs high-risk network (size = 5,492), and a much smaller sam-
pling rate, 5 percent. The results are, again, encouraging: The results 
mimic the main findings, with the sampled-based estimates closely 
approximating the true diffusion curves. See Online Appendix B for 
the full discussion. 

Finally, we assume that the researcher knows the size of the true 
network. This may not be true in every research setting, however. A 
researcher that does not know the size of the actual network has three 
basic options. First, they could generate networks that correspond to a 
“typical” network of that type; for example, an ABM based on a school 
would use networks of a moderate size, less than 2,500. Second, a re-
searcher could repeat the analysis under different assumptions about 
the size of the network, showing how the results do (or do not) change 
as network size increases (see Della- Posta et al. 2015). Third, the re-
searcher could try and estimate the size of the actual network, for ex-
ample, using network scale-up methods (Maltiel et al. 2015).13 

This article has focused on the adoption of new products, or cul-
tural diffusion, but a network sampling approach is useful for any 
ABM where networks features are important, including models of 
neighborhood segregation, labor market outcomes, and status inequal-
ities (Bruch 2014; Fountain and Stovel 2014; Manzo and Baldassari 
2015). Moving forward, the hope is that more researchers will see the 
validity of combining network sampling with ABMs and, more gener-
ally, will continue to combine empirical data with the controlled, ex-
perimental feel of a simulation.   

Note — This research uses data from Add Health, a program project designed by J. Richard 
Udry, Peter S. Bearman, and Kathleen Mullan Harris and funded by grant P01-HD31921 
from the Eunice Kennedy Shriver National Institute of Child Health and Human Develop-
ment, with cooperative funding from 17 other agencies. No direct support was received 
from grant P01-HD31921 for this analysis. Persons interested in obtaining data files from 
Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, 
Chapel Hill, NC 27516, USA;  http://addhealth@unc.edu 

Acknowledgments — The authors would like to thank Robin Gauthier and Jennifer Clarke 
for their helpful comments on earlier versions of this article. The author would also like 
to thank the Haas Faculty Award Program at the University Nebraska–Lincoln for pro-
viding financial support during the writing of this article. Special acknowledgment is 
due Ronald R. Rindfuss and Barbara Entwisle for their assistance in the original design. 

Declaration of Conflicting Interests — The author(s) declared no potential conflicts of in-
terest with respect to the research, authorship, and/or publication of this article. 



Smith & Burow in Sociological Methods & Research (2018)       40

Funding — The author(s) disclosed receipt of the following financial support for the research, 
authorship, and/or publication of this article: Haas Faculty Award Program at the Uni-
versity Nebraska–Lincoln provided financial support during the writing of this article. 

Supplemental Material — Supplementary material for this article follows the References. 

Notes 

1. Although note that multiple individual-level models could be consistent with the same 
macrolevel results. 

2. This is the case as one must be able to trace out the direct and indirect paths between 
actors. 

3. Even if one cannot collect new data, there may be data from a similar population that can 
be used instead. 

4. See also Moody (2009) who considers the timing of relationships in the context of diffu-
sion in small-world networks.  

5. The simulation varies the strength of homophily to see how stronger/weaker in-group bias 
affects inequality in adoption rates. 

6. The diffusion curves capture the proportion who adopt across time in a simulation using 
the inferred network. 

7. Ego network data could, potentially, be used to inform an stochastic actor-based model. 
The researcher would first infer the full network from the cross-sectional sampled data; 
they would then take that network and estimate an initial set of parameters (for esti-
mating the model with cross-sectional data, which is atypical, see Snijders and Steglich 
2015). That model could then be used to simulate a dynamic network process, where both 
the behaviors and network are allowed to vary over time. Note that the selection/influ-
ence parameters could not be estimated from the sampled data and would need to be set 
purely by the researcher. 

8. The method calculates a starting value by estimating a dyadic independent exponential 
random graph model on the ego networks. 

9. Note that it is possible for a product to “die out” in a given simulation. In this case, the pro-
portion adopting is recorded as 0 for all time periods, where no actors currently use the 
new product. All values of 0 are incorporated into the overall mean calculation across the 
1,000 simulations. These die-out simulations serve as potential outliers, but as this is done 
for both the true network and the sampled-based networks, the comparison is consistent. 

10. Note that the empirical Add Health network offers similar results to the high-density net-
works, with a mean bias (over the 30 time periods) of .01 and a standard error of .019. 

11. This may be the case as individuals who share one salient characteristic are likely to share 
others (e.g., language, class background, and cultural tastes). Such similarities make the 
friend a clearer reference group, making adoption more likely. 

12. Ego network data could also be used to help parameterize the dynamic simulation itself 
(by showing the tendencies for tie formation). 

13. This would necessitate asking an additional question in the survey. Specifically, the sur-
vey would need to ask respondents how many people they know in the setting of inter-
est. The research could then use that information to estimate the size of the population. 
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Figure A1. Relative Bias by Network and Adoption Rate
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Figure B1. Colorado Springs Diffusion Curve Results  



Appendix B 

This appendix offers a supplementary test of a sampling approach. In the main analysis, 

we focus on a single sampling scenario: where a researcher samples a large portion of a small 

network. We take a 25% sample from a network of size 700. Here, we expand the analysis, 

replicating the results with a much larger network and a much lower sampling rate. In this way, 

we can assess the validity of a sampling approach under more difficult conditions.  

 The network of interest comes from Project 90, the Colorado Springs study of high-risk 

individuals (see Morris and Rothenberg 2011 for the data source). The population of interest 

includes at-risk individuals for HIV transmission, including drug injectors and sex workers. 

Researchers attempted to saturate the population in this city and we treat the network as a full 

census. The data include social connections based on sex, needle sharing and social ties. The true 

network includes 5492 nodes and 21644 edges. We base our analysis on a 5% sample of the 

network.  

 The test presented here is a difficult one, as we use a larger network and a lower sampling 

rate than in the main analysis. Additionally, the properties of the network make this a particularly 

difficult test of a sampling approach. First, the network has high transitivity (.37) and high 

average degree (7.88), and we have already seen that the bias is higher in such networks. Second, 

the network has a skewed degree distribution. Inference is harder when the degree distribution is 

skewed: a few actors have disproportionately high degree, yet they are no more likely to be 

sampled than any other node. High degree nodes thus have a large impact on network structure, 

but are often missed in a random sample (see Smith 2015). And third, the network is 

disconnected, with 20% of the nodes outside the main component (a component is a set of nodes 

connected by at least one path; the main component is the largest set of nodes connected by at 



least one path). The diffusion simulation will be highly variable under such conditions. Global 

diffusion is possible (albeit not necessary) when the initial seed is in the main component; in 

contrast, global diffusion is impossible if the initial seed is not in the main component (as they 

are disconnected from the rest of the network and cannot pass the product beyond their own 

borders). The results are thus highly dependent on the initial seed, making inference more 

difficult.  

 The analysis is the same as before. The agent-based model of diffusion follows a simple 

contagion process, with three adoption probabilities: .1, .2, and .3. We again take 100 

independent samples. We assume that the data collected have the same pattern as in the main 

text. The only difference is in the demographic characteristics assumed to be collected. Here, the 

characteristics of interest include: race, gender, employment status, and illicit activity (drug 

dealer, sex worker, pimp or none).  

 We present the results below in Figure B1. The results follow the same form as in Figures 

8-11. There are three subplots, one for each adoption probability. Each subplot shows the true 

proportion adopting, the mean estimate and the error bounds. The estimate are, in general, quite 

good, despite the difficulty of the test. Looking at the high adoption results, the median bias over 

the 30 time periods is under 2%. The results are on par with the findings in the main text. For 

example, for period 20, the mean estimate is .424, while the true value is .421 (a relative bias 

under 1%). The estimates are, as expected, more uncertain than before. The median standard 

error (over the 30 time periods) is .06, higher than with any network used in the main analysis.  

For time period 20, 95% of the estimates fall between .34 and .56, a wide range of values.  We 

see similar results with the lower adoption probabilities, although the bias is higher here. The 

median relative bias (over the 30 time periods) is about .037 for the medium adoption analysis. 



For example, for period 20, the true proportion adopting is .368, the mean estimate is .374, and 

95% of the estimates fall between .289 and .488.  

Overall, the results suggest that it is possible to produce good approximations of the true 

diffusion curves using a small sample on a large network. The caveat is that the estimates can be 

quite uncertain, with high variability sample-to-sample. A researcher concerned with the 

variability of the estimates would have to sample more than 5% of the network.  
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