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USA
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Abstract

Links between individual differences in risk processing and high-risk behaviors such as binge-drinking have long been the
focus of active research. However, investigations in this area almost exclusively utilize decision-making focused paradigms.
This emphasis makes it difficult to assess links between risk behaviors and raw risk reactivity independent of decision and
feedback processes. A deeper understanding of this association has the potential to shed light on the role of risk reactivity
in high-risk behavior susceptibility. To contribute toward this aim, this study utilizes a popular risk-taking game, the croco-
dile dentist, to assess links between individual differences in decision-free risk-reactivity and reported binge-drinking
frequency levels. In this task, participants engage in a series of decision-free escalating risk responses. Risk-reactivity was
assessed by measuring late positive potential responses toward risk-taking action initiation cues using high-density
256-Channel EEG. The results indicate that, after controlling for overall alcohol consumption frequency, higher rates of
reported binge-drinking are associated with both increased general risk-taking responsivity and increased risk-reactivity
escalation as a function of risk level. These findings highlight intriguing links between risk reactivity and binge-drinking
frequency, making key contributions in the areas of risk-taking and affective science.

Key words: risk-taking; risk-reactivity; alcohol; binge-drinking; EEG; ERP

Introduction

Binge-drinking is a public health issue associated with a wide
array of health, economic and social consequences. Frequently
defined as the number of occasions in the past month involving
the consumption of five or more alcoholic drinks on a single oc-
casion (Kann et al., 2014), binge-drinking among college stu-
dents in the United States has declined relative to peak levels in
the 1990s (Johnston et al., 2017). Nonetheless, binge-drinking
rates continue to be of concern with 32.3% of US college stu-
dents in 2016 reporting binge-drinking at least once in the past
month, and 12% reporting consumption of 10 or more drinks on
those occasions (Johnston et al., 2017).

Individual differences in binge-drinking frequency are often
associated with elevated activity in neural regions and

functional networks associated with affective and reward re-
activity (Xiao et al., 2013; Whelan et al., 2014). Given these find-
ings, it is unsurprising that binge-drinking is linked with
heightened social anxiety (Biolcati et al., 2016; Goodman et al.,
2018) and sensation-seeking behavior (Adan et al., 2017; Doumas
et al., 2017).

With regard to risk-taking responses, sensation-seeking, in
particular, is positively associated with increased risk-taking
(Adan et al., 2017), elevated approach responses toward intense
stimuli (Zuckerman, 2005; Joseph et al., 2009), as well as blunted
responses to stress (Roberti, 2004) and threat-related cues
(Lissek et al., 2005). Conversely, social anxiety is linked with ele-
vated stress reactivity (Zorn et al., 2017) while, nonetheless, still
being associated with increased risk-taking (Reynolds et al.,
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2013) and reward-sensitivity (Richards et al., 2015) under high-
stress conditions.

Given the links stress and risk reactivity have with
sensation-seeking and social anxiety, it is significant to note
that prior work assessing risk reactivity among binge-drinkers
(Johnson et al., 2008; Xiao et al., 2009, 2013; Carbia et al., 2017)
largely utilize relatively unstressful decision-making focused
paradigms. This focus on paradigms with with strong decision-
making elements has arguably led to a strong emphasis on the
role of executive processes in binge-drinking behavior (Johnson
et al., 2008; Xiao et al., 2009, 2013; Carbia et al., 2017). As high-
lighted by Lannoy et al. (2014), this paradigmatic focus has left
the role of less reflective and more automatic affective risk re-
activity in binge drinkers relatively underexplored.

Some of the most widely used paradigms in this area include
the Columbia Card Task (Figner et al., 2009), the Iowa Gambling
Task (Bechara et al., 1994) and the Balloon Analogue Risk Task
(Lejuez et al., 2002). In the Columbia Card Task (Figner et al.,
2009) participants draw cards from four decks, half with advan-
tageous and half with disadvantageous odds, with the differ-
ence between the number of overall disadvantageous and
advantageous selections being the primary measure of interest.
In the Iowa Gambling Task (Bechara et al., 1994), participants
turn over cards placed face down in a grid either one-at-a-time
or in predeclared numbers, earning a number of points equal to
the number of turned-up gain cards so long as no loss cards are
also turned-up in the process. Finally, in the Balloon Analogue
Risk Task (Lejuez et al., 2002) participants are presented with a
series of virtual balloons which they proceed to inflate, with
each inflation earning a number of points. This continues until
the participant either decides to cash out their winnings on that
trial or the balloon explodes, resulting in a loss of all earnings
on that trial.

Critically, all of these tasks involve decision-making by the
participant to varying degrees. While some of these tasks have
varients designed to tap into affective risk-related processes
more strongly, such as the ‘hot’ version of the Columbia Card
Task (Figner et al., 2009), these varients are nonetheless
intended to focus on affective decision-making as opposed to
individual differences in reactivity toward escalating risk, inde-
pendent of higher-level decision-making processes. Thus build-
ing on the focus of these classic paradigms, prior work in this
area has primarily shed light on links between executive-
functioning and binge-drinking, typically finding that a deficit
in various aspects of executive functioning is associated with
increased binge-drinking susceptibility (Johnson et al., 2008;
Xiao et al., 2009; though see also Lannoy et al., 2017).

While these findings provide valuable insights into the dy-
namics of risk decision-making among binge-drinkers, the sim-
ultaneous engagement of evaluative, response-initiation and
outcome-anticipation related processes in the paradigms uti-
lized in prior investigations make it difficult to isolate inde-
pendent links between these processes and binge-drinking
susceptibility. In addition to this, given the tendency toward
higher levels of boredom proneness among binge drinkers
(Biolcati et al., 2016), the use of paradigms lacking intrinsic en-
gagement value may also interfere with the simulation of risk-
taking dynamics involved in real-world binge-drinking, which
often occurs in relatively stimulating social environments.
Finally, the frequent use of financial incentives in prior work
also potentially introduces monetary risk-related influences
that may not always be associated with the differences in risk-
taking behavior linked with binge-drinking.

Of particular interest to the present study, interactions be-
tween the abovementioned factors make it difficult to assess
the role of risk-related reactivity in binge-drinking behavior. A
useful framework to build on in assessing this issue is the “hot-
cold” dual-system view of risk-taking. Models drawing on this
framework posit risk-taking to be the product of two systems, a
phylogenetically older, more affective socioemotional system
and a phylogenetically younger, more deliberate one focused on
controlled executive processes (Steinberg, 2008). While not
without limitations (Gladwin and Figner, 2015), there is evi-
dence to suggest that dual-systems models continue to have
significant value for understanding risk-taking behavior
(Shulman et al., 2016). With this in mind, several current alcohol
use models extend the hot/cold framework to binge-drinking,
proposing that the behavior may be driven by imbalances
arising from a hyperactive “hot” affective response system
combined with dysfunctional “cold” executive control processes
(Lannoy et al., 2014). Drawing on these frameworks and
psychophysiological models of sensation-seeking behavior
(Zuckerman, 2005), we propose that elevated responsivity to
risk-taking under high arousal conditions plays a key role in
driving binge-drinking behavior. However, the absence of prior
work focused on assessing reactivity to risk-taking among binge
drinkers independent of decision-making makes it difficult to
draw firm conclusions regarding the link between individual
differences in this type of responsivity and binge-drinking
behavior.

To address this gap in the literature regarding the role of raw
risk-taking reactivity in binge-drinking, this investigation uti-
lizes a simple aversive risk-taking game to assess differences in
risk reactivity as a function of binge-drinking frequency.
Specifically, this investigation assesses differences in anticipa-
tory risk-taking reactivity using the popular crocodile dentist
game (see ‘Method’ section for details) created by Robert Fuhrer
(Fetherston, 1994). By administering the game in a manner
which removes its decision-making elements, the crocodile
task becomes a means by which raw risk-taking reactivity can
be potentially isolated from decision-making processes.
Furthermore, given the game’s structure, the risk of experienc-
ing an adverse outcome escalates as participants proceed
through the game. With these characteristics, the crocodile task
provides an intrinsically engaging task with minimal levels of
higher-level decision-making and a structure inherently suited
for assessing individual differences in risk reactivity as a func-
tion of escalating situational risk.

To decompose and isolate the neural responses associated
with risk-reactivity as a function of risk level, this study utilizes
high-density EEG. The high temporal-resolution of this imaging
modality makes it particularly suited for decomposing and dis-
tinguishing between responses within temporally contiguous
risk processing stages (Kiat et al., 2016). By leveraging this cap-
ability, this study aims to test the hypothesis that binge-
drinkers will exhibit increased anticipatory reactivity toward
risk-taking in the absence of decision-making relative to non-
binge drinkers. The target index component of interest is the
late positive potential (LPP), a posterior ERP component that
typically emerges 300–400 ms post-stimulus onset and often
lasts for the duration of the stimulus presentation (Cuthbert
et al., 2000). Activity in this range has frequently been associated
with elevated levels of reactivity toward motivationally relevant
stimuli both directly (Cuthbert et al., 2000; Schupp et al., 2004)
and from an anticipatory perspective (Howsley and Levita,
2017), making it an ideal target response for this investigation.
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Materials and methods
Power estimation

The target sample size was estimated using empirical power
simulation in SAS 9.3 with Late Positivity component variability
estimates (SD¼ 3.05 lV) from a prior investigation conducted by
the researchers (Kiat et al., 2017, 2018). With these parameters,
10 000 datasets were simulated for seven potential target sam-
ple sizes (10–40 in increments of 5) with a main effect of risk
level (i.e. high vs low risk) effect size ofþ1.5 lV (Effect
SE¼ 1.5 lV) and an interaction between binge-drinking and risk
level (i.e. relative increase in the observed main effect among
binge drinkers effect size) of the the same magnitude, both rea-
sonable target effect sizes for event-related potential work. The
results of this analysis indicated that based on these parame-
ters, a sample size of 25 participants was sufficient to provide
95% power to detect an overall main effect of risk level on this
task and 75% power to detect an interaction between risk and
binge-drinking frequency levels.

Participants

Twenty-six subjects (20 females, 6 males, mean age¼ 20.00,
SD¼1.74, range 18–24) were recruited from the research subject
pool at a large Midwestern University for this study. All experi-
mental procedures were approved by the university institution-
al review board (IRB#20121212948EP) with all subjects providing
informed consent and receiving course credit for their participa-
tion. None of the participants indicated having had prior experi-
ence with the task used in this study.

Materials and tasks

Alcoholic consumption frequency self-report measures. Individual
differences in binge-drinking susceptibility was assessed using
two items from the 2013 Centers for Disease Control and
Prevention (CDC) Youth Risk Behavior Survey (Kann et al., 2014),
a national school-based survey administered yearly by the CDC.
The first item, (General Drinking Frequency) asked participants to
indicate the number of days in the past month in which they
had at least one alcoholic drink. The second (binge-drinking
frequency) asked participants to indicate the number of days in
the past month in which they had more than five alcoholic
drinks in a row within a few hours. Both items were multiple
choice responses with seven response options (0, 1–2, 3–5, 6–9,
10–19, 20–29 and 30 days). Each item was scored on an integer
scale ranging from 1 to 7, corresponding to the selected re-
sponse, with higher scores indicating higher drinking
frequencies.

Crocodile dentist game. This task (shown in Figure 1) consists of a
plastic prop in the shape of a crocodile with ten teeth that lock
into place upon being pressed down by the player. One of the
teeth (randomly selected by a hidden gear mechanism on each
trial) would, upon being depressed, cause the jaws to snap shut,
stopping just short of making contact with the player’s finger.
Participants were instructed to engage with this prop in the fol-
lowing fashion. At the start of the experiment, they were shown
the prop and told that the teeth of the prop were numbered 1
through 10 which to half of the participants started on the right
and the other half on the left. At the start of each trial, they
were then asked to select the lowest numbered undepressed
tooth upon hearing a 500 Hz tone, placing their right index fin-
ger on the identified tooth and verbally indicating they had

done so by stating the phrase “Ready.” Upon receiving this ac-
knowledgment, the researcher triggered the experimental pro-
gram that played a second 500 Hz tone 2000 ms after the
researcher’s response. Participants’ were instructed to minim-
ize their motion as well as blinking upon hearing this tone and
prepare to press down on the tooth. Two thousand milliseconds
after the second tone, a third 1000 Hz tone was played to which
participants were instructed to press down the tooth upon hear-
ing. This procedure was repeated until the participant triggered
the prop to close at which point the prop was reopened for the
start of the next round. Participants engaged in as many trials
of the task as could be completed in the 30-min task runtime
(mean number of rounds¼ 24.15, SD¼ 3.63, mean number of
trials¼ 94.04, SD¼ 11.38).

Data collection procedure

Participants completed the Edinburgh Handedness Inventory
(Oldfield, 1971), with 24 participants indicating right, and two
left, handed dominance. All participants then completed the
aversive risk-taking task with the experimenter monitoring the
real-time EEG waveforms for excessive data artifacts. After com-
pleting the task, each participant completed the alcoholic
consumption frequency self-report measures.

Risk response classification

Risk-taking responses on the crocodile task were first catego-
rized by response number (i.e. first tooth press, second tooth
press, etc.), with trials resulting in the jaws of the crocodile clos-
ing being discarded. The categorized trials were then classified
into lower and higher risk trials by determining the median re-
sponse number on the task. This point was determined by plot-
ting the frequency curve of the scored responses to identify the
50% cumulative proportion mark. As shown in Figure 2, that
point was at the third response. With this response as the divid-
ing point, the first two responses (i.e. responses one and two)
were classified as lower risk trials whereas responses four
through nine were classified as higher risk trials. An overall
total of 849 low (participant mean¼ 32.65, SD¼ 4.82) and 968
higher (participant mean¼ 25.85, SD¼ 6.77) risk responses were
recorded.

Fig. 1. Crocodile dentist task prop.
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EEG data acquisition

Data were recorded using a 256 high-density AgCl electrode
Hydrocel Geodesic Sensor Net connected to a high-input imped-
ance NetAmps 300 amplifier running Netstation version 4.4.2.
Participants were seated with the task prop in front of them on a
table at approximately mid-chest height. Recordings were collected
using a vertex sensor (Cz), later referenced to an average reference.
Electrode impedances were kept below 45 kX, a level appropriate
for the system that had been designed to accommodate high impe-
dances. The EEG data were digitized at 1000 Hz from the DC to
500 Hz range using a 24-bit analog-to-digital converter.

EEG pre-processing

The ongoing EEG data were digitally filtered using a 0.1 Hz first
order high-pass and a 30 Hz (�40 dB stop-band attenuation,
2.00 Hz roll-off) finite impulse response low-pass filter. The con-
tinuous data were then downsampled to 250 Hz and segmented
to onset of the 1000 Hz tone which signaled participants to initi-
ate their response, beginning 200 ms before onset and continu-
ous for 1000 ms onwards.

All segments were then baseline corrected using the 200 ms
prestimulus average. Ocular artifacts were reduced via decom-
posing the data into ICA components and removing compo-
nents which correlated highly (>0.80) with a blink template
created via averaging 200 blinks from open eye resting state
data recorded from 40 subjects from a separate study (each sub-
ject contributing five blinks) using an identical system setup.

After the artifact reduction process, bad channels were iden-
tified and interpolated in the ERP PCA Toolkit version 2.54 (Dien,
2010). Bad channels were identified across the entire session via
poor overall correlations (r<0.50) between neighboring chan-
nels, and within each segment via either unusually high differ-
ences between an electrode’s average voltage and that of their
neighbors (>30 mv) or extreme voltage differences within the
electrode (>100 mv min to max) within an 80 ms moving average
window. A channel was also marked as bad for the entire ses-
sion if more than 20% of its segments were classified as bad. All
identified bad channels were replaced using whole head spline
interpolation. After bad channels were identified and interpo-
lated, trials with more than 10% of their channels interpolated
were removed from the analysis set. Retained trials had an
average of 6.02 (SD¼ 2.77) interpolated channels, 2.4% out of the
total 256.

At the end of this process, each subject retained an average
of 31.92 low (SD¼ 5.03) and 25.62 high (SD¼ 6.48) risk trials.

These trial numbers have been shown to be more than suffi-
cient for reliable measurement of the LPP component (Moran
et al., 2013).

ERP component extraction processing

ERP components were quantified using temporal-spatial PCA in
the ERP PCA Toolkit. First, a temporal PCA was conducted using
all time points from each participant’s averaged ERP as varia-
bles, and condition and recording sites as observations. Promax
rotation was used to extract temporal components based on a
95% variance-accounted-for criterion. The spatial distribution of
these factors was then reduced via spatial ICA using the
Infomax algorithm with a parallel analysis criterion, using all
recording sites as variables and considering participants, condi-
tions, and temporal component scores as observations. The co-
variance matrix and Kaiser normalization were used for both
the temporal PCA and spatial ICA steps. To facilitate interpret-
ation, the waveforms for each temporal-spatial component
were converted to microvolts by multiplying the factor pattern
matrix with the standard deviations.

Using this procedure, the temporal-spatial variance in the
response ERPs was reduced to 60 temporal and 6 spatial compo-
nents. Temporal-spatial components that accounted for at least
50 ms of the full ERP variance with non-artifactual topographies
were then identified. Only one temporal-spatial component, the
predicted LPP component spanning (temporal loadings> 0.6)
592–736 ms (peak latency¼ 668 ms), met the inclusion criterion
(see Figure 3).

Source localization of the neural sources of this component
was conducted by specifying a pair of hemispheric dipoles (mir-
rored in position but not orientation) using a four-shell standard
Boundary Element Method volume conduction model. Stability
of the solution was then assessed with a jack-knife technique
where the spatial PCA solution was recomputed 24 times, each
with one of the participants left out. The spatial factor best cor-
responding to that of the original in scalp topography was then
identified and source localized for each jack-knifed solution. As
indicated by the red marker in Figure 3A, the source localization
solution identified the subcallosal gyrus (Talairach coordinates:
X¼�7, Y¼ 3, Z¼�11) as the most likely neural generator source
for this component with the solution exhibiting a good level of
fit (residual variance¼ 7.91%) with the localization solution
being relatively stable across subsamples. A jackknife-based as-
sessment of the relative strength of the hemispheric dipoles
also showed that the relative amplitude of dipoles across the
two hemispheres was relatively equivalent t(9)¼ 0.227, P¼ 0.826.

Analytic approach

All analysis models were estimated using maximum likelihood
estimated general linear mixed models in SAS version 9.3 with
between-within degrees of freedom. Unstructured covariance
matrixes were used to model the covariances of risk-level, a
within-subjects’ factor.

Results
Behavioral measure associations

As shown in Figure 4, 50% (N¼ 13) of the participants reporting
no prior binge-drinking instances in the past 30 days with 35%
(N¼ 9) indicating 1–2 days and 15% (N¼ 4) 3–5 days involving at
least one binge-drinking session. General drinking frequency
responses had 11, 38, 23, 3 and 3% of participants reporting 0, 1–2,

Fig. 2. Cumulative proportion of crocodile trial response numbers.
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3–5, 6–9 and 10–19 days, respectively, in the past 30 days in which
they had at least one alcoholic drink.

The correlations between binge and general drinking fre-
quencies with participant age were non-significantly negative
in the study sample [r(26)¼�0.277, P¼ 0.171 and r(26)¼�0.148,
P¼ 0.471, respectively]. Binge and general drinking frequencies
also did not significantly vary as a function of participant
gender [t(24)¼ 0.665, P¼ 0.512 and t(24)¼ 0.784, P¼ 0.440,
respectively]. Binge and general drinking frequency reports
were however highly correlated (r¼ 0.703, P<.001).

Primary LPP analyses

An unconditional contrast between lower (M ¼ 0.789 lV,
SE¼ 0.447) and higher (M ¼ 1.389 lV, SE¼ 0.650) risk responses
showed no significant difference in LPP amplitude between
them, MD¼ 0.600, SE¼ 0.439, 95% confidence interval
(CI)¼ [�0.305, 1.505], F(1, 25)¼ 1.87, P¼ 0.184, R2¼ 0.011%. Higher
and lower risk LPP levels were however significantly correlated
within-participants, r(26)¼ 0.739, P< 0.0001.

LPP and drinking behavior analyses

The relationship between LPP response levels and binge-
drinking as well as general drinking frequency was first esti-
mated independently. The results of this analysis showed the

Fig. 3. (A) High-loading (>0.60 shaded in black) electrode map and jack-knifed dipole solution for the LPP component. (B to C: from left to right) Grand average ERP

waveforms for high LPP loading electrodes, LPP component waveforms (high loading [>0.60] time points shaded in gray) and LPP scalp topographies by risk-taking level

for (B) binge and (C) non-binge drinkers.

Fig. 4. Frequency distributions for (A) binge and (B) general drinking report

measures.
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main effect of risk level was not statistically significant after
controlling for overall drinking (MD¼ 0.600 lV, SE¼ 0.405, 95%
CI¼ [�0.235, 1.435]), F(1, 24)¼ 2.20 lV, P¼ 0.151) or binge-
drinking frequency [MD¼ 0.600 lV, SE¼ 0.370, 95% CI¼ (�0.163,
1.363), F(1, 24)¼ 2.63, P¼ 0.118)] in isolation. Overall drinking and
binge-drinking frequencies also did not have significant main
effects on observed LPP amplitude levels [�0.086 lV, SE¼ 0.420,
95% CI¼ (�0.952, 0.780), F(1, 24)¼ 0.04, P¼ 0.890, andþ0.758 lV,
SE¼ 0.594, 95% CI¼ (�0.468, 1.984), F(1, 24)¼ 1.63, P¼ 0.214,
respectively]. Both variables did, however, significantly moder-
ate the main effect of risk level. Specifically, a significantly
greater increase in the LPP response as participants transitioned
from low to high risk levels was observed as a function of higher
levels of binge [þ1.656 lV, SE¼ 0.506, 95% CI¼ (0.612, 2.700),
F(1, 24)¼ 10.71, P¼ 0.003] and general drinking frequency
[þ0.820 lV, SE¼ 0.380, 95% CI¼ (0.037, 1.603), F(1, 24)¼ 4.67,
P¼ 0.041]. Independently, binge-drinking and overall drinking
frequency accounted for 21.98 and 4.89% of the variance in LPP
responses, respectively.

The relationship between LPP amplitude levels and general
drinking as well as binge-drinking frequencies was then esti-
mated simultaneously in a joint model. The results of this
model showed that the link between the LPP response and
drinking measures was primarily driven by binge-drinking fre-
quency. After controlling for binge-drinking frequency levels,
overall drinking frequency did not have a significant main effect
[�0.891 lV, SE¼ 0.545, 95% CI¼ (�2.018, 0.237), F(1, 23)¼ 2.67,
P¼ 0.116] or moderating influence on observed LPP levels as a
function of risk level [�0.044 lV, SE¼ 0.488, 95% CI¼ (�0.965,
1.052), F(1, 23)¼ 0.01, P¼ 0.930].

However, as shown in Figure 3, after controlling for
overall drinking frequency, binge-drinking frequency had both a
significant positive main effect on overall LPP amplitude
levels [þ1.671 lV, SE¼ 0.795, 95% CI¼ (0.026, 3.316), F(1, 23)¼ 4.42,
P¼ 0.047] as well as a significant moderating influence on the rate
of increase in the LPP response transitioning from low to high risk
levels [þ1.611 lV, SE¼ 0.711, 95% CI¼ (0.141, 3.083), F(1, 23)¼ 5.14,
P¼ 0.033]. Jointly, binge-drinking and overall drinking frequency
accounted for 27.29% of the LPP component variance. While
binge-drinking frequencies were modeled in their original form,
purely for a visual representation purposes a median split was
used to divide the sample into binge (N¼ 13) and non-binge
(N¼ 13) drinkers to form the ERP and component waveforms in
Figure 3B and C. A plot of LPP component levels as a function of
both this median split and risk level is also presented in Figure 5.

Discussion

The results of this investigation show binge-drinking frequency
to be linked with significantly increased levels of anticipatory
risk-taking reactivity on a simple decision-free aversive risk-
taking task. After controlling for general drinking frequency,
binge-drinking frequency was uniquely associated with ele-
vated reactivity as indexed by the LPP ERP component. The LPP
component was elevated both in general and as a function of
higher levels of situational risk during the aversive risk-taking
task. By largely eliminating the decision-making aspect of the
task, these results arguably represent a relatively pure measure
of “raw” risk-taking reactivity with minimal levels of decision-
making associated with higher level executive processing.

These findings provide the first example of individual
differences in raw risk reactivity as a function of reported binge-
drinking frequency. These results indicate that individual dif-
ferences in binge-drinking rates are associated with increased
levels of anticipatory risk-taking reactivity even in the absence
of a decision-making element. Furthermore, after controlling
for general drinking frequency, these differences were found to
be present not only in general but also intensified at higher lev-
els of situational risk. These results also lend support to prior
work showing evidence of hyperreactivity in affect-related
neural responses in general affective responding (Garfield et al.,
2015) and affective risk-taking (Xiao et al., 2013) as a function of
binge-drinking susceptibility. While the premorbid status of the
effects observed in this study has yet to be determined, these
findings are congruent with recent research on binge-drinking
which suggest that increased affective responsiveness is the
true precursor of this health risk behavior (Garfield et al., 2015).

Of particular interest, the results of this study lend support
to the idea that exaggerated risk-taking and affective reactivity
play key roles in driving binge-drinking behavior (Garfield et al.,
2015). Placed in the context of dual-systems models of risk-
taking (Steinberg, 2008), the observed differences in the LPP re-
sponse to signals of risk-taking initiation are in line with the
idea that binge-drinking is associated with hyperactive reactive
systems (Lannoy et al., 2014). While acknowledging the limita-
tions inherent in source localizing scalp level EEG, this point
gains additional support from the localization of LPP response
to the subcallosal gyrus, an area of the limbic system.
Projections from the subcallosal gyrus to other affective areas
such as the amygdala have been proposed to play a key role in
suppressing the responsiveness of those regions (Vermetten
and Lanius, 2012), with prior research showing that stronger
connectivity between the subcallosal gyrus and the amygdala
are associated with increased impulsivity and reduced impul-
sive control in heroin addicts (Xie et al., 2011). Activation in the
subcallosal gyrus has also been associated with the reward an-
ticipation (Gloria et al., 2009; Jia et al., 2011) and responsivity to
craving cues (Li et al., 2012; Hong et al., 2017).

While this study makes important contributions to our
understanding of the potential links between raw risk reactivity
and high risk behaviors, it is not without limitations. Of primary
importance, replication of the observed effects with larger,
more diverse, samples would be an important next step. Such
larger scale investigations would also gain significant value
from administering other behavioral inventories such as meas-
ures of depression, social anxiety or impulsivity as well as
measures of health related outcomes such as blood pressure or
sleep quality. Understanding the potentially rich interplay be-
tween these factors and risk reactivity would almost certainly
shed valuable light on the cognitive-affective framework

Fig. 5. Plot of LPP component amplitudes by binge drinking status and risk level.

J. E. Kiat and J. E. Cheadle | 661

Deleted Text: -
Deleted Text: p
Deleted Text: binge drinking
Deleted Text: (
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: -
Deleted Text: ], 
Deleted Text: p
Deleted Text: binge drinking
Deleted Text: (
Deleted Text: -
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: -
Deleted Text: ], 
Deleted Text: p
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: -
Deleted Text: ], 
Deleted Text: p
Deleted Text: ). 
Deleted Text: (&plus;
Deleted Text: &thinsp;.
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: ], 
Deleted Text: p
Deleted Text: &thinsp;.
Deleted Text: ) 
Deleted Text: (&plus;
Deleted Text: &thinsp;.
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: ], 
Deleted Text: p
Deleted Text: &thinsp;.
Deleted Text: ). 
Deleted Text: binge drinking
Deleted Text: &percnt;
Deleted Text: binge drinking
Deleted Text: binge drinking
Deleted Text: binge drinking
Deleted Text: (
Deleted Text: -
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: -
Deleted Text: ], 
Deleted Text: p
Deleted Text: &thinsp;.
Deleted Text: ) 
Deleted Text: (
Deleted Text: -
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: -
Deleted Text: ], 
Deleted Text: &thinsp;.
Deleted Text: p
Deleted Text: &thinsp;.
Deleted Text: ).
Deleted Text: binge drinking
Deleted Text: (&plus;
Deleted Text: &thinsp;.
Deleted Text: SE&thinsp;&equals;, 
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: ], 
Deleted Text: p
Deleted Text: &thinsp;.
Deleted Text: ) 
Deleted Text: (&plus;
Deleted Text: SE&thinsp;&equals;, 
Deleted Text: &thinsp;&equals;&thinsp;[
Deleted Text: ], 
Deleted Text: p
Deleted Text: &thinsp;.
Deleted Text: ). 
Deleted Text: binge drinking
Deleted Text: binge drinking
Deleted Text: DISCUSSION
Deleted Text: binge drinking
Deleted Text: binge drinking
Deleted Text: <xref ref-type=


underlying real-world risk taking behavior. In addition to
measures of drinking frequency, it would also be important to
consider administering additional measures of alcohol con-
sumption level to control for the potential role of raw alcohol
consumption level with regard to all observed effects.

Another potential limitation in this study arises with regard
to differentiating the observed LPP response from other motor-
and pre-motor-related components. There are several factors
that lend support to the argument that the observed component
is not driven by motor activity, most notably the absence of lat-
eralization in the component at both the scalp and neural level
and the virtual absence of the component in non-binge
drinkers. Nonetheless, the potential contribution of motor activ-
ity should be taken into consideration and potentially tested for
in future work, perhaps through the use of a task prop with
built-in pressure sensors. It would also be interesting to utilize a
prop wired in this manner to assess feedback-related processing
via ERP segmentation to the onset of participants’ responses.
Such an approach would allow for a more complete modelling
of the full risk response process as well as the integration of this
approach with prior work on cue and feedback reactivity modu-
lations as a function of alcohol consumption (Bailey et al., 2014;
Fleming and Bartholow, 2014).

In conclusion, by removing the decision-making component
of a popular risk-taking game, this study highlights intriguing
individual differences in decision-free raw risk-taking reactivity
as a function of binge-drinking frequency. These results expand
on prior work on affective decision making in binge drinkers
(Johnson et al., 2008; Xiao et al., 2009, 2013; Carbia et al., 2017;
Lannoy et al., 2017) by demonstrating the elevated risk reactivity
in this target population is independent of actual choice, or de-
liberative decision-making processing. The characteristics of
the task in this study (i.e. its inherently high engagement value,
accessibility and ease of administration) also suggest that it has
significant value with regard to future work involving neuroi-
maging data collection from populations from whom the collec-
tion of high-quality data can be challenging (e.g. young
children). While further work is needed to assess the precursor
vs consequence status of the effects observed here, these find-
ings highlight effects which have important theoretical and
practical implications for understanding the links between fun-
damental aspects of psychological processing and high-risk
health behaviors.

Conflict of interest. None declared.
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