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CHARACTERIZATION OF DRUG INTERACTIONS WITH SERUM
PROTEINS BY USING HIGH-PERFORMANCE AFFINITY
CHROMATOGRAPHY

David S. Hage*, Jeanethe Anguizola, Omar Barnaby, Abby Jackson, Michelle J. Yoo,
Efthimia Papastavros, Erika Pfaunmiller, Matt Sobansky, and Zenghan Tong
Department of Chemistry, University of Nebraska Lincoln, NE 68588-0304, USA

Abstract
The binding of drugs with serum proteins can affect the activity, distribution, rate of excretion, and
toxicity of pharmaceutical agents in the body. One tool that can be used to quickly analyze and
characterize these interactions is high-performance affinity chromatography (HPAC). This review
shows how HPAC can be used to study drug-protein binding and describes the various
applications of this approach when examining drug interactions with serum proteins. Methods for
determining binding constants, characterizing binding sites, examining drug-drug interactions, and
studying drug-protein dissociation rates will be discussed. Applications that illustrate the use of
HPAC with serum binding agents such as human serum albumin, α1-acid glycoprotein, and
lipoproteins will be presented. Recent developments will also be examined, such as new methods
for immobilizing serum proteins in HPAC columns, the utilization of HPAC as a tool in
personalized medicine, and HPAC methods for the high-throughput screening and characterization
of drug-protein binding.

Keywords
α1-acid glycoprotein; drug-protein binding; high-performance affinity chromatography; high-
throughput screening; human serum albumin; lipoproteins; personalized medicine

Introduction
Drug interactions with transport proteins and binding agents in serum can play an important
role in determining the activity, distribution, rate of excretion or metabolism, and toxicity of
many pharmaceutical agents in the body. The binding of drugs with agents in blood is a
reversible process that usually involves proteins like human serum albumin (HSA) and α1-
acid glycoprotein (AGP); however, more complex agents such as lipoproteins, red blood
cells or platelets can be involved as well [1-7]. The widespread occurrence of these
interactions has made the assessment of drug-protein binding in blood an important part of
the adsorption/distribution/metabolism/excretion (ADME) data needed prior to the approval
of new pharmaceutical agents. In addition, the binding of drugs with serum agents can help
to improve the solubility of hydrophobic agents and can be an important source of direct or
indirect competition between drugs or drugs and endogenous compounds such as fatty acids
[1,2,8-13]. These effects make it essential for pharmaceutical chemists to determine and
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understand how drugs may interact with proteins or other binding agents in blood and how
this binding may be affected by the presence of other compounds in serum [1,2,8-15].

Ultrafiltration and equilibrium dialysis are often used to study the binding of drugs to serum
agents [1,2,4,5,16-18], but many other techniques can be employed for such work. These
other methods have included structural studies based on X-ray crystallography [11] and
binding assays based on fluorescence or absorption spectroscopy [19], capillary
electrophoresis [20-26], surface plasmon resonance (SPR) [27] and nuclear magnetic
resonance (NMR) spectroscopy [28,29]. It is also possible to study these interactions by
using chromatographic systems. One chromatographic approach that has been of great
recent interest for such work is high-performance affinity chromatography (HPAC)
[10,12,14,15,30]. This review will look at how HPAC can be used in these studies and will
explore the various types of information that can be gained by this method when
investigating drug interactions with serum proteins and other binding agents. Methods for
determining binding constants, characterizing binding sites, examining drug-drug
interactions, and studying drug-protein dissociation rates will be presented. Applications
will be given that illustrate the use of HPAC with serum binding agents such as human
serum albumin, α1-acid glycoprotein, and lipoproteins. Recent developments will also be
examined, such as new methods for immobilizing serum agents in HPAC columns, the
utilization of HPAC as a tool in personalized medicine, and HPAC methods for the high-
throughput screening of drug-protein binding.

Overview of HPAC and HPAC-Based Binding Studies
The method of HPAC is a subset of affinity chromatography, in which a biologically-related
agent is used as the stationary phase [31-33]. In HPAC, this stationary phase is placed in a
column that is suitable for use in high-performance liquid chromatography (HPLC). The
retention of solutes in both HPAC and affinity chromatography is based on the specific,
reversible interactions that are often found in biological systems, such as the binding of an
enzyme with a substrate or a drug with a serum protein. These interactions can be examined
in HPAC by immobilizing one of the pair of interacting species onto a solid support and
using this agent as a stationary phase in an HPLC column (see Figure 1). The other species
is then injected onto the column or applied in the mobile phase to examine its interactions
with the immobilized molecule. By examining the elution profile for this retained species,
information can be obtained on the strength of binding between the two agents, the rate of
this interaction, and the binding sites [14,15,30,34-36].

The use of HPAC, or affinity chromatography in general, for studying a biological
interaction is referred to as quantitative affinity chromatography, analytical affinity
chromatography, or biointeraction affinity chromatography. The theory and various
applications of this approach have been discussed in previous reviews [14,15,30,34-36]. As
will be demonstrated in this review, HPAC can be used to provide a variety of information
on a drug-protein interaction. This information can involve data on the degree of binding,
equilibrium constants, number of binding sites, rates of association or dissociation, drug-
drug competition, and even the location of binding sites for a drug on a protein.

One advantage of utilizing HPAC over methods such as ultrafiltration or equilibrium
dialysis for drug binding studies is the ability of HPAC to reuse the same ligand preparation
for multiple experiments. It has now been shown in many studies that columns containing
HSA attached to silica can often be used for 500-1000 injections or sample applications
under conditions that are typically used in drug binding studies (e.g., pH 7-7.4 phosphate
buffer and 4-45°C) [14,36]. Similar long term stability under the same conditions has been
noted with AGP columns [37-39]. This good stability creates a situation in which only a
relatively small amount of protein is needed for a large number of studies (i.e., μg to mg
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quantities for hundreds of experiments), which helps to provide good precision by
minimizing run-to-run variations [14]. HPAC methods are also attractive for use in studies
of drug interactions with serum agents because these methods can be automated with
standard HPLC equipment. Furthermore, these methods are relatively fast and require only
short periods of time for most binding studies, with run times of 5-15 min being common
and some methods even allowing results to be obtained in less than a minute (see later
discussion of high-throughput methods) [14,15]. Another useful feature of HPAC is the
column containing the immobilized binding agent is continuously washed with an applied
solvent between experiments; this feature is useful with immobilized proteins such as HSA
in eliminating the effects produced by common contaminants (e.g., fatty acids) that may
have been present in the original protein sample [30,36].

Serum Agents Examined by HPAC
Many common binding agents for drugs in serum have been investigated by HPAC. Most of
these studies have examined the binding of drugs to HSA and related serum albumins
[10,12,14,15,30,36,41]. HSA is the most abundant serum protein in humans and has a
typical concentration in plasma of 35-50 g/L. This protein has a molecular mass of 66.5 kDa
and contains a single chain of 585 amino acids that is stabilized by 17 disulfide bridges. One
of the functions of HSA is to take part in the binding and delivery of various substances
throughout the body, such as acidic drugs, organic anions, long-chain fatty acids, and some
vitamins [9]. In addition to its use in drug binding studies, HSA and related proteins have
been utilized in HPAC for chiral separations of drugs and other solutes [42-50].

AGP is another serum binding agent that has been examined by HPAC [15,36-41]. This
protein has an approximate molecular mass of 41 kDa. AGP has a heterogeneous
composition that consists of a single polypeptide chain of 181 amino acids and five
carbohydrate groups [51-53]. Normal serum levels of AGP are around 0.5-1.0 g/L, but the
concentration of this protein can increase during disease [53]. Although AGP has a much
lower concentration than HSA in serum, AGP can be a major binding protein for basic or
neutral drugs. Like HSA, AGP has been used in HPAC columns to carry out chiral
separations of drugs and small solutes [39,44,54-64].

Recent work has also explored the use of HPAC in studying the binding of drugs with
lipoproteins [41,65]. A lipoprotein is a soluble complex of lipids and proteins that transports
various non-polar substances in blood, including triglycerides, cholesterol esters, and related
lipids [66-69]. Lipoproteins are often classified based on their density, resulting in five
general categories: chylomicrons, very low density lipoprotein (VLDL), low density
lipoprotein (LDL), immediate low density lipoprotein (ILDL) and high density lipoprotein
(HDL) [67-74]. These lipoproteins have the following typical concentrations in a healthy
fasting adult male: 280 mg/dL HDL, 410 mg/dL LDL, and 150 mg/dL VLDL (Note:
Chylomicrons generally appear only after a meal) [66-68]. Of these various forms, HDL and
LDL are of the most interest in drug binding studies; however, some binding by drugs can
also occur with VLDL [41,65,69,75].

Preparation of HPAC Columns for Drug-Protein Binding Studies
Traditional affinity chromatography is often carried out by using a carbohydrate-based
material as the support (e.g., agarose), while HPAC instead makes use of a more rigid and
efficient support that is suitable for HPLC columns [31-33,41,76]. Examples of supports that
have been utilized in HPAC include modified silica or glass, azalactone beads, hydroxylated
polystyrene media, and some sol gel materials [31,76,77]. Silica has been the main support
used in HPAC [78]; this material has good long-term stability under the pH and buffer
conditions that are typically employed in drug binding studies (e.g., pH 7-7.4), but this type
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of material should not be used at a pH below 2 or above 8. A number of recent studies have
examined the creation and use of monolithic columns that contain proteins such HSA or
AGP [39,42,43,49]. Monolithic supports in chromatography consist of a single block of a
porous polymer or porous silica [42,76,79]. When these supports are combined with the
immobilization of a binding agent, the resulting method is called affinity monolith
chromatography (AMC) [42,79]. Advantages of monolithic supports include their low back
pressures and better mass transfer properties than silica particles, allowing for more efficient
separations or the use of higher flow rates for binding studies in HPAC [39,42,43,49,76,79].
The ability of either silica particles or monoliths to be used at relatively high flow rates and
as part of HPLC systems has made HPAC an attractive tool for the characterization and
high-throughput screening of drug interactions with serum proteins and other binding agents
[42,79,81-87].

An important factor to consider in the development of an HPAC column for drug binding
studies is the degree to which the immobilized binding agent acts as a model for the same
agent in its soluble form in blood or serum. In the case of HSA, many studies have found
that immobilized HSA can provide good qualitative and quantitative agreement with the
drug binding behavior seen for soluble HSA (Note: Similar agreement has been seen with
new types of AGP columns, as discussed later in this section). This work has included a
comparison of HSA columns and soluble HSA in terms of their displacement effects and
allosteric interactions [30,88-96] and their equilibrium constants and rate constants for drugs
[30,88,97-99]. However, there are some cases in which differences in the behavior of HPAC
columns and non-immobilized serum proteins has been noted, such as in work using cross-
linked albumin [44] or cross-linked AGP [100,101]. It is because of these potential
differences that the development of a new type of column for HPAC should be followed by
validation using model compounds with known binding properties before the column is then
utilized to examine other substances [30,102].

There are some commercial albumin columns used for chiral separations, which are
prepared by cross-linking albumin in the presence of glutardialdehyde or N,N’-
disuccinimidyl carbonate on silica [44]. HSA supports that are used in drug binding studies
in HPAC have typically been prepared by covalently immobilizing HSA through its amine
groups. This type of immobilization can be easily carried out by using silica that has been
activated with 1,1'-carbonyldiimidazole [89,103], that has used in the Schiff base method
(i.e., reductive amination) [88,103-105], or that has been activated with an N-
hydroxysuccinimide ester [106-109]. Of these amine-based approaches, the Schiff base and
N-hydroxysuccinimide methods tend to give the best recovery of activity for the final
immobilized protein [107,108]. Some reports have also used albumin that has been adsorbed
to ion-exchange columns and silica [105,109], but some desorption of this protein from
these materials may occur over time. Alternative supports based on agarose [110] or
hydroxyethylmethacrylate [111,112] have been employed in some studies, although silica or
monoliths have been used in most work with HPAC binding studies because of their better
mechanical stability and flow properties [78,79]. It is also possible to immobilize HSA
through its lone free cysteine group by using silica and a sulfhydryl-based coupling method,
which has been shown to give site-selective immobilization for this protein [113]. The use of
sol gels has been reported for the entrapment of soluble BSA [114] and a recent method has
been described by which soluble HSA can be entrapped in dihydrazide-activated silica by
using oxidized glycogen as a capping agent (see Figure 2) [115]. This latter approach can be
used with standard HPLCsupports and has been shown with model systems (e.g., the
binding of HSA with warfarin) to provide essentially 100% activity for the entrapped protein
along with association equilibrium constants that agree with values for the same protein in
its soluble form [115].
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Several types of AGP columns are available commercially for chiral separations [48]. For
instance, a chiral stationary phase can be made by adsorbing AGP to an ion-exchange
support such as diethylaminoethyl silica and then oxidizing this protein with periodate to
form aldehyde groups that can cross-link the AGP through Schiff base formation. Another
reported approach involves the mild oxidation of AGP and the immobilization of this
oxidized protein onto a support that contains hydrazide groups [37-40]. This second
approach has been used with silica particles or various monoliths and has been demonstrated
to give immobilized AGP that correlates well with the behavior of soluble AGP in drug
binding studies [37-40,116]. The entrapment of soluble AGP in dihydrazide-activated silica
by using oxidized glycogen as a capping agent, as described in the previous paragraph for
HSA, has also been reported [115].

Lipoproteins have been immobilized to silica by the Schiff base method for use in HPAC
and drug binding studies. This approach has been utilized with HDL particles and found to
give a column that is stable for over 3000 h of continuous operation in the presence of pH
7.4, 0.067 M phosphate buffer [65]; the same approach has been employed with LDL
particles (see example in next section). It has been shown that these columns can be used in
studies of drug binding with lipoproteins and can provide detailed information on the
processes that are occurring during these interactions [65].

In some cases, modified forms of serum binding agents have been studied by HPAC. For
instance, HPAC has been used to compare the binding capacities of monomeric versus
dimeric HSA for various solutes [117]. Several recent reports have used HPAC to determine
how the non-enzymatic glycation of HSA during diabetes might affect the binding of this
protein with various sulfonylurea drugs (e.g., acetohexamide and tolbutamide) or common
site-selective probes for HSA (i.e., L-tryptophan and warfarin) [118-120]. In addition,
HPAC columns have been developed that contain HSA that has been acetylated [121] or
chemically altered at Sudlow site I by using o-nitrophenylsulfenyl chloride to modify
Trp-214 on HSA [122].

General Approaches for Studying of Drug-Protein binding by HPAC
There are many approaches that can be used in HPAC to examine drug interactions with
binding agents from serum. Zonal elution is the most popular method when information is
desired on drug-drug competition, the overall extent of drug interactions with a binding
agent, or the effect of temperature, pH or solvent polarity on this binding. A zonal elution
experiment typically involves the injection of a narrow plug of analyte onto a column that
contains an immobilized binding agent. The elution time or profile of the analyte is then
monitored. The retention of the analyte will be directly dependent upon how strongly this
analyte is bound by the immobilized agent, while the width and shape of the peak will be
related to the kinetics of these interactions. This method can be used to examine how the
retention of the analyte changes with temperature or as the contents of the mobile phase are
varied, such as occurs during the inclusion of a competing drug or solute. An example of
such a study is shown in Figure 3, in which zonal elution is used to examine the competition
of tolbutamide in the mobile phase with small pulses of L-tryptophan that are injected onto a
column that contains HSA [123]. An important advantage of zonal elution is that it requires
only a small amount of analyte per injection. This method also has the ability to examine
more than one compound per injection, provided that there is adequate resolution between
the peaks for these compounds [30,36].

Frontal analysis is a second technique that can be utilized in HPAC to study the binding of a
drug with a protein or serum binding agent. In this technique, a solution containing a known
concentration of the drug or analyte is continuously applied to a column that contains the
immobilized binding agent. As the immobilized agent binds to the analyte, the column will
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eventually become saturated and the amount of analyte that elutes from the column will
increase. The result is the formation of a breakthrough curve, as illustrated in Figure 4. This
example shows a series of breakthrough curves obtained during the application of R-
propranolol to a column that contains the lipoprotein LDL. If fast association and
dissociation kinetics are present for the interaction being examined in this type of
experiment, the amount of applied analyte that is required to reach the mean position of the
breakthrough curve can be used to obtain information on both the moles of active binding
agent in the column and the equilibrium constant(s) for the analyte as it interacts with this
binding agent. This feature makes frontal analysis attractive for use in detailed studies of
drug-protein binding and in the high-throughput screening of drug-protein interactions
[30,36].

A number of techniques will be described later in this review that can be used in special
situations for drug binding studies [124]. For example, the plate height method and peak
profiling methods are variations on the zonal elution technique that are used to study the
kinetics of drug-protein interactions [34,36,97,98,124-126]. The peak decay method is a
special type of zonal elution that uses fast flow rates and small HPAC columns to examine
the dissociation rates of drugs from immobilized binding agents [127-129]. Finally, ultrafast
affinity extraction is an approach used to rapidly isolate the free fraction of drugs from
samples; this method can be used to either measure the overall binding of a drug in serum or
to study drug-protein binding in aqueous solutions [130-133].

Measurement of the Degree of Drug Binding
An important item to measure when describing drug interactions in serum is the overall
degree of binding that a drug may have with proteins or binding agents in such a sample.
Zonal elution can be used to obtain such information based on the retention factor (k) that is
measured for a small amount of drug that is injected onto an HPAC column containing the
binding agent of interest. The value of k can be determined experimentally by using the
relationship k = (tR – tM)/tM, in which tR is the observed retention time for the drug and tM
is the column void time. If a local equilibrium and linear elution conditions are present
during this measurement (i.e., the value of k is not affected by the amount of injected sample
and fast association/dissociation kinetics are present), Eqn. (1) can be used to relate the
value of k to the fraction of the drug that is bound to the immobilized binding agent (b)
versus the fraction of drug that remains free in solution in the mobile phase (f) [12,30].

(1)

It is then possible from this data to calculate the value of either b or f and the percent binding
by using the fact that b + f = 1. This method for determining the extent of binding for a drug
has been found to give good correlation with ultrafiltration for the interactions of HSA with
various coumarin compounds that have medium-to-strong binding to this protein [134].
Similar work has been conducted with other classes of compounds [135] and has been used
with liquid chromatography/mass spectrometry (LC/MS) for the simultaneous examination
of several drugs in a mixture [136].

In more recent work, HPAC methods have been created to directly measure the free fraction
or bound fraction of drugs and endogenous solutes in clinical samples for use in
personalized medicine. These methods have made use of small HPAC columns for the
ultrafast extraction of free drug fractions [130-133,137]. In one study, ultrafast
immunoaffinity chromatography was used to analyze the bound drug fractions of warfarin/
HSA mixtures [130]. This report used small HPAC columns that could selectively extract
the free fraction of warfarin in less than 180 ms. The HSA and HSA-bound warfarin which
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eluted non-retained from this column were then separated by using internal surface reversed-
phase columns to measure the HSA-bound fraction of warfarin in the sample [130]. This
approach was then used with other antibodies for other targets and combined with a
displacement immunoassay format to measure the free fractions of thyroxine [131] and
phenytoin in clinical samples [132]. These methods have made use of labels that are
detected through on-line measurements of chemiluminescence or near-infrared fluorescence
and have been found to provide good correlation versus reference methods [131,132]. A
similar approach has been developed for the measurement of free carbamazepine fractions
by using HPAC columns for ultrafast immunoextraction followed by detection using LC/MS
[137].

Another recent study demonstrated that the free and bound fractions of a drug in a sample
can also be measured by using immobilized HSA in affinity microcolumns [133]. This
approach is illustrated in Figure 5. First, the drug/protein mixture of interest is injected onto
the HSA microcolumn at a high flow rate. These conditions are chosen so that the free
fraction of the drug in the sample can be extracted by the immobilized HSA while the bound
fraction of the drug in the sample elutes non-retained with the sample proteins. When this
method was tested, an HSA microcolumn was noted to give greater than 95% extraction
within 250 ms for all of the tested drugs. The captured, free fraction of each drug was then
eluted from the HSA microcolumn within 40 s under the same mobile phase conditions,
making it possible to directly determine the free fraction of drug that was present in the
original sample. The degree of binding that was measured by this method for HSA gave
good agreement with values that were obtained by reference methods, such as ultrafiltration
and equilibrium dialysis [133].

Measurement of the Strength of Drug Binding
A more specific measure of the strength of drug binding to a given agent can be obtained by
determining the equilibrium constant for this interaction. One simple means for estimating
this binding strength is through the use of a zonal elution experiment in which a small
amount of drug is injected onto an HPAC column that contains the desired binding agent.
The retention factor k for the injected drug that is measured can then be related through Eqn.
(2) to the number of binding sites the drug has in the column and to the association
equilibrium constants for the drug at these sites [12,30].

(2)

The term mL in this equation is the total moles of all binding sites for the drug in the column
and VM is the column void volume. The association equilibrium constant for the drug at
each of its binding sites on the column is given by the terms KA1 through KAn. The fraction
of each type of site in the column is given by the terms n1 through nn. The summation of the
terms KA1 n1 through KAn nn is also known as the global association equilibrium constant (n
KA), which is directly related to the value of k.

It can be seen from the relationship in Eqn. (2) that the overall retention factor will be
affected by changes in both the number of binding sites available to a drug in the column
and the association equilibrium values for the drug at these sites. This relationship has been
used to compare the activities and properties for HSA columns that have been prepared by
different methods, in which the value of k is first divided by the protein content to correct
for any variations in the total protein content of a support as the immobilization method is
varied [107]. The relative binding of two solutes can also be compared by using Eqn. (2) and
calculating the ratio of their retention factors on the same HPAC column. This technique has
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been used in recent work with the high-throughput screening of drug binding to HSA [138].
However, care must be used when employing Eqn. (2) with drugs that may have multisite
binding to a column because these sites may have different susceptibilities to a loss of
activity during the immobilization process [12,30].

More detailed information on the number of binding sites and their equilibrium constants
can be obtained by using frontal analysis to examine the interactions of a drug with an
immobilized binding agent over an appropriately large range of analyte concentrations. This
method involves first measuring the apparent moles of analyte (mLapp) that are required to
reach the mean position of the breakthrough curve at each applied concentration of the
analyte ([A]). A plot of the data is then examined according to several models to determine
what type of binding is present. For instance, the presence of a 1:1 interaction between the
analyte and the immobilized binding agent should result in a response that follows Eqns. (3)
or (4) [14].

(3)

(4)

According to Eqn. (3), a plot of 1/mLapp versus 1/[A] for a system with 1:1 binding should
provide a linear response with an intercept and slope that can be used to obtain the total
moles of active binding sites in the column (mL, from the inverse of the intercept) and the
association equilibrium constant for this interaction (KA, from the intercept/slope ratio).
Eqn. (4) shows how the same data could be used with non-linear regression to obtain such
information. Similar equations to those shown in Eqn. (4) can be used with non-linear
regression to examine systems with multi-site binding or mixed-mode interactions [14]. This
approach has been used in a number of studies to examine the binding of drugs and other
solutes with HSA and AGP columns [14,30,37,40]. An example of one such study is shown
in Figure 6, in which frontal analysis data for the binding of R-warfarin to HSA was
examined by using Eqn. (3) and a 1:1 binding model [88].

It is possible using HPAC to obtain further information on binding strength by using site-
specific probes and competition studies to examine the interactions of a drug at particular
regions on an immobilized binding agent. This type of information can be acquired through
zonal elution experiments by injecting a small amount of a site-specific probe in the
presence of the immobilized binding agent and several solutions that contain known
concentrations of the drug. Eqn. (5) shows the response that is expected if the injected probe
(A) and drug (I) bind to a single common site on the binding agent [14].

(5)

In this equation, KA and KI are the association equilibrium constants for the interactions of
the immobilized binding agent with the probe and the drug at their site of competition. If
direct competition is occurring between these compounds, then a plot of 1/k versus [I]
should result in a linear relationship that can be used to find the association equilibrium
constant for the drug at its site of competition with the probe. An example of such a study is
shown in Figure 7, in which carbamazepine and propranolol were found to share a common
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binding site on AGP based on the linear behavior of a plot that was prepared for these drugs
according to Eqn. (5) [40].

Competition and Displacement Studies
HPAC is also a powerful tool for examining the effects of one solute on another as both
interact with an immobilized binding agent. This feature makes HPAC valuable in studying
drug-drug interactions or drug-solute competition and displacement effects involving HSA,
AGP or related serum binding agents. Zonal elution is the mode that is most frequently used
for competition and displacement studies [14,30]. This work is performed by injecting a
small pulse of the analyte while a fixed concentration of a potential competing agent is
passed through the column in the mobile phase. It is relatively easy from such an experiment
to determine whether two compounds interact as they bind to the same immobilized agent
because the presence of one compound in the mobile phase will cause a shift in the retention
of the other compound as it passes through the column. To obtain further information on this
interaction (e.g., the nature of this competition and the number of sites that are involved) it is
necessary to compare the zonal elution data to the response that is expected when using
various binding models.

Plots prepared according to Eqn. (5) can be used in a zonal elution competition study to see
if the system fits a model with 1:1 direct competition between the injected analyte and
competing agent. If no interactions are present between these two agents, the measured
value of 1/k should show no significant change as the concentration of the competing agent
is increased. If linear behavior is seen for a plot that is prepared according to Eqn. (5), the
results can be said to show good agreement with a 1:1 model involving direct competition
between the injected analyte and competing agent, as illustrated in Figure 7. Negative
deviations from such a plot can be used to detect the presence of multi-site binding or
possible negative allosteric effects, while a decrease in 1/k with the competing agent
concentration would indicate that positive allosteric effects are present [14,30]. Equations
similar to Eqn. (5) would then be used to describe these more complex systems. These other
equations include relationships that have been developed to describe multi-site systems,
allosteric systems, or systems that involve both the soluble and immobilized forms of a
binding agent [14,34,35]. The information that is generated through this type of experiment
is equivalent to that of a displacement study that is conducted by using equilibrium dialysis
or ultrafiltration. However, the use of HPAC for this work can be conducted in much less
time than these other methods and requires much smaller amounts of the binding agent
[14,15].

An alternative way of analyzing zonal elution data in competition and displacement studies
involves plotting the retention data according to Eqn. (6), in which k0 is the retention factor
for analyte A in the absence of any competing agent and k is the retention factor measured
when a competing agent concentration of [I] is present in the mobile phase [139-141].

(6)

This particular equation can be used in a quantitative fashion to discriminate between direct
competition, non-competition and positive or negative allosteric effects. In this equation, the
immobilized binding agent is viewed as having at least two sites, one for binding to the
injected analyte and the second for possible binding to a competing agent if allosteric effects
are present. In the case of allosteric effects, the interaction of A with the binding agent L
will be altered as I also binds to this agent, causing the association equilibrium constant for
A with the binding agent to change from KAL to KAL’. This change is represented in Eqn.
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(6) by the coupling constant ßI→A, in which ßI→A = KAL’/KAL. According to Eqn. (6), a
plot of k0/(k-k0) versus 1/[I] should give a linear relationship for a simple positive or
negative allosteric interaction; this plot, in turn, can be used to provide the values for ßI→A
and KIL . An example of such a plot is shown in Figure 8 for the allosteric interactions that
occur between R- or S-ibuprofen and S-lorazepam acetate on HSA [140]. Related work has
investigated the allosteric effects that occur on HSA during the interactions of R- or S-
ibuprofen with other benzodiazepine enantiomers, the interactions between warfarin and
tamoxifen on HSA, and the interactions between L-tryptophan and phenytoin on HSA
[139-141]. A useful feature of Eqn. (6) and these experiments is that they can be used to
look independently at both directions of an allosteric effect, thus allowing separate
measurements to be made for the two directions of such an interaction [139].

Frontal analysis may also be utilized as a tool to examine the competition between solutes
for an immobilized binding agent such as HSA [142]. This type of experiment can be carried
out by measuring the change in the breakthrough time for an analyte as different
concentrations of a competing agent are placed in the mobile phase. In this situation, direct
competition between the analyte and the competing agent will lead to a smaller
breakthrough time for the analyte as the competing agent concentration increases. Positive
or negative allosteric effects can also be observed and will lead to a positive or negative shift
in the breakthrough times with an increase in competing agent concentration.

Effects of Temperature and Solution Conditions on Drug Binding
The effects of solution conditions on drug binding have also been examined by HPAC for
many types of serum binding agents [14,15,30,38,59,62-64,100]. Zonal elution can be used
for this purpose to see how a change in column conditions will alter the observed retention
of an injected drug. Factors that can be easily investigated by this method include the pH,
ionic strength, and general content of the mobile phase. This information can be valuable in
determining the relative contributions of various forces to the formation and stabilization of
a solute-protein complex. An example of such a study is shown in Figure 9 [93]. Adjusting
the solvent polarity by adding a small amount of organic modifier to the mobile phase, as
illustrated in Figure 9, can alter solute-protein binding by disrupting non-polar interactions
or by causing a change in solute and protein structure. Changing the pH can affect
interactions between a protein and solute by altering their conformations, net charges, or
coulombic interactions. An increase in ionic strength can decrease coulombic interactions
through a shielding effect but may also cause an increase in non-polar solute adsorption
[14,30]. Although the same types of experiments could be conducted by techniques like
equilibrium dialysis and ultrafiltration, the greater precision and reproducibility of HPAC
makes it a better tool for detecting small changes in binding properties. In addition, the use
of the same protein preparation for many experiments in HPAC significantly reduces the
cost for such work and minimizes the effects of batch-to-batch variations.

Temperature is another factor that is often varied during zonal elution studies to study drug-
protein interactions. For example, the role of temperature in chiral separations on AGP or
HSA columns has been determined in many studies by this approach
[14,15,37,48,58,64,143-146]. If used correctly, this type of experiment can provide not only
qualitative data on the effects of temperature on binding but can also be used to determine
the changes in enthalpy and entropy that are associated with the formation of a drug-protein
complex. For instance, the following relationship shows how the retention factor for a drug
would be expected to vary on an immobilized protein column if this system has single site
binding and the analyte has no other significant source of retention on the column [30].

(7)
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In Eqn. (7), T is the absolute temperature at which the retention factor is measured, R is the
ideal gas law constant, ΔHis the change in enthalpy for the reaction, ΔS is the change in
entropy, and the other terms (mL and VM) are the same as defined previously. The resulting
plot of ln k versus 1/T has often been employed in thermodynamic studies [99,147-154] and
in reports that consider how changes in temperature affect the selectivity of albumin
columns [155,156]. However, caution needs to be exercised in using Eqn. (7) for
thermodynamic studies in that it requires that the value of mL does not change with
temperature. This assumption is not always valid for the binding of drugs to binding agents
such as HSA [93,147]. A better approach is to use frontal analysis to obtain independent
estimates of the association equilibrium constant (KA) and the binding capacity (mL) for the
drug-protein interaction. For a system with single site binding, the resulting KA values that
are obtained from the frontal analysis data can be plotted as a function of temperature
according to Eqn. (8).

(8)

If the resulting plot of ln KA versus 1/T is found to be linear, the slope and intercept can then
be used to obtain the values of ΔH and ΔS [14,30]. Frontal analysis can also be used to see
how the apparent activity of the immobilized protein (mL) changes with temperature
[93,147].

Examining the Location and Structure of Binding Sites
Many reports have used HPAC to determine the location and structure of binding regions for
a drug or solute on protein such as HSA or AGP [14,30,40]. This is often done with zonal
elution and through the use of an injected probe that has a known binding site on the protein.
This type of experiment, which was illustrated earlier in Figures 3 and 7, has been used to
investigate the binding of HSA and other albumins with non-steroidal anti-inflammatory
drugs [157,158], R- and S-ibuprofen [159], cis- and trans-clomiphene [160], digitoxin or
acetyldigitoxin [161,162], phenytoin [163], carbamazepine [147], L-thyroxine [164] and
verapamil [95]. Probe compounds that have been employed in such work include R/S-
warfarin, L-tryptophan, phenylbutazone, R/S-ibuprofen, 2,3,5-triiodobenzoic acid, cis/trans-
clomiphene, acetyldigitoxin, digitoxin, and phenol red [95,147,157-164]. Other agents that
have been explored for use with HSA include various coumarins as probes for Sudlow site I
[165] and indoles as probes for Sudlow site II [166]. Propranolol has been used in the same
manner as a site-selective probe for AGP [40]. It is possible in this approach to use multiple
probes to generate maps that show the relationship between the various binding regions for a
drug on a protein such as HSA [162,163]. As an example, probes for both Sudlow sites I and
II have been recently used with columns containing normal HSA or glycated HSA to
determine how binding by tolbutamide and acetohexamide at these regions may change
during diabetes (see Figure 10) [119,120].

An additional approach for learning about the binding sites on a protein is to use a set of
structurally-related compounds to see how changes in the structure of a drug or solute will
affect their interactions with this protein. This method has been employed to examine the
binding of HSA to L-thyroxine and related thyronines, to warfarin and various coumarins,
and to a variety of indole compounds [164-166]. If a large set of test solutes are sampled, the
data can be used to develop a quantitative structure-retention relationship [167-169]. This
approach has been used to investigate the binding of HSA to benzodiazepines [170] and 2,3-
substituted-3-hydroxy-propionic acids or related compounds [171,172]. Similar approaches
have been employed for determining the structural requirements needed for the binding and
stereoselective interactions of AGP with quinazolone derivatives [145], tetracyclic and
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pentacyclic vinca alkaloid analogs [173], quinolones [174], amino alcohols [175], beta-
adrenolytic drugs and antihistamines [176-178].

Another technique that has been used in HPAC to characterize solute binding to serum
proteins is to use altered forms of the protein that have been modified at specific sites. For
instance, one report used HSA that was treated with p-nitrophenyl acetate, a reagent thought
to mainly modify Tyr-411 (i.e., a residue located at Sudlow site II on this protein). This
modification was shown to change the retention of a variety of solutes injected onto normal
HSA versus modified HSA columns [121]. A similar study used o-nitrophenylsulfenyl
chloride to modify the lone tryptophan residue on HSA, Trp-214, which is located within
Sudlow site I [122]. Other studies have involved a modification of the lone free cysteine
residue on HSA with ethacrynic acid [179] and the use of BSA fragments in the chiral
separation of benzoin and other drugs [180,181].

Kinetic Studies of Drug Interactions
It is also possible to obtain information on the rates of drug interactions with HSA by using
HPAC. Band-broadening measurements can be used as one approach for such work. This
type of experiment involves injecting a small amount of a drug onto an HPAC column while
carefully monitoring the retention time and width of the eluting peak. These injections are
performed at several flow rates on both the HPAC column and on a column of the same size
which contains an identical support but with no immobilized binding agent being present.
This control column is used to correct for any band-broadening that occurs due to processes
other than the binding and dissociation of the drug from the immobilized binding agent. By
comparing plots of the peak widths (or plate heights) for the HPAC and control columns, the
contribution to band-broadening due to the drug interaction with the binding agent can be
obtained. This contribution is represented by Eqn. (9),

(9)

in which u is the linear velocity of mobile phase in the column, k is the retention factor of
the injected solute, Hk is the plate height due to the drug interaction, and kd is the
dissociation rate constant between the drug and immobilized binding agent. According to
this equation, a plot of Hk versus u k/(1 + k)2 should give a slope of 2/kd and an intercept of
zero for a system with 1:1 binding. By using the kd values obtained from these plots along
with independent estimates of the equilibrium constants for the same system, the association
rate constants for the drug and binding agent can also be obtained. This approach has been
employed as a tool to examine the rate of interaction between R- or S-warfarin and D- or L-
tryptophan with HSA over a variety of temperatures [97,98]. The work with D- and L-
tryptophan and HSA also looked at how the association and dissociation rates for this
system varied with pH, ionic strength and the organic modifier content in the mobile phase.
This information has been shown to be important in optimizing chiral separations that use
HSA [97,98] and has been used in the development of new assays for personalized medicine
based on the measurement of free drug or hormone fractions in serum [130-132].

Several other approaches for HPAC have recently been developed that make it possible to
measure the dissociation rates of drugs from serum proteins. Peak profiling is a variation on
the band-broadening method that involves simultaneously determining the band-broadening
for both a retained and non-retained solute on an HPAC column to examine the
contributions of drug association/dissociation versus other band-broadening processes
[125,126]. This approach has been used with data acquired at single flow rates [125] or at
multiple flow rates [126] in studies that have determined the dissociation rate of L-
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tryptophan from HSA. Modified data analysis methods for peak profiling have also been
developed for work with drugs that have significant binding to both an immobilized binding
agent and with the support; this latter approach has been used to examine the kinetics of
dissociation for imipramine and propranolol from HSA columns [124].

The peak decay method is another technique that has been used in HPAC to examine drug
dissociation rates from serum binding agents [127-129]. This technique is performed by first
equilibrating and saturating a small affinity column with a solution that contains the analyte
of interest or an easily detected analog of this analyte. The column is then quickly switched
to a mobile phase in which the analyte is not present. The release of the bound analyte is
then monitored over time, resulting in a decay curve (see Figure 11). The slope of this decay
curve is related to the dissociation rate of the analyte and the mass transfer kinetics within
the column. If the mass transfer rate is known or is fast compared to analyte dissociation,
then the decay curve can be used to provide the dissociation rate constant for the analyte
from the immobilized ligand [127-129]. This approach has been used to examine the release
of various drugs from HSA and gives good correlation with results that have been reported
for the same analytes by other methods [127,128].

There are several advantages in using HPAC for kinetic studies compared to other methods,
such as stopped-flow analysis or SPR. Unlike these other methods, HPAC is not limited to a
particular method for signal production but can instead be used with a variety of detection
formats. For instance, HPAC has already been used for drug binding studies with
absorbance, fluorescence, or mass spectrometric detection. This versatility in detection
format means that a wide range of drugs and drug concentrations can be examined in HPAC
binding studies. It has also been noted that HPAC methods such as peak profiling, band
broadening measurements and peak decay analysis can easily access reaction rates that are
commonly found for drug interactions with serum proteins [97,98,124-129]. This does not
appear to be the case for SPR, which has only been used to examine a limited number of
these systems and even those that have been examined tend to have relatively slowest rates
for such interactions [126]. In addition, there is no background signal from the binding agent
in HPAC because this agent is immobilized within the column and does not pass through the
detector. Many of these advantages also apply to the use of HPAC in determining
association equilibrium constants or other parameters for drug interactions with serum
binding agents.

High-Throughput Screening of Drug Binding
HPAC has been shown in several recent studies to be useful in the high-throughput
screening and rapid analysis of drug-protein binding. Work based on frontal analysis-mass
spectrometry used HPAC to screen mixtures of candidate compounds during the drug
discovery process [182]. An HSA column used under gradient elution conditions (i.e., going
from a pH 7.4, 0.050 M ammonium acetate buffer to a 70:30 mixture of this buffer with 2-
propanol) has also been explored as a rapid means for examining the binding of drugs with
HSA [183]. Another report used both frontal analysis and zonal elution to rapidly analyze
the interaction of various drugs with HSA. In this work, a standard plot based on measured
retention factors and association equilibrium constants was prepared for reference
compounds and then used to determine the association equilibrium constants for other drugs
with HSA [96].

Two recent reports have used affinity microcolumns in HPAC to quickly examine drug-
protein binding [87,138]. In the first of these reports, HSA affinity microcolumns using
silica monoliths were prepared and found to be useful in estimating the retention factors and
plate height measurements for warfarin and carbamazepine. This report was able to take
advantage of the lower backpressure of silica monoliths and the use of column lengths as
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short as 1 mm to decrease the overall analysis times to less than 10 s [87]. The second study
compared binding data that was obtained with HSA affinity microcolumns to data obtained
using longer HPAC columns. This comparison made use of bothzonal elution and frontal
analysis methods and employed HSA affinity microcolumns of various lengths to analyze
the interactions of warfarin and L-tryptophan (see Figure 12). It was again shown that
column lengths as short as 1 mm in length could be used in these studies, significantly
decreasing the analysis times and amount of immobilized protein that was required when
compared to more traditional HPAC columns [138].

Conclusion
This review has examined various ways in which HPAC can be used as an analytical tool in
the study of drug interactions with serum binding agents. The general principles of HPAC
were discussed and it was shown how serum binding agents can be placed onto
chromatographic supports for use in drug binding studies. It was described how HPAC has
already been employed with many drugs and with binding agents such as HSA, AGP and
lipoproteins. Methods that have been used in these studies have included zonal elution,
frontal analysis, ultrafast affinity extraction, band-broadening measurements, peak profiling
and peak decay analysis. With these approaches it has been possible to obtain a wide range
of information on drug interactions with serum binding agents. Examples of the information
that can be generated with HPAC are data on the overall degree of binding of a drug to a
protein or serum agent, the equilibrium constants for this interaction, and the rate constants
for this interaction. It is also possible to determine the number of binding sites for a drug on
a particular protein and to measure the binding strength at each of these sites. The use of
structural analogs of a drug or structural variants of the binding agent can make it possible to
learn about structure of the binding sites. Experiments conducted at different temperatures,
pH values, ion strengths or mobile phase compositions can provide additional data on the
nature of these binding processes.

The many ways in which HPAC can be used in drug binding studies, and the variety of
information this approach can provide, make it a powerful approach for characterizing drug
interactions with serum proteins and other binding agents. Several specific examples of
these applications were provided. Along with more routine drug binding studies, it was
discussed how recent work with tools such as affinity microcolumns and monolithic
supports has allowed for the creation of fast HPAC methods that are suitable for the high-
throughput analysis and characterization of drug binding. Applications in the area of
personalized medicine were also discussed. Some advantages of HPAC in these studies are
its speed, ease of automation, precision, variety of detection formats, ability to use a small
amount of protein for a large number of studies, and the variety of information that can be
obtained with this approach. Based on these advantages and possible applications, it is
expected that HPAC will continue to grow in popularity as an analytical tool for clinical or
pharmaceutical research and in the study of drug interactions with proteins and other binding
agents found in blood.
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Figure 1.
General design of an HPAC system to examine the specific retention and elution of a drug
from a column containing an immobilized protein or binding agent. The drug or desired
analyte is applied or injected with the mobile phase at one end of the column and the elution
of this drug or analyte is monitored at the other end of the column by using an on-line
detector. Non-retained solutes will pass first through the column, followed later by the
retained solutes and drugs.
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Figure 2.
General scheme for entrapment of a biomolecule such as a protein using a glycogen-capped
and hydrazide-activated support. Reproduced with permission from Ref. [115].

Hage et al. Page 25

Curr Drug Metab. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Competition studies based on zonal elution for the injection of L-tryptophan as a site-
selective probe onto an HSA column in the presence of various concentrations of
tolbutamide in the mobile phase. Adapted with permission from Ref. [123].
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Figure 4.
Typical frontal analysis curves obtained for solutions containing various concentrations of
R-propranolol that were applied at 1 ml/min to a 2.1 mm I.D. × 5 cm LDL column at pH 7.4
and 37°C.
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Figure 5.
General scheme for the separation of the free and protein-bound fractions of a drug in a
sample through the use of an affinity microcolumn that contains immobilized HSA.
Reproduced with permission from Ref. [133].

Hage et al. Page 28

Curr Drug Metab. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Frontal analysis results plotted according to Eqn. (3) for R-warfarin on an HSA column at
temperatures (from top-to-bottom) of 45, 37, 25, 15 and 4 °C. Reproduced with permission
from Ref. [93].
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Figure 7.
Zonal elution studies examining the retention of S-propranolol on an AGP column as various
concentrations of carbamazepine were placed into the mobile phase. These measurements
were made at 37°C using pH 7.4, 0.067 M phosphate buffer and the error bars represent a
range of ± 1 S.D. The solid line shows the best-fit response that was obtained when fitting
Eqn. (5) to the data set. Reproduced with permission from Ref. [40].
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Figure 8.
Examination of the allosteric interactions between R- or S-ibuprofen and S-lorazepam
acetate as these drugs bind to HSA, as determined by using HPAC and Eqn. (6). Adapted
with permission from Ref. [140].
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Figure 9.
Change in the retention factors for R- and S-warfarin on an immobilized HSA column as
various concentrations of 1-propanol were placed into a pH 7.4, 0.067 M phosphate buffer.
Adapted with permission from Ref. [93].
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Figure 10.
Plots of 1/k vs. [Acetohexamide], as prepared according to Eqn. (5), for injections of R-
warfarin as a probe for Sudlow site I on columns containing normal HSA (●) or glycated
HSA (■) and in the presence of various concentrations of acetohexamide in the mobile
phase. Adapted with permission from Ref. [118].
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Figure 11.
(a) Elution profiles and (b) natural logarithm of the elution profiles for 100 μL injections of
10 μM racemic warfarin made at 4 mL/min onto 1 mm × 4.6 mm i.d. silica monolith
columns containing immobilized HSA or a control support. These results and those shown
in all later figures were obtained at 37 °C and using pH 7.4, 0.067 M potassium phosphate
buffer as the mobile phase. Reproduced with permission from Ref. [129].
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Figure 12.
(a) Typical chromatograms obtained for R-warfarin and L-tryptophan and (b) the resulting
selectivity factors (i.e., ratio of retention factors) determined R-warfarin versus L-tryptophan
on HSA microcolumns. The results in (a) were generated using HSA microcolumns with
lengths of 20, 5 or 1 mm and an inner diameter of 2.1 mm. The error bars represent a range
of ± 1 S.D. of the mean. Reproduced with permission from Ref. [138].

Hage et al. Page 35

Curr Drug Metab. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


	Characterization Of Drug Interactions With Serum Proteins by Using High-Performance Affinity Chromatography
	
	Authors

	tmp.1389641015.pdf.CV7km

