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Kaposi’s sarcoma-associated herpesvirus (KSHV) infection goes through latent and lytic phases,

which are controlled by the viral replication and transcription activator (RTA). Upon KSHV

infection, the host responds by suppressing RTA-activated lytic gene expression through

interferon regulatory factor 7 (IRF-7), a key regulator of host innate immune response. Lysine

residues are potential sites for post-translational modification of IRF-7, and were suggested to be

critical for its activity. In this study, we analysed the 15 lysine residues for their effects on IRF-7

function by site-directed mutagenesis. We found that some mutations affect the ability of IRF-7 to

activate interferon (IFN)-a1 and IFN-b promoters, to suppress RTA-mediated lytic gene

expression and to repress KSHV reactivation and lytic replication. However, other mutations affect

only a subset of these four functions. These findings demonstrate that the lysine residues of IRF-7

play important roles in mediating IFN synthesis and modulating viral lytic replication.

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the
aetiological agent of Kaposi’s sarcoma, the most common
neoplasm in AIDS patients (Chang et al., 1994). KSHV
infection goes through lytic and latent phases. Latency
enables the virus to establish persistent infection (Moore &
Chang, 2003), whereas lytic reactivation enables the virus
to spread from the lymphoid compartment to endothelial
cells (Grundhoff & Ganem, 2004; Katano et al., 2001). The
switch from latency to lytic replication is controlled by
the viral replication and transcription activator (RTA)
(Gradoville et al., 2000; Lukac et al., 1998; Sun et al., 1998).
RTA activates a number of viral genes, and RTA binding
sites have been identified throughout the genome (Chen
et al., 2009; Ziegelbauer et al., 2006). Eight KSHV genes
have been shown to be direct transcriptional targets of RTA
in the absence of de novo protein synthesis (Bu et al., 2008).
RTA-mediated lytic gene expression can be modulated by
interferon regulatory factor 7 (IRF-7), a key regulator of

type-I interferon (IFN)-dependent innate immune response
(Honda et al., 2005; Naranatt et al., 2004; Zhang & Pagano,
1997, 2002). IRF-7 activates cellular defence genes, including
the IFN genes, IFN-stimulated genes and chemokine genes,
via the IFN-stimulation response element (Tamura et al.,
2008). Upon KSHV infection, IRF-7 competes with RTA for
viral gene promoters to modulate viral transactivation
(Wang et al., 2005). The function of IRF-7 can in turn be
regulated by post-translational modifications including
phosphorylation (Caillaud et al., 2005; Marie et al., 2000),
acetylation (Caillaud et al., 2002), ubiquitination (Kawai
et al., 2004; Ning et al., 2008; Yu et al., 2005) and
SUMOylation (Chang et al., 2009; Kubota et al., 2008).
Lysine residues are potential sites for acetylation, ubiquitin-
ation and SUMOylation, and may serve as targets to
modulate the functions of IRF-7.

In this study, we performed site-directed mutagenesis of
IRF-7 lysine residues and determined the functional effect
of these mutations. Each of the 15 lysine residues, K45,
K50, K61, K92, K120, K179, K209, K296, K303, K341,
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K373, K375, K444, K446 and K452, were mutated
individually to arginine, using primers listed in Supple-
mentary Table S1 (available in JGV Online). To evaluate
whether these mutations affect the stimulation of IFN
promoters, 293T cells (human embryonic kidney cells)
were co-transfected with IFN-a1 promoter- (nt 2110 to
+10) or IFN-b promoter (nt 2280 to +20)-driven
luciferase reporter constructs, and an expression plasmid
encoding wild-type IRF-7 or IRF-7 with a mutated lysine
residue. Luciferase activities were measured (Fig. 1a). As
expected, wild-type IRF-7 showed a 75-fold activation
of the IFN-a1 promoter. However, when various IRF-7
mutants were tested the effects varied (Table 1). The K45R,
K92R and K120R mutants could barely stimulate the IFN-
a1 promoter (2.4-, 0.9- and 1.4-fold, respectively), and
the K61R mutant stimulated very weakly (9.7-fold). The
activation due to mutants K50R, K179R, K303R, K444R,
K446R and K452R was much weaker than for wild-type
IRF-7 (53.9-, 59.0-, 53.0-, 17.9-, 42.3- and 50.3-fold,
respectively). However, the activation of mutants K209R
and K341R was similar (69.8- and 65.7-fold, respectively),
while mutants K296R, K373R and K375R were more
effective (102.2-, 102.1- and 131.2-fold, respectively) than
the wild-type. Wild-type IRF-7 activated the IFN-b
promoter 123.4-fold, whereas K45R, K92R and K120R
mutants were barely able to activate this promoter (4.4-,
1.8- and 2.9-fold, respectively). Mutant K61R activated the
IFN-b promoter very weakly (20.8-fold). The activation
shown by mutants K50R, K179R, K209R, K303R, K341R,
K373R, K444R, K446R and K452R was also weaker than
that for wild-type IRF-7 (66.4-, 79.8-, 85.4-, 75.2-, 80.5-,
88.5-, 55.5-, 66.7- and 92.8-fold, respectively). However,
mutants K296R and K375R showed 155.0- and 128.5-fold
activation, respectively, and were stronger than the wild-
type (Fig. 1b, Table 1). Western-blot analyses revealed that
the variations in activation of the IFN promoters were not
due to differential expression of wild-type or mutated IRF-
7 (lower panels of Fig. 1a, b).

To examine whether IRF-7 lysine residue mutations affect
the repression of RTA-mediated transactivation of viral
promoters, the ORF57 promoter-derived luciferase-
reporter p57Pluc1 (Duan et al., 2001), an RTA expression
plasmid (Wang et al., 2001) and wild-type or mutant IRF-7
plasmids were co-transfected into 293T cells (Fig. 1c). RTA

activated the ORF57 promoter by 105.2-fold, and the
activation was reduced to 34.6-fold when IRF-7 was
expressed. Variation in the mutants’ abilities to repress
RTA activity was observed (Table 1). This repression was
abolished completely for mutants K92R, K120R and K375R
(110.6-, 108.1- and 106.5-fold, respectively) and weakened
markedly for mutants K45R, K179R, K341R and K373R
(84.8-, 76.8-, 88.9- and 82.2-fold, respectively). Mutants
K50R, K61R, K209R, K303R and K444R also had much
smaller repressive activities (55.9-, 53.3-, 50.9-, 51.9- and
54.2-fold, respectively). The repressive activities of mutants
K296R, K446R and K452R were similar to that of wild-type
IRF-7 (34.5-, 42.8- and 38.7-fold, respectively). Variation
in repression capacity was not due to differential
expression of wild-type and mutant IRF-7 protein (lower
panel of Fig. 1c). Interestingly, we also observed an increase
in RTA protein level in the presence of IRF-7 and the
various mutants thereof, but no obvious induction of
expression from the CMV promoter by IRF-7 was detected
(data not shown). It is possible that IRF-7 and its various
mutants may interact with RTA at the protein level to
affect the stability of RTA (Yu et al., 2005).

Since mutation of lysine residues in IRF-7 affected its
repression of RTA function, lysine residues in IRF-7 may
play a role in the regulation of KSHV lytic replication. To
test this hypothesis, Vero cells containing rKSHV.219 were
utilized to study KSHV reactivation from latency.
rKSHV.219 is a recombinant KSHV that expresses GFP
from the EF-1a promoter and red fluorescent protein
(RFP) from the KSHV lytic polyadenylated nuclear (PAN)
RNA promoter. The expression of GFP indicates the
presence of latent infection, whereas RFP expression
indicates lytic gene expression and viral reactivation
(Vieira & O’Hearn, 2004). RTA expression plasmid, wild-
type or mutant IRF-7, or the IRF-7 RNA interference
plasmid were transfected into the rKSHV.219-containing
Vero cells. Control cells were transfected with an empty
vector lacking RTA or IRF-7 coding regions. At 48 h after
transfection, cells were fixed with 2.5 % glutaraldehyde and
observed with a laser-scanning confocal microscope
(FluoView1000S; Olympus). The presence of green fluor-
escence showed the presence of latent KSHV and a small
amount of red signal represented a low level of spon-
taneous lytic reactivation, demonstrating that the RFP

Fig. 1. Lysine residues of IRF-7 affected the activation of IFN promoters and the suppression of KSHV ORF57 transactivation.
(a, b) Lysine residues of IRF-7 modulate the activation of IFN-a1 and IFN-b promoters. Expression plasmids of wild-type (WT) or
each of the lysine-residue mutants of IRF-7 (1 mg), and IFN-a1 promoter (nt ”110 to +10) or IFN-b promoter (nt ”280 to
+20)-driven luciferase reporter (50 ng) were co-transfected into 293T cells. Luciferase activities were measured with a
Luciferase Assay system (Promega) and transfection efficiency was normalized by using the pCMV-b expression plasmid
(100 ng) as an internal control. Numbers above each bar represent fold activation and are normalized to unity, relative to the
case where IRF-7 is absent. Results are the means from three independent experiments and SD are shown. Western blots (WB)
were performed with anti-FLAG M2 (Stratagene) and anti-b-tubulin (Sigma–Aldrich) antibodies. (c) Lysine residue mutants
affect the capacity of IRF-7 to repress KSHV RTA-mediated transactivation of the ORF57 promoter. 293T cells were co-
transfected with ORF57 promoter reporter p57Pluc1 (50 ng), pCMV-Tag50 (20 ng) and an expression plasmid of WT or
mutant IRF-7 (1 mg). The activation multiples shown are normalized to unity, relative to the case where RTA is absent. WB were
performed with anti-RTA (Qin et al., 2010), anti-FLAG M2 and anti-b-tubulin antibodies.
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expression was not activated in the absence of RTA and
IRF-7 (Fig. 2a, control). Transfection with RTA strongly
activated latent KSHV to produce lytic replication, as
demonstrated by the high level of RFP expression (Fig. 2a,
RTA). The reactivation was suppressed by the transient
expression of wild-type IRF-7 (Fig. 2a, IRF-7). When the
expression of IRF-7 was silenced by RNA interference
plasmid pGE1–IRF-7i (Wang et al., 2005) the suppression
of viral reactivation was reversed, suggesting that the
suppression by IRF-7 was specific (Fig. 2a, 7i). Variation in
the levels of suppression of KSHV reactivation was
observed when various IRF-7 mutants were examined
(Table 1). Mutants K92R (Fig. 2a, K92R), K446R and
K452R abolished the suppression of KSHV reactivation.
The suppression activities of mutants K45R (Fig. 2a,
K45R), K50R, K61R, K209R, K296R, K303R, K341R,
K373R, K375R and K444R were all very weak. However,
mutant K120R retained strong suppression function (Fig.
2a, K120R) and mutant K179R behaved in almost the same
way as wild-type IRF-7. These results demonstrated that
some lysine residues affected IRF-7-mediated repression of
KSHV reactivation while others did not.

To investigate the significance of lysine-residue mutations
of IRF-7 in the regulation of KSHV lytic replication, we
used tagged rKSHV.219 virus to study the effects of wild
type and mutant IRF-7, on lytic viral replication in 293T
cells. Some 293T cells were transfected with RTA plasmid
alone to stimulate lytic replication. Alternatively, to test the
effects of IRF-7 on infection, 293T cells were co-transfected
with RTA and wild-type or mutant IRF-7, or the IRF-7
RNA interference plasmid, before infection by rKSHV.219

virus (Fig. 2b). As expected, no green fluorescence was
observed without rKSHV.219 infection (not shown); GFP
expression was seen only upon rKSHV.219 infection, but
no lytic replication (RFP expression) was seen without the
transfection of RTA (Fig. 2b, control). Lytic virus
replication was observed in the presence of RTA,
demonstrating that RTA activated viral lytic replication
(Fig. 2b, RTA only). However, RFP expression was
repressed by the expression of wild-type IRF-7 (Fig. 2b,
RTA+IRF-7). When expression of IRF-7 was silenced by
pGE1–IRF-7i, the repression of RFP expression by IRF-7
was reversed (Fig. 2b, 7i). The effect of different IRF-7
mutants on RFP expression was then examined (Table 1).
Mutants K92R (Fig. 2b, RTA+K92R), K303R, K444R and
K446R could not suppress RTA-activated RFP expression.
Suppression of RFP expression by mutants K45R (Fig. 2b,
RTA+K45R), K61R, K179R, K209R, K296R, K341R,
K375R and K452R was very weak, whereas suppression
by mutants K50R, K120R (Fig. 2b, K120R) and K373R was
almost as good as for wild-type IRF-7. These results
suggested that several lysine residues of IRF-7 played
critical roles in the regulation of KSHV lytic replication.

The use of rKSHV.219 may have some limitations. RFP
expression is under the control of the KSHV PAN
promoter, which may be activated by transfected RTA
(Song et al., 2001). Also, the endogenous rta gene can be
activated, since RTA can auto-activate its promoter (Deng
et al., 2000). It is possible that transfected IRF-7 may affect
RTA-mediated activation of the PAN promoter. In
addition, IRF-7 may affect endogenous IRF-7 target genes,

Table 1. Lysine-residue mutations affect IRF-7 function

++, IRF-7 function abolished; +, IRF-7 function weakened; –, wild-type like or IRF-7 function enhanced.

Mutant Activation of: Suppression of:

IFN-a1

promoter

IFN-b

promoter

RTA-mediated

ORF57

transactivation

KSHV reactivation

in rKSHV.219-containing

Vero cells

KSHV lytic

replication in

293T cells

K45R ++ ++ + + +

K50R + + + + –

K61R ++ ++ + + +

K92R ++ ++ ++ ++ ++

K120R ++ ++ ++ – –

K179R + + + – +

K209R – + + + +

K296R – – – + +

K303R + + + + ++

K341R – + + + +

K373R – + + + –

K375R – – ++ + +

K444R + + + + ++

K446R + + – ++ ++

K452R + + – ++ +
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including the IFN genes, which may affect RTA-mediated
activation of the PAN promoter. Additional experiments
with untagged KSHV will be needed to substantiate our
findings. The effect of IRF-7 lysine residues on the
modulation of other viral promoters and on combinations
of multiple viral and cellular gene functions should also be
investigated.

We have undertaken a comprehensive site-directed muta-
genesis and functional-analysis study of the effect of
mutating each lysine residue of IRF-7 on the modulation
of IRF-7 function. Lysine residues in the DNA-binding
domain (DBD) are critical for the functioning of IRF-7.
Mutants K92R, K45R and K61R abolished, or weakened
significantly, all four functions of IRF-7: activation of IFN
promoters, suppression of KSHV lytic-gene expression and
repression of viral reactivation and lytic replication. Mutants
K50R and K120R affected a combination of these four
functions. The crystal structure of the IRF-7 DBD (Panne
et al., 2007) indicates that K92 and K45 are located in the a2
and L1 domains in the vicinity of the DNA double helix and
may be important for direct DNA binding (Zhang et al.,

2005). K120 and K61 are located in the b4 and a2 domains,
which are folded towards the inside of the molecule, and
may not bind DNA directly. Several lysine residues (such as
K444, K446 and K452) in the activation domain are also
essential for IRF-7 function. Ning et al. (2008) reported that
the triple mutant of IRF-7 (K444, K446, K452) abolished
IRF-7 transactivation of the IFN-a4 promoter, and the K444,
K446 or K452 single mutants dramatically reduce the
activity of IRF-7. Our results further demonstrate that a
single lysine mutation can weaken IRF-7 function markedly.

Currently, we cannot determine whether the effects of
lysine-residue mutations on IRF-7 function are due to
structural alterations or post-translational modifications.
We have observed that all 15 mutants of FLAG-tagged
IRF-7 localized in both the nuclei and the cytoplasm
of 293T cells, whereas wild-type IRF-7 predominantly
localized in the cytoplasm (data not shown). Further
studies will be needed to determine the effect of lysine
residues on the molecular properties of IRF-7 and whether
any of the affected lysine residues have post-translational
modifications.

Fig. 2. Lysine residues affected IRF-7-
mediated repression of KSHV reactivation and
lytic replication. (a) Confocal images of the
effect of IRF-7 on the reactivation of
rKSHV.219 in Vero cells. rKSHV.219-contain-
ing Vero cells were transfected with pCMV–
Tag2 vector (control), pCMV–Tag50 (RTA), or
wild-type/mutant IRF-7 (panels IRF-7, K92R,
K45R and K120R) and pGE1–IRF-7i (7i).
Twenty-four hours post-transfection, expres-
sion of GFP (green) and RFP (red) was
recorded. All of the confocal images of GFP
or RFP, respectively, were captured using
identical parameters. The overlay images of
GFP and RFP are also shown (yellow). (b)
Confocal microscope images of 293T cells
infected by rKSHV.219. The 293T cells were
transfected with pCMV–Tag2 vector (control)
or pCMV–Tag50 (RTA only), or co-transfected
with pCMV–Tag50 and WT or mutant IRF-7
(panels RTA+IRF-7, RTA+K92R, RTA+
K45R and RTA+K120R) and pGE1–IRF-7i
(7i). One day after transfection, 293T cells
were infected with rKSHV.219. Expression of
GFP and RFP was recorded 2 days after
infection. All of the confocal experiments
using rKSHV.219-containing Vero cells and
rKSHV.219-infected 293T cells were repeated,
blindly and independently, and the same
patterns were observed. Bars, 50 mm.
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In conclusion, lysine residues affect the function of IRF-7:
mutants K45R, K61R, K92R and K120R failed to stimulate
IFN promoters; mutants K92R, K120R and K375R
abolished IRF-7 repression of the RTA-activated ORF57
promoter; mutants K92R, K446R and K452R abolished
repression of viral reactivation in rKSHV-containing Vero
cells; and mutants K92R, K303R, K444R and K446R could
not suppress RTA-activated lytic replication in a single-
cycle infection experiment. To our knowledge, this is the
first report to describe the systematic mutation of each and
every lysine residue of IRF-7 and to have tested their effect
on IRF-7 function. Our findings demonstrate the import-
ance of lysine residues in IRF-7-regulated IFN synthesis
and in innate immunity against viral lytic replication. An
understanding of the structural function of IRF-7 will
decipher how hosts counteract KSHV infection via the IFN
pathway.
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Supplementary Table S1. Primers used for the mutagenesis of IRF-7 

The underlined sequences indicate the codons for arginine residues. 

 

IRF-7 mutant Primer sequence 

5′-GTTTCCGCGTGCCCTGGAGGCACTTCGCGCGCAAGGAC-3′ K45R 
5′-GTCCTTGCGCGCGAAGTGCCTCCAGGGCACGCGGAAAC-3′ 
5′-CACTTCGCGCGCAGGGACCTGAGCGAGGCCGACGCGCGCATC-3′ K50R 
5′-GATGCGCGCGTCGGCCTCGCTCAGGTCCCTGCGCGCGAAGTG-3′ 
5′-CTGAGCGAGGCCGACGCGCGCATCTTCAGGGCCTGGGCTGTG-3′ K61R 
5′-CACAGCCCAGGCCCTGAAGATGCGCGCGTCGGCCTCGCTCAG-3′ 
5′-ACTGCGGAGCGCGCCGGCTGGAGAACCAACTTCCGCTGCGCACT-3′ K92R 
5′-AGTGCGCAGCGGAAGTTGGTTCTCCAGCCGGCGCGCTCCGCAGT-3′ 
5′-ACTCGGGGGACCCGGCCGACCCGCACAGGGTGTACGCGCTCAG-3′ K120R 
5′-CTGAGCGCGTACACCCTGTGCGGGTCGGCCGGGTCCCCCGAGT-3′ 
5′-CAGCTGGTGACAGGGGGGACCTCCTG-3′ K179R 
5′-CAGGAGGTCCCCCCTGTCACCAGCTG-3′ 
5′-GATCCAGTCCCAACCAGGGCTCCTGGAGAGGGACAAG-3′ K209R 
5′-CTTGTCCCTCTCCAGGAGCCCTGGTTGGGACTGGATC-3′ 
5′-GTGACCATCATGTACAGGGGCCGCACGGTGCT-3′ K296R 
5′-CAGCACCGTGCGGCCCCTGTACATGATGGTCAC-3′ 
5′-ACAAGGGCCGCACGGTGCTGCAGAGGGTGGTGGGACAC-3′ K303R 
5′-GTGTCCCACCACCCTCTGCAGCACCGTGCGGCCCTTGT-3′ 
5′-GAGCTCCCGGACCAGAGGCAGCTGCGCTACAC-3′ K341R 
5′-GTGTAGCGCAGCTGCCTCTGGTCCGGGAGCTC-3′ 
5′-CTGTGGGCCCGGCGCATGGGCAGGTGCAAGGTGTAC-3′ K373R 
5′-GTACACCTTGCACCTGCCCATGCGCCGGGCCCACAG-3′ 
5′-GCATGGGCAAGTGCAGGGTGTACTGGGAGGTG-3′ K375R 
5′-CACCTCCCAGTACACCCTGCACTTGCCCATGC-3′ 
5′-GCTGGGAGGCCCAGGGAGAAGAGCCTGGTC-3′ K444R 
5′-GACCAGGCTCTTCTCCCTGGGCCTCCCAG-3′ 
5′-GAGGCCCAAGGAGAGGAGCCTGGTCCTGGTGAAG-3′ K446R 
5′-ACCAGGACCAGGCTCCTCTCCTTGGGCCTCCCAG-3′ 
5′-CTGGTCCTGGTGAGGCTGGAACCCTGGCTGTG-3′ K452R 
5′-CAGAGCCAGGGTTCCAGCCTCACCAGGACCAG-3′ 
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