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Altered Ratio of T Follicular Helper Cells to T Follicular 
Regulatory Cells Correlates with Autoreactive Antibody 
Response in Simian Immunodeficiency Virus–Infected Rhesus 
Macaques

Wenjin Fan1, Andrew James Demers1, Yanmin Wan, and Qingsheng Li
Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of 
Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583

Abstract

Individuals with chronic HIV-1 infection have an increased prevalence of autoreactive Abs. Many 

of the isolated HIV broadly neutralizing Abs from these individuals are also autoreactive. 

However, the underlying mechanism(s) that produce these autoreactive broadly neutralizing Abs 

remains largely unknown. The highly regulated coordination among B cells, T follicular helper 

(TFH) cells, and T follicular regulatory (TFR) cells in germinal centers (GCs) of peripheral 

lymphatic tissues (LTs) is essential for defense against pathogens while also restricting 

autoreactive responses. We hypothesized that an altered ratio of TFH/TFR cells in the GC 

contributes to the increased prevalence of autoreactive Abs in chronic HIV infection. We tested 

this hypothesis using a rhesus macaque (RM) SIV model. We measured the frequency of TFH 

cells, TFR cells, and GC B cells in LTs and anti-dsDNA and anti-phospholipid Abs from Indian 

RMs, with and without SIV infection. We found that the frequency of anti-dsDNA and anti-

phospholipid Abs was much higher in chronically infected RMs (83.3% [5/6] and 66.7% [4/6]) 

than in acutely infected RMs (33.3% [2/6] and 18.6% [1/6]) and uninfected RMs (0% [0/6] and 

18.6% [1/6]). The increased ratio of TFH/TFR cells in SIV infection correlated with anti-dsDNA 

and anti-phospholipid autoreactive Ab levels, whereas the frequency of TFR cells alone did not 

correlate with the levels of autoreactive Abs. Our results provide direct evidence that the ratio of 

TFH/TFR cells in LTs is critical for regulating autoreactive Ab production in chronic SIV infection 

and possibly, by extension, in chronic HIV-1 infection.

Human immunodeficiency virus–1 infection of humans leads to immunodeficiency that is 

characterized by massive CD4+ T cell depletion. Importantly, HIV also causes B lymphocyte 

dysfunction (1–3) and an increased prevalence of autoreactive Abs (4–7). During chronic 

infection, HIV neutralizing Abs, including broadly neutralizing Abs (bNAbs), have 
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enhanced polyreactive and autoreactive characteristics (8–12). For example, a previous study 

found that 101 of 134 monoclonal anti-HIV–gp140 neutralizing Abs isolated from HIV-

infected individuals were polyreactive and likely to bind self-antigens (9).

To maintain humoral immunologic homeostasis, a highly regulated coordination among B 

cells, T follicular helper (TFH) cells, and T follicular regulatory (TFR) cells in germinal 

centers (GCs) of peripheral lymphatic tissues (LTs) is required. These interactions promote 

the development of protective Abs against pathogens (13–16); however, disruption of 

homeostatic GC reactions can result in the production of autoreactive Abs or even 

autoimmune disease (17–19). Regulation of GC reactions, in part, is dependent on the 

frequency of TFH cells. TFH cells are indispensable for Ab affinity maturation of B cells (15, 

16), in which a stochastic process of somatic hypermutation results in a greater risk for 

development of autoreactive B cells (20, 21). Previous studies have shown that increased 

frequency of TFH cells in mice was associated with an increased frequency of GC B cells, 

and the mice were more prone to develop humoral-mediated autoimmunity (18, 22). 

Furthermore, increased frequency of TFH cells has been implicated in the pathogenesis of 

autoimmune disease in humans (23, 24).

TFR cells regulate GC reactions through interactions with GC B cells and TFH cells. TFR 

cells are an effector subset of regulatory T cells (TREGs) that can suppress TFH cell function, 

limit the frequency of TFH and B cells in GCs (14, 25–28), and prevent autoreactive Ab 

production (29–31). During chronic HIV infection of humans and SIV infection of rhesus 

macaques (RMs), TFH cells exhibit increased frequency (32, 33). Recent studies revealed 

that the frequency of TFR cells in the LTs of SIV-infected RMs declines postinfection (34, 

35); however, the role of TFH and TFR cells in autoreactive Ab production and the frequency 

of GC autoreactive B cells in HIV-infected individuals remain largely unknown.

We hypothesized that an altered ratio of TFH/TFR cells in the GC contributes to the increased 

prevalence of autoreactive Abs in HIV infection. We tested this hypothesis using an RM SIV 

model, which is the best available model of HIV infection in humans. We measured 

autoreactive anti-dsDNA and anti-phospholipid Abs in peripheral blood and quantified the 

frequency of TFH, TFR, and B cells in the GC of LTs. We found that an increased ratio of 

TFH/TFR cells in SIV infection correlated strongly with anti-dsDNA and anti-phospholipid 

Ab levels, whereas the frequency of TFR cells alone did not correlate with autoreactive Ab 

levels. Our results provide direct evidence that the proper balance and adequate ratio of 

TFH/TFR cells are crucial in regulating the quality of GC reactions and autoreactive Ab 

production in SIV infection and possibly, by extension, HIV-1 infection.

Materials and Methods

Virus and animals

This study was reviewed and approved by the Institutional Animal Care and Use Committee 

at the University of Nebraska-Lincoln (protocol number 559) and BIOQUAL, Inc. (protocol 

number 10-0000-01). Adult male Indian RMs (Macaca mulatta) were housed and 

maintained in animal-housing facilities at BIOQUAL, in accordance with the Guide for the 
Care and Use of Laboratory Animals. All animals were free of simian retrovirus type D, 

Fan et al. Page 2

J Immunol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simian T-lymphotropic virus type 1, and herpes B virus. Animals were sedated with 

ketamine or TELAZOL for all technical procedures and were fully anesthetized for SIV 

intrarectal inoculation with SIVmac251 (3.4 × 104 TCID50). Animals were euthanized by 

exsanguination, under deep (surgical plane) anesthesia using TELAZOL, which was 

performed under the direction of the attending veterinarian on a designated date. Macaques 

were euthanized before SIV infection, at days 28 and 180 d postinfection (n = 3 for each 

time point). We also included four additional lymph node tissue samples from RMs not 

infected with SIV. Longitudinal peripheral blood samples from three macaques were 

collected before infection, as well as at 28 and 180 d postinfection (dpi). Three additional 

peripheral blood specimens were included at 180 dpi.

Detection of total IgG, SIV Env Ab, and anti-phospholipid and anti-dsDNA Abs in plasma 
by ELISA

Total IgG in plasma was detected using a Monkey IgG ELISA kit (catalog number IGG-3; 

Life Diagnostics). SIV-specific Env Ab titers were determined using ELISA. SIVmac239 

gp130 Env protein [from Dr. K. Uberla (36)] was obtained through the National Institutes of 

Health AIDS Reagent Program (catalog number 12797). High-binding flat-bottom 96-well 

plates (catalog number 3361; Corning, Kennebunk, ME) were coated with SIV-mac239 

gp130 protein (1 µg/ml) and blocked with PBS containing 5% milk. A two-fold serial 

dilution of plasma sample (starting at 1:200) was added to each well. Plates were incubated 

at 37°C for 1 h. After incubation, plates were washed with washing buffer (0.5% Tween-20 

in PBS), 0.16 µg/ml goat anti-human IgG-HRP (catalog number 627120; Invitrogen) was 

added, and plates were stored at 37°C for 1 h. Plates were washed and developed using OPD 

substrate (catalog number P9187-50SET; Sigma) and stopped with 1 M H2SO4. Absorbance 

was read at 490 nm with an ELx800 Microplate Reader (BioTek, Winooski, VT). The cutoff 

value was set as the mean OD of control plasma + 3 SD. Binding Ab titers were defined as 

the end point dilution with an OD value greater than the cutoff + 0.05.

Anti-phospholipid and anti-dsDNA IgG autoreactive Abs were detected in plasma using 

commercial kits (ORGENTEC Diagnostika, Mainz, Germany), and absorbance was detected 

at 450 nm (ELx800 Microplate Reader; BioTek) for samples and standards. Using known 

standard concentrations (provided by the ELISA manufacturer), a linear-regression analysis 

(Microsoft Excel) was used to calculate IgG concentrations for each sample. Cutoff values 

were determined based on recommendations from the manufacturer (2.5 times the OD value 

of the negative control).

Flow cytometry

Detection of TFH and TFR cells—A total of 3–4 × 106 cryopreserved cells isolated from 

lymph node tissues was stained for viability using a LIVE/DEAD Fixable Blue Dead Cell 

Stain Kit, following the manufacturer’s instructions (Life Technologies/Thermo Fisher 

Scientific, Waltham, MA). Cells were then stained with Brilliant Stain (BD Biosciences, 

Franklin Lakes, NJ) in FACS buffer with titrated amounts of the following surface Abs to 

detect T follicular cells: mouse anti-human CD3–Alexa Fluor 700 (clone SP34-2, 1:60; BD 

Biosciences), mouse anti–human CD4–Brilliant Violet 605 (clone OKT4, 1:60; BD 

Biosciences), mouse anti–human CXCR5-PE (clone MU5UBEE, 1:40; eBioscience, San 

Fan et al. Page 3

J Immunol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Diego, CA), mouse anti–human PD-1–Brilliant Violet 785 (clone EH12.2H7, 1:30), mouse 

anti–human CD20–Brilliant Violet 421 (clone 2H7, 1:40), mouse anti–human CCR7–

Brilliant Violet 711 (clone G043H7, 1:40), mouse anti–human CD95–PE–Cy7 (clone DX2, 

1:30), and mouse anti–human ICOS–PerCP–Cy5.5 (clone C398.4A, 1:75) (all from Bio-

Legend, San Diego, CA), and mouse anti–human CD25–FITC (clone 4E3, 1:15; Miltenyi 

Biotec, Bergisch Gladbach, Germany).

Foxp3 staining—After surface staining, cells were fixed and permeabilized for 30 min in 

1× Foxp3 Fix/Perm Buffer (eBioscience) and then stained with Foxp3-allophycocyanin 

(clone PCH101; eBioscience). Cells were washed twice with 1× Perm Buffer (eBioscience). 

Foxp3 Ab was added to cells and allowed to incubate for 45 min, and cells were washed 

twice with 1× Perm Buffer and washed once in FACS buffer prior to running on a BD LSR 

II flow cytometer (BD Biosciences). A minimum of 700,000 live lymphocyte-gated events 

was detected for each sample. Gating strategy was determined based on fluorescence minus 

one and appropriate isotype controls.

Detection of GC B cells—Cryopreserved lymphocytes isolated from lymph node tissues 

were stained with the following Abs: mouse anti-human CD3–Alexa Fluor 700 (clone 

SP34-2, 1:60; BD Biosciences), mouse anti–human Ki67–Alexa Fluor 488 (clone B56, 1:50; 

BD Biosciences), mouse anti–human BCL-6–PE–Cy7 (clone K112-91, 1:50; BD 

Biosciences), and mouse anti–human CD20–allophycocyanin (clone 2H7, 1:40; BioLegend). 

BCL-6 staining was performed using the Foxp3 staining procedure described above. A 

minimum of 350,000 lymphocyte-gated events was collected for each sample on a BD 

FACSAria II Flow Cytometer (BD Biosciences).

Real-time RT-PCR to quantify SIV viral loads in plasma

Real-time RT-PCR assays were performed to determine the levels of SIVmac251 in plasma 

specimens using a previously reported method (37).

Immunofluorescence staining

To visualize TFH and TFR cells in lymph node tissues, immunofluorescence staining was 

conducted according to a previously described method (38). Goat polyclonal anti-human 

PD-1 Abs (catalog number AF1086, 1:100; R&D Systems), rabbit monoclonal anti-human 

CD4 Abs (clone EPR6855, 1:200; Abcam), and mouse monoclonal anti-human Foxp3 Abs 

(clone 236A/E, 1:200; Abcam) were incubated with tissues sections. Following primary Ab 

incubation and washing, donkey anti-goat IgG conjugated with Alexa Fluor 488 (catalog 

number A-11055, 1:100), donkey anti-rabbit IgG conjugated with Alexa Fluor 594 (catalog 

number R37119, 1:100), and donkey anti-mouse IgG conjugated with Alexa Fluor 647 

(catalog number A-31571, 1:100; all from Thermo Fisher Scientific) were used. Cell nuclei 

were counterstained with DAPI. A Nikon A1R-TiE live cell imaging confocal system was 

used to visualize and capture images of stained samples.

Statistics

Statistical analyses of cell subset frequencies detected by flow cytometry were performed 

using a Mann–Whitney nonparametric t test (GraphPad Prism). Correlation analyses were 
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performed using the Pearson r correlation method (GraphPad Prism). The p values < 0.05 

were considered significant.

Results

Increased autoreactive Abs in chronic SIV infection

In individuals with chronic HIV infection, the prevalence of autoreactive Abs increases 

significantly (4–7). Previous studies reported that up to 40–50% of HIV-infected individuals 

produce Abs against the self-antigens cardiolipin and phosphatidylserine (6). An elevated 

frequency of autoreactive Abs has also been observed in SIV-infected RMs (39). We first 

sought to determine the frequency of autoreactive Abs in our cohort of SIV-infected RMs. 

SIV infection was confirmed by detection of SIV viral RNA in plasma using real-time 

quantitative PCR and in LTs using in situ hybridization (data not shown). Anti-dsDNA and 

anti-phospholipid autoreactive Abs were measured by ELISA in plasma specimens from 

RMs that were SIV naive or were in the acute (28 dpi) or chronic (180 dpi) stage of SIV 

infection.

We found that the levels of anti-dsDNA Abs at the chronic stage of SIV infection were 

significantly increased compared with uninfected animals (p = 0.0050) (Fig. 1A). The level 

of anti-dsDNA Abs in chronically infected RMs was also higher than in animals in the acute 

stage of SIV infection (p = 0.0737), but the difference was not statistically significant. The 

percentage of RMs that had anti-dsDNA Abs was much higher in those that were chronically 

infected (83.3%, 5/6) compared with uninfected RMs (0%, 0/6) and acutely infected RMs 

(33.3%, 2/6).

A similar trend was observed for anti-phospholipid (a mixture of cardiolipin, phosphatidyl 

serine, phosphatidyl inositol, phosphatidic acid, and human β-2-glycoprotein I) autoreactive 

Abs. Anti-phospholipid Ab levels in chronic SIV infection were increased significantly 

compared with uninfected animals (p = 0.0425) (Fig. 1B). The percentage of animals with 

anti-phospholipids Abs was much higher in association with chronic infection (66.7%, 4/6) 

than with no infection (18.6%, 1/6) or acute infection (18.6%, 1/6). Our results confirmed 

the increased prevalence of autoreactive Abs during chronic SIV infection.

To determine whether there is a correlation between the levels of autoreactive Abs and total 

IgG, we measured total IgG in plasma and performed a correlation analysis of total IgG 

levels and autoreactive Ab levels. We found an increased trend in total IgG in RMs with 

chronic SIV infection compared with acute and uninfected RMs; however, this increase was 

not statistically significant (Supplemental Fig. 1A). No significant correlation between total 

IgG levels and autoreactive Ab levels was found (Supplemental Fig. 1B, 1C).

Altered frequency of TFH and TFR cells in LTs following SIV infection

Next, we sought to examine the frequency of TFH and TFR cells in LTs during acute and 

chronic SIV infection using flow cytometry. We gated TFH and TFR subsets according to 

published methods (34) (Fig. 2A). The percentage of TFH cells (Foxp3− CXCR5+ PD-1hi 

ICOS+ CD4 T cells) within total lymphocytes and CD4 T cells decreased significantly in 

acute SIV infection compared with SIV-naive animals (Fig. 2B, 2C). During chronic 
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infection, the TFH cell population in LTs expanded significantly, and their frequency 

increased significantly within CD4 T cells (Fig. 2C) and total lymphocytes (Fig. 2B), 

regardless of the decline in CD4 T cells in total lymphocytes (data not shown). During acute 

SIV infection, the percentage of TFR cells (Foxp3+ CD25+ CXCR5+ CCR7− CD4 T cells) 

within total lymphocytes and CD4 T cells was significantly decreased (Fig. 2D). However, 

TFR cell frequency in CD4 T cells also increased significantly during chronic infection 

compared with acute SIV infection (Fig. 2E). Furthermore, we determined the location of 

TFH and TFR cells in lymph node tissues using immunofluorescence staining (Fig. 3). TFH 

cells, defined as PD-1+ CD4+ Foxp3− (Fig. 3F, 3G, yellow arrows), and TFR cells, defined as 

PD-1+ CD4+ Foxp3+ (Fig. 3F, 3G, white arrows), were identified in GCs.

Altered frequency of GC B cells in LTs following SIV infection

Next, we evaluated the frequency of GC B cells (CD3− CD20+ Ki67+ BCL-6+) in LTs of 

SIV-infected macaques using flow cytometry, according to previously published methods 

(32, 40) (Fig. 4A). The frequency of GC B cells did not change significantly during acute 

infection, but it increased significantly during chronic infection (Fig. 4B). Because TFH cells 

and TFR cells have been suggested to play a critical role in regulating the survival of GC B 

cells (13–16), we sought to determine whether there was an alteration in the TFH/TFR cell 

ratio and what role it played in the expansion of GC B cells during SIV infection. Consistent 

with the increased frequency of GC B cells, the TFH/TFR cell ratio was also increased 

significantly during chronic SIV infection (Fig. 4C). We found that the TFH/TFR cell ratio 

correlated strongly with GC B cells in uninfected and SIV-infected RMs (Fig. 4D); however, 

TFH cells alone correlated with GC B cells in SIV-infected RMs but not in uninfected RMs 

(Supplemental Fig. 2A). There was no correlation between TFR cells and GC B cells in SIV-

infected or uninfected RMs (Supplemental Fig. 2B).

Autoreactive Ab levels correlated strongly with TFH/TFR cell ratio

To examine the relationship between autoreactive Abs and TFH cells, TFR cells, and GC B 

cells, we performed a set of correlation analyses in SIV-infected and uninfected RMs. We 

found that the frequency of GC B cells had a weak correlation with anti-dsDNA autoreactive 

Abs (p = 0.0471) but not with anti-phospholipid autoreactive Abs (p = 0.0634) (Fig. 5A). 

The frequency of TFH cells correlated weakly with anti-dsDNA autoreactive Abs (p = 

0.0373), but not with anti-phospholipid autoreactive Abs (p = 0.0832) (Fig. 5B). The 

frequency of TFR cells did not correlate with anti-dsDNA or anti-phospholipid autoreactive 

Abs (Fig. 5C); however, the TFH/TFR cell ratio correlated strongly with anti-dsDNA (p = 

0.0004) and anti-phospholipid (p = 0.0018) autoreactive Abs (Fig. 5D). We also did a 

correlation analysis that excluded naive animals, and correlations remained significant (data 

not shown).

We performed correlation analyses to determine the relationship between TREGs and 

autoreactive Abs. There was no association between TREGs (CD4+ Foxp3+ CD25+ 

CXCR5−), expressed as a percentage of total lymphocytes or CD4 T cells, and the levels of 

anti-dsDNA or anti-phospholipid Abs (Supplemental Fig. 3A). In addition, there was no 

association between CCR7+ TREGs (CD4+ Foxp3+ CD25+ CXCR5− CCR7+), expressed as a 
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percentage of total lymphocytes or CD4 T cells, and the level of anti-dsDNA or anti-

phospholipid Abs (Supplemental Fig. 3B).

To decipher the relationship between autoreactive Abs and SIV-specific Env Abs, we 

measured SIV-specific Abs against gp130 in plasma in the six chronically infected animals. 

We did not find a correlation between the level of SIV Env Abs and the level of autoreactive 

anti-dsDNA Abs (r2 = +0.3493, r = +0.5910, p = 0.2167) or anti-phospholipid Abs (r2 = 

+0.1151, r = +0.3393, p = 0.5106).

To investigate the relationship between viral loads and the levels of autoreactive Abs, TFH 

cells, TFR cells, TREGs, and GC B cells in peripheral blood, we performed a series of 

correlation analyses in chronically infected macaques and did not find any significant 

correlations (Supplemental Fig. 4).

Discussion

GCs of peripheral lymphoid tissues are a central hub of humoral immune responses. Within 

GCs, TFH cells and TFR cells regulate the survival and maturation of non-self-antigen–

specific B cells while eliminating autoreactive B cells (13–16). GCs of LTs are also a major 

interaction site of the host immune system and HIV where TFH cells are productively 

infected (41, 42), follicular dendritic cells are deposited with abundant virions (43, 44), and 

B cells are dysfunctional (2, 3). A high prevalence of autoreactive Abs has been observed in 

individuals with chronic HIV infection (4–7) and in SIV-infected RMs (39); however, it 

remains largely unknown what role TFH and TFR cells play in the generation of autoreactive 

Abs in individuals who are chronically infected with HIV. In this study, we addressed this 

question using a well-established RM SIV model of human HIV infection.

Our study provides direct evidence that the ratio of TFH/TFR cells in LTs correlates with 

autoreactive Abs levels in naive RMs and in RMs in the acute or chronic stage of SIV 

infection. We measured plasma IgG autoreactive Abs (anti-dsDNA and anti-phospholipids), 

because it has been reported that there is an elevation in autoreactive Abs to dsDNA and 

phospholipids in macaques chronically infected with SIV (39). We found that the 

concentration of autoreactive Abs was significantly elevated in RMs chronically infected 

with SIV compared with SIV-naive or acutely infected RMs. The majority of chronically 

infected macaques had anti-dsDNA (83.3%) and anti-phospholipid (66.7%) Abs. We then 

determined the frequency of TFH cells, TFR cells, and GC B cells in LTs from uninfected 

RMs and in RMs in the acute and chronic stages of SIV infection. We found that there was 

an altered TFH/TFR cell ratio in LTs of chronically infected RMs, which is consistent with a 

previous study (35); however, that study did not investigate the relationship between the 

TFH/TFR cell ratio and autoreactive Ab production. In this study, we found that the 

frequency of GC B cells did not correlate with anti-phospholipid autoreactive Abs, and it 

correlated only weakly with anti-dsDNA autoreactive Abs, indicating that the production of 

autoreactive Abs is not a direct consequence of GC B cell expansion. The frequency of TFH 

cells alone did not correlate with anti-phospholipid autoreactive Abs, and it correlated only 

weakly with anti-dsDNA autoreactive Abs, whereas the frequency of TFR cells alone did not 

correlate with either autoreactive Ab tested; however, the ratio of TFH/TFR cells correlated 
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strongly with anti-dsDNA and anti-phospholipid Abs. To our knowledge, our study is the 

first to demonstrate the potential role of the TFH/TFR cell ratio in regulating autoreactive Ab 

production in chronic SIV infection, which may be mediated through reduced peripheral 

tolerance for autoreactive B cells. TFR cells express CXCR5, PD-1, and ICOS, which are 

also expressed on TFH cells; however, TFR cells also express CD25, Foxp3, and Helios, 

which are characteristic of suppressive TREGs (25, 26). TFR cells have been shown to 

cooperate with TFH cells in regulating humoral immunity in GCs to fight against pathogens 

(14, 25–28) while also preventing the development of autoimmunity (29–31, 45). Therefore, 

an adequate ratio of TFH/TFR cells is important to maintain homeostasis of the humoral 

immune response.

Of note, HIV bNAbs are usually generated in chronically infected individuals and are often 

autoreactive to self-antigens (8–12). This production of autoreactive HIV bNAbs temporally 

coincides with an altered TFH/TFR cell ratio during chronic infection. The strong correlation 

that we observed between the emergence of autoreactive Abs and an increased ratio of 

TFH/TFR cells provides clues for future studies testing the possible enhanced induction of 

protective Abs by modulating the ratio of TFH/TFR cells during HIV-1 vaccination. We 

would like to point out that our TFH cell frequency in acute SIV infection compared with no 

infection differs from previous studies (32, 46), which may be due to the fact that the 

frequency was calculated based on different denominators and different dpi. There are 

several differences between the study by Petrovas et al. (32) and our study: their TFH cell 

frequency was calculated based on central memory CD4+ T cells as the denominator, 

whereas our TFH cell (CD4+ CXCR5+ PD-1hi CD25− FOXP3−) frequency was calculated 

based on total lymphocytes and CD4+ T cells; their acute cases were pooled samples from 3, 

7, 10, 14, and 21 dpi, whereas we used 28 dpi; and our mean plasma viral load is 3.9 × 106 

copies per milliliter, whereas they did not provide plasma viral load data. There are also 

differences between the study by Hong et al. (46) and our study: their TFH cell (CD4+ 

CXCR5+ PD-1+) frequency was calculated based on CD4+ CXCR5+ cells as the 

denominator, and their acute stage was 14 dpi, whereas we used 28 dpi.

Although this study revealed a direct association between autoreactive Abs and an altered 

TFH/TFR cell ratio in LTs of chronic SIV infection, our sample size was relatively limited, 

and the association is not direct causal evidence. Therefore, future studies are needed to 

elucidate the molecular mechanisms relating to an altered TFH/TFR cell ratio and its impact 

on autoreactive B cells.

In conclusion, we report that an altered TFH/TFR cell ratio in LTs correlates strongly with 

autoantibody levels in chronic SIV infection, and this altered TFH/TFR cell ratio could be 

one important mechanism leading to increased autoantibody production.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Increased autoreactive Abs during chronic SIV infection. Anti-dsDNA (A) and anti-

phospholipid (B) autoreactive Abs increased in chronic SIV infection (180 dpi) compared 

with no infection (0 dpi). Cutoff value for anti-dsDNA Ab is 7.46 IU/ml, and the cutoff 

value for anti-phospholipid Ab is 5.04 GPL-U/ml. Cutoff values were determined based on 

recommendations from the manufacturer or 2.5 times the OD450 value of the negative 

control. *p < 0.05 indicates statistically significant differences between the compared 

groups, Mann–Whitney nonparametric t test. ns, not significant.
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FIGURE 2. 
Frequency of TFH and TFR cells in peripheral lymph node tissues following SIV infection. 

(A) Representative image of flow cytometry gating strategy for TFH and TFR cells. 

Frequency of TFH (Foxp3− PD−1hi CXCR5+ ICOS+) cells in total lymphocytes (B) and in 

CD4 T cells (C) following SIV infection. Frequency of TFR (Foxp3+ CD25+ PD-1hi 

CXCR5+ CCR7−) cells in total lymphocytes (D) and in CD4 T cells (E) following SIV 

infection. Data are mean ± SEM. *p < 0.05, **p < 0.001, Mann–Whitney nonparametric t 
test. ns, not significant.
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FIGURE 3. 
Confocal photomicrographs of TFH and TFR cell localization in lymph node tissues. (A) B 

cell and T cell zones in LTs of an SIV-naive macaque are characterized by the distinct 

density of CD4 T cells (red). The box highlights a B cell follicle. Immunofluorescence 

staining of CD4 [(B), red], PD1 [(C), green], FoxP3 [(D), blue], and nuclei [(F), DAPI] in 

the GC shown in the box in (E). (G and H) Merged images; white and yellow arrows 

indicate representative TFH and TFR cells, respectively. Scale bars, 100 µm.
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FIGURE 4. 
Frequency of GC B cells following SIV infection. (A) Representative image of flow 

cytometry gating strategy for GC B (CD3− CD20+ Bcl-6+ Ki67+) cells. (B) Frequency of 

GC B cells. (C) TFH/TFR cell ratio. (D) Correlation between the frequency of GC B cells in 

LTs and the TFH/TFR cell ratio. Data are mean ± SEM. Pearson r correlation was performed 

for correlation between the frequency of GC B cells and the TFH/TFR cell ratio. *p < 0.05, 

**p < 0.001, Mann–Whitney nonparametric t test.
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FIGURE 5. 
Correlation analyses between autoreactive Abs and the frequency of TFH cells or TFR cells 

or the TFH/TFR cell ratio. Correlation between the levels of anti-dsDNA and anti-

phospholipid autoreactive Abs and the frequency of GC B cells (A), the frequency of TFH 

cells (B), the frequency of TFR cells (C), and the TFH/TFR cell ratio (D), using Pearson r 
correlation.
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Supplemental Figure 1. Total IgG in plasma and its correlation with autoreactive antibodies. 
(A) Total IgG measurement. (B) Correlation analysis with anti-dsDNA autoreactive antibody. 
(C) Correlation analyses with anti-phospholipid autoreactive antibody. 



Supplemental Figure 2.  Correlation analyses of TFH and TFR cells with GC B cells.  (A). TFH cells correlate with 
GC B cells in SIV infected RMs, but not uninfected rhesus macaques. (B) TFR cells correlate with GC B cells 
neither in SIV infected nor uninfected rhesus macaques.



Supplemental Figure 3.  Correlation analyses of auto-reactive antibodies with Treg cells. (A) No correlation 
with Treg cells (CD4+Foxp3+CD25+CXCR5-). (B) No correlation with CCR7+ Treg cells (CD4+Foxp3+
CD25+CXCR5-CCR7+).



Supplemental Figure 4.  Correlation analyses of plasma viral load with autoreactive antibodies, TFH, TFR, TFH/TFR 
ratio, TREGS and GC B cells in peripheral blood. (A) No correlation with autoreactive antibodies, TFH, TFR, TFH/TFR 
ratio and GC B cells. (B) No correlation with Treg cells (CD4+Foxp3+CD25+CXCR5-) and CCR7+ Treg cells (CD4+
Foxp3+CD25+CXCR5-CCR7+).
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