### University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

**Virology Papers** 

Virology, Nebraska Center for

January 2006

# Uneven Distribution of MHC Class II Epitopes within the Influenza Virus

Sherry R. Crowe *Trudeau Institute* 

Shannon C. Miller Trudeau Institute

Pamela S. Adams *Trudeau Institute* 

Richard Dutton *Trudeau Institute* 

Allen G. Harmsen Montana State University, Bozeman, MT

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/virologypub

Part of the Virology Commons

Crowe, Sherry R.; Miller, Shannon C.; Adams, Pamela S.; Dutton, Richard; Harmsen, Allen G.; Lund, Frances E.; Randall, Troy D.; Brown, Deborah M.; Swain, Susan; and Woodland, David L., "Uneven Distribution of MHC Class II Epitopes within the Influenza Virus" (2006). *Virology Papers*. 85. https://digitalcommons.unl.edu/virologypub/85

This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

### Authors

Sherry R. Crowe, Shannon C. Miller, Pamela S. Adams, Richard Dutton, Allen G. Harmsen, Frances E. Lund, Troy D. Randall, Deborah M. Brown, Susan Swain, and David L. Woodland

Submitted March 9, 2005; accepted July 29, 2005; published online August 15, 2005.

### Uneven Distribution of MHC Class II Epitopes within the Influenza Virus

Sherry R. Crowe, Shannon C. Miller, Deborah M. Brown, Pamela S. Adams, Richard W. Dutton, Allen G. Harmsen,\* Frances E. Lund, Troy D. Randall, Susan L. Swain, and David L. Woodland

> Trudeau Institute, 154 Algoquin Ave, Saranac Lake, NY 12983, USA \* Montana State University, Bozeman, MT 59717, USA

Corresponding author – D. L. Woodland, tel 518 891-3080, fax 518 891-5126, email <u>dwoodland@trudeauinstitute.org</u>

#### Abstract

The identification of T cell epitopes is crucial for the understanding of the host immune response during infection. While much is known about the MHC class I-restricted response following influenza virus infection of C57BL/6 mice, with over 16 CD8 epitopes identified to date, less is known about the MHC class II-restricted response. Currently, only a few I-A<sup>b</sup>-restricted T helper epitopes have been identified. Therefore, several important questions remain about how many class II epitopes exist in this system and whether these epitopes are evenly distributed within the most abundant viral proteins. In order to address these questions, we analyzed the repertoire of epitopes that drive the CD4<sup>+</sup> T cell response to influenza virus infection in C57BL/6 (H-2<sup>b</sup>) mice. Using a panel of overlapping peptides from each of the viral proteins we show that approximately 20–30 epitopes drive the CD4 T cell response and that the majority of these peptides are derived from the NP and HA proteins. We were also able to demonstrate that vaccination with one of the newly identified epitopes, HA<sub>211-225</sub>/A<sup>b</sup>, resulted in increased epitope-specific T cell numbers and a significant reduction in viral titers following influenza virus challenge.

Keywords: T cells, MHC II, Influenza, Vaccination

#### 1. Introduction

The T cell response to influenza virus infection is directed at processed viral peptides that are presented on the surface of APCs in the context of MHC class I and class II molecules [1, 2]. While substantial progress has been made in understanding the mechanisms involved in the acquisition and processing of viral proteins into peptides, less is known about the number of epitopes involved in a T cell response. The best understood system is the class I-restricted CD8<sup>+</sup> T cell response to influenza virus infection in inbred mice. For example, 16 H-2K<sup>b</sup> and H-2D<sup>b</sup>-restricted epitopes have been identified in C57BL/6 mice following influenza virus infection and these epitopes have provided insight into the breadth of the T cell response and patterns of immunodominance [3-8]. In addition, these epitopes have provided a basis for mechanistic and vaccine studies, and reagent development, including MHC-peptide tetramers. In stark contrast, much less is known about the class II-restricted CD4<sup>+</sup> T cell response in C57BL/6 mice, with only two putative I-A<sup>b</sup>-restricted epitopes identified in the influenza x31 virus [9, 10]. The comparative lack of information on the CD4<sup>+</sup> T cell response partially reflects the difficulties in identifying potential class II-restricted epitopes. In general, peptide binding to MHC class II molecules is less stringent than for peptide binding to MHC class I molecules. Thus, it has been correspondingly difficult to develop algorithms to predict potential class IIrestricted epitopes [11, 12]. One of the more recently developed algorithms, RANKPEP, allows for the input of protein sequences and then determines the rank and percentile optimal binding of the predicted class II epitope [11, 12]. However, it is still unknown whether this algorithm can accurately predict class II epitopes in most proteins.

Because of the lack of detailed information on class IIrestricted epitopes in the murine influenza virus model, many questions remain unanswered regarding the specificity and diversity of the CD4<sup>+</sup> T cell response. For example, it is believed that the CD4<sup>+</sup> T cell response is much more diverse than the CD8<sup>+</sup> T cell response in terms of the number of epitopes recognized; however, there is no direct evidence for this supposition. In addition, it is not known whether CD4<sup>+</sup> T cell epitopes are evenly distributed within specific viral proteins, although there is some evidence that they may be enriched in regions of proteins that are recognized by antibodies [13, 14]. There is also little information on the capacity of CD4<sup>+</sup> T cell epitopes to mediate effective antiviral immunity in the context of peptide-based vaccines. Clearly, there is a need to develop a better understanding of the numbers and distribution of MHC class II-restricted epitopes in the influenza virus.

Here we analyzed the breadth of the CD4<sup>+</sup> T cell response to influenza virus in C57BL/6 mice using a panel of peptides derived from all the major proteins of the x31 strain of influenza virus and compared the epitopes identified by functional studies with those predicted by the RANKPEP algorithm. We demonstrate that CD4<sup>+</sup> T cell epitopes are unevenly distributed in a limited number of proteins and estimate the total number of distinct epitopes to be in the range of 20–30, most of which were not predicted by the RANKPEP program. Two of these epitopes appear to be immunodominant inasmuch as they drive a major fraction of the CD4<sup>+</sup> T cell response to acute influenza virus infection. Additionally, we found that vaccination with one of these CD4 epitopes resulted in an enhanced CD4<sup>+</sup> T cell response and a significant decrease in viral loads following a subsequent influenza virus challenge.

#### 2. Materials and methods

#### 2.1. Generation of influenza peptides and epitope prediction

Amino acid sequences were obtained from PubMed for the proteins of the A/HK-x31 (x31, H3N2) and A/ PR8/34 (PR8, H1N1) strains of the influenza virus. Lyophilized non-amidated peptides, 15 mers overlapping by 10, were generated and purchased from New England Peptide (Gardner, MA) and solubilized with a 50:50 acetonitrile/H<sub>2</sub>O solution. To avoid multiple freeze/thaw cycles, the peptides were then diluted to a concentration of 0.5 µg/ml with Hank's Balance Salt Solution and aliquoted into round bottom 96 well plates. Potential T cell epitopes (MHC II – I-A<sup>b</sup>) were predicted using the matrixbased algorithm RANKPEP [11, 12].

#### 2.2. Viruses, animals, and infections

The reassortant influenza virus strain A/HK-x31 (x31, H3N2 = A/Hong Kong/1/68 × A/Puerto Rico/8/34) was grown, stored and titrated as previously described [15]. Female C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, ME). Mice (6–12 weeks) were anesthetized by i.p. injection with 2,2,2 tribromoethanol and infected intranasally with 300 or 600 50% egg infectious doses ( $\text{EID}_{50}$ ) of influenza virus.

#### 2.3. Enzyme-linked immunospot assay (ELISpot)

The numbers of IFNy-secreting cells derived from spleens of infected mice were determined after stimulation with influenza peptides in a standard enzyme-linked immunospot (ELISpot) assay [16]. Briefly, 96 well Multiscreen mixed ester nitrocellulose plates (Millipore, Bedford, MA) were coated overnight at 4 °C with 100 µl well of rat anti-mouse IFNy (B-D Pharmingen, San Jose, CA) at a concentration of  $10 \,\mu g/ml$ . The plates were then washed and blocked before the addition of 10<sup>5</sup> responding cells, irradiated (3000 rad) syngeneic normal spleen cells, 10 µg/ml peptide, and 40 U/ml IL-2. Plates were then incubated 48 h at 37 °C and developed overnight with a biontinylated detection antibody, rat anti-mouse IFNy (B-D Pharmingen, San Jose, CA). The plates were then incubated with streptavidin-alkaline phosphatase (DakoCytomation, Carpinteria, CA) for 1 h, washed, and incubated with BCIP/NBT alkaline phosphatase substrate (Sigma, St. Louis, MO) for 2 h at room temperature. Visible spots of IFNy secreting cells were then enumerated using an Olympus SZH stereo zoom microscope system.

#### 2.4. Intracellular cytokine staining

Lymphocytes were collected from the spleens or lung airways (broncoalveloar lavage) as previously described [17]. Following collection, the cells were washed and depleted of erythrocytes. Isolated cells (10<sup>6</sup>cells/condition) were cultured at 37 °C for 5 h in the presence of 10 µg of the indicated peptide in 250 µl of complete tumor medium (CTM) containing 10 µg/ml Brefeldin A (BFA; Epicenter Technologies, Madison, WI) and 10 U/ml IL-2 (R&D Systems, Minneapolis, MN) [18]. After culture, the cells were blocked with monoclonal antibodies to FcRIII/ II receptor (B-D Pharmingen, San Jose, CA) and stained with anti-CD4 conjugated to FITC anti-CD8 conjugated to PerCP, and anti-CD44 conjugated to allophycocyanin antibodies (B-D Pharmingen, San Jose, CA) in PBS/BFA. The cells were then fixed in 2% formaldehyde, permeabilized with buffer containing 0.5% saponin, and stained with anti-IFNy conjugated to PE (B-D Pharmingen, San Jose, CA) monoclonal antibody. 200,000 events were collected on a Becton Dickinson FACSCalibur flow cytometer. Data was analyzed using FlowJo (TreeStar) software.

#### 2.5. Generation of LacZ-inducible T cell hybridomas

Splenocytes were harvested from C57BL/6 mice 28 days after intranasal challenge with A/HKx31.  $30 \times 10^{6}$  immune splenocytes were cultured with  $30 \times 10^{6}$  irra-

diated (3000 rad) peptide pulsed (2  $\mu$ g/ml specific peptide) syngeneic splenocytes for 5 days. Blast cells were enriched by Ficoll and then fused with BWZ.36 cells [19, 20]. The resulting clones were tested for specificity using peptide-pulsed L cells transfected with the I-A<sup>b</sup> MHC genes.

#### 2.6. Antigen presentation assays

Antigen presentation assays were performed as previously described [20–24]. Briefly, hybridomas  $(1 \times 10^5)$ were cultured with virus-infected or peptide-pulsed cells in flat-bottomed microtiter plates. The plates were incubated overnight, washed with PBS and fixed with  $\beta$ -galactosidase fixative (2% formaldehyde/0.2% glutaraldehyde). Cells were washed again with PBS followed by the addition of 50 µl of a 1 mg/ml X-gal solution (5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, and 2 mM magnesium chloride). After 4 h, the hybridomas were examined under a light microscope for the presence of blue cells.

#### 2.7. Bone marrow derived dendritic cells and vaccination

Bone marrow was flushed from the femurs of C57BL/ 6 mice, depleted of erythrocytes, and  $2 \times 10^{6}$  mononuclear cells were placed into a bacteriological Petri dish with media supplemented with 20 ng/ml recombinant murine granulocyte/macrophage colony-stimulating factor (rmGM-CSF; Peprotech, Rocky Hill, NJ) and incubated at 37 °C with 10% CO<sub>2</sub> [25]. On day 3, an additional 10 ml of CTM containing 20 ng/ml rmGM-CSF was added. On day 6, half of the cells were removed, centrifuged, and added back to the same plate in 10 ml of fresh media containing 20 ng/ml rmGM-CSF. On day 8 the cells were removed, centrifuged, and  $2 \times 10^6$  cells were placed into new bacteriological Petri dishes in 10 ml of media supplemented with 20 ng/ml rmGM-CSF. On day 10 of the culture, the cells were resuspended at  $5 \times 10^6$ /ml and incubated at 37 °C for 3 h with peptide at a concentration of  $50 \,\mu\text{g/ml}$  [18]. Following peptide pulsing, the dendritic

Table 1. Influenza virus proteins

cells were washed and 100  $\mu$ l of cells in PBS were injected i.v. into mice at a final concentration of 1 × 10<sup>6</sup> cells per mouse [18]. Three weeks post dendritic cell vaccination, the mice were injected subcutaneously with 100  $\mu$ g of peptide emulsified in incomplete Freud's adjuvant [26].

#### 2.8. Viral titers

Homogenized lungs were serially diluted and injected into three 10 day old embryonated hen eggs per sample. After incubation at 35 °C for 48 h, allantoic fluid from each egg was sampled and assayed for hemagglutinating activity using chicken red blood cells as previously described [27]. Samples were scored as positive when two of the three eggs contained hemagglutinating activity [27].

#### 3. Results

# 3.1. Primary screen for T cell epitopes within influenza virus proteins

To identify MHC class II-restricted epitopes from influenza virus, we synthesized a panel of 15-mer peptides (overlapping by 10 amino acids) from each of the published x31 influenza virus protein sequences and from the PR8 influenza virus hemagglutinin (HA) and neuraminidase (NA) protein sequences (Table 1). Altogether, a total of 1085 peptides were synthesized and are listed in Supplemental Tables 1 and 2. These peptides were then used to screen splenocytes from mice that had recovered from a prior intranasal x31 infection (21 days post-infection) in two independent ELISpot assays. As shown in Figure 1 and Figure 2, many of the peptides elicited ELISpot responses that were above three standard deviations of the background (i.e. more than 10 spots). The majority of these positive responses were elicited by peptides derived from the HA, nucleoprotein (NP), acidic polymerase (PA) and basic polymerase (PB1 and PB2) proteins of x31 (Figure 1). Relatively few positive responses were elicited by peptides derived from the NA, nonstructural (NS1 and

| Protein                | Accession number (PubMed) | Size <sup>a</sup> | Number of peptides |
|------------------------|---------------------------|-------------------|--------------------|
| Hemagglutinin x31 (HA) | PO 3437                   | 566               | 112                |
| Hemagglutinin PR8 (HA) | AAM 75158                 | 565               | 112                |
| Neuramidase x31 (NA)   | BAC 77663                 | 469               | 93                 |
| Neuramidase PR8 (NA)   | NP 775534                 | 454               | 90                 |
| Nucleoprotein (NP)     | BAA 99400                 | 498               | 99                 |
| Acidic polymerase (PA) | BAA 99401                 | 716               | 142                |
| PB1 polymerase (PB1)   | BAA 99402                 | 759               | 151                |
| PB2 polymerase (PB2)   | BAA 99403                 | 757               | 151                |
| Non-structural 1 (NS1) | BAA 99396                 | 230               | 45                 |
| Non-structural 2 (NS2) | BAA 99396                 | 121               | 23                 |
| Matrix protein 1 (M1)  | BAA 99399                 | 252               | 49                 |
| Matrix protein 2 (M2)  | BAA 99398                 | 97                | 18                 |

<sup>a</sup> Amino acids.



**Figure 1.** Infection induces T cells specific for peptides within the hemagglutinin, nucleoprotein protein, acidic polymerase, basic polymerase 1, and basic polymerase 2 of the x31 influenza virus. C57BL/6 mice were intranasally infected with 300  $\text{EID}_{50}$  x31 influenza virus. On day 21 post infection the spleens were removed, enriched for lymphocytes, and incubated for 48 h with irradiated (3000 rad) syngeneic normal spleen cells, peptide, and IL-2 in a standard IFNγ specific ELISpot assay. Shown are the number of IFNγ positive cells from one of two representative experiments following incubation with peptides from the following proteins: HA derived from x31, HA derived from PR8, NP, PA, PB1, and PB2 (all derived from x31). Blue bars indicate the regions containing the known CD8 epitopes and yellow bars indicate the region containing the known CD4 epitope.



**Figure 2.** Infection does not induce T cells specific for peptides within the neuramidase, maxtrix 1, matrix 2, nonstructural 1, and nonstructural 2 proteins of the x31 influenza virus. C57BL/6 mice were intranasally infected with 300 EID<sub>50</sub> x31 influenza virus. On day 21 post infection the spleens were removed, enriched for lymphocytes, incubated for 48 h with irradiated (3000 rad) syngeneic normal spleen cells, peptide, and IL-2 in a standard ELISpot assay. Shown are the number of IFN $\gamma$  positive cells from one of two representative experiments following incubation with peptides from the following proteins: NA derived from x31, NA derived from PR8, M1, M2, NS1, and NS2 (all derived from x31).

NS2) and matrix (M1 and M2) proteins of x31 (Figure 2). In addition, peptides from the HA and NA proteins of PR8 virus did not elicit positive responses from the x31primed spleen cells (Figure 1 and Figure 2), consistent with the relatively limited sequence homology between these proteins in the x31 and PR8 viruses. As expected, the screen clearly identified the regions of NP that had previously been reported by Gao et al. to contain an I-A<sup>b</sup> epitope (NP<sub>261-290</sub> and NP<sub>411-435</sub>) [9, 10]. These regions are indicated by the yellow bars in Figure 1.

Since the splenocytes used for the ELISpot assay included both CD4 and CD8 cells, the data did not discriminate between MHC class II- and class I-restricted responses. Although class I peptides are typically shorter than the 15-mer peptides synthesized for this study, it is known that 15 mer peptides can be presented to CD8<sup>+</sup> T cells under these conditions, albeit with reduced efficiency [28, 29]. Therefore, we scanned the ELISpot data for known immunodominant class I epitopes, NP<sub>366-374</sub>/ PA<sub>224-233</sub>, and PB1<sub>703-711</sub>. Responses to all three of these epitopes were detected in the ELISpot screen as indicated by the blue bars in Figure 1. Taken together, these results suggested that our screen likely identified a combination of class I and class II-restricted epitopes.

# 3.2. Contributions of selected epitopes to T cell responses to primary x31 infection

Since we had identified a reasonable number of epitopes that were not known class I-restricted epitopes, we assumed that most of these epitopes were likely to be class II-restricted CD4 T cell epitopes. To determine whether the RANKPEP algorithm could be used to accurately predict the CD4 epitopes identified in our screen, we screened the x31 viral proteins using the RANKPEP algorithm and, using this program, identified a large number of peptides that were predicted to bind I-A<sup>b</sup> with a range of efficiencies (Table 2 and data not shown). However, there was only a partial correlation with the ELISpot data (Table 2 and data not shown), and many epitopes identified in our functional screen were not identified by the RANKPEP program. Interestingly, the algorithm did predict two potentially strong I-A<sup>b</sup> binding peptides in the NP<sub>261-290</sub> region defined by Gao et al.; 266LRGSVAHKS274 and 277PACVYGPAVA286 (Table 2), suggesting that a subset of CD4 epitopes can be identified by this method.

Next, to further investigate the specificity of the T cell response to influenza virus infection, we selected 36 peptides for additional characterization (Table 2). These peptides were selected on the basis that (i) they gave greater than 20 ELISpots in two independent screening assays, and/or (ii) they had a RANKPEP score of greater than 32% optimal (this score was selected as it typically identified the top 10% of predicted I-A<sup>b</sup> binders in any given protein). We also excluded all peptides that contained known class I epitopes and peptides from the regions previously described by Gao et al. [9, 10]. Table 2 shows the list of 36 peptides (plus the Gao et al. peptides) with the corresponding ELISpot results and RANKPEP scores. Even though these peptides were the top candidates for I-A<sup>b</sup>-restricted epitopes, there was not a direct correlation between the number of ELISpots elicited by these peptides and their respective RANKPEP scores. For example, NP<sub>311-325</sub> elicited strong ELISpot responses but was only 20% optimal by RANKPEP whereas PA<sub>456-470</sub> elicited weak ELISpot responses but was 38% optimal by RANK-PEP (Table 2). Of 36 peptides in Table 2 that were positive by ELISpot, only six received a RANKPEP score of greater than 32%.

We next analyzed the capacity of the 36 selected peptides to stimulate IFNy production during an acute response to influenza virus infection using an intracellular cytokine assay. This approach allowed us to: (i) confirm specific epitopes in an independent assay; (ii) identify those epitopes that made significant contributions to the acute response to infection and (iii) specifically distinguish class I and class II responses. C57BL/6 mice were intranasally infected with influenza virus and 10 days later cells were recovered from the lung airways. These cells were then assessed for their ability to produce IFNy in an intracellular cytokine assay following stimulation with each of the 36 peptides (the known class I epitopes,  $\mathrm{NP}_{\mathrm{366-374}}$  and  $\mathrm{PA}_{\mathrm{224-233'}}$  and the Gao peptide,  $\mathrm{NP}_{\mathrm{276-290'}}$ were included as controls). As shown in Figure 3 almost all of the peptides tested induced IFNy in these effector T cells and over half of the peptides induced IFNy production in greater than 1% of either the CD4 or CD8 T cell populations. Ten of these peptides stimulated CD4 T cells, eight stimulated CD8 T cells, while two peptides stimulated both CD4 and CD8 T cells to produce IFNy. Representative data from six of these peptides are shown on the right hand panel of Figure 3.

# 3.3. T cells specific for the $HA_{211-225}$ and $NP_{311-325}$ epitopes make substantial contributions to the primary CD4 T cell response to influenza

We next took the two peptides that elicited the strongest IFNy production in the intracellular cytokine staining assay (HA<sub>211-225</sub> and NP<sub>311-325</sub>) and re-synthesized them as purified peptides to confirm that they corresponded to bona fide epitopes. Intracellular cytokine staining analysis of these re-synthesized peptides confirmed that they were both class II-restricted epitopes and also demonstrated that the NP<sub>311-325</sub> peptide did not stimulate CD8 T cells (data not shown). It is unclear why the crude  $NP_{311-325}$ peptide gave an initial response as a mixed CD4 and CD8 epitope. However, we noted that the peptide was originally synthesized in a well adjacent to the known NP<sub>366-</sub>  $_{374}$ /D<sup>b</sup> epitope and we now speculate that there may have been some cross contamination either during the production or subsequent handling of the peptides. We next analyzed the kinetics of the primary T cell response to the purified  $HA_{211-225}$  and  $NP_{311-325}$  epitopes. As shown in Figure 4A, both epitopes stimulated strong CD4<sup>+</sup> T cell

| Peptide name                                                                       | Sequence                                                                                                       | ELISpot<br>results <sup>a</sup>                    | RANKPEP<br>(Rank) <sup>b</sup> | RANKPEP<br>(% Optimal) <sup>c</sup>       |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|-------------------------------------------|
| HA 201-215<br>HA 206-220<br>HA 211-225                                             | PSTNQEQTSLYVQAS<br>EQTSLYVQASGRVTV<br>YVOASGRVTVSTRRS                                                          | 33/14<br>46/28<br>43/35                            | 3                              | 33.61<br>33.61                            |
| HA 261–275<br>HA 276–290                                                           | INSNGNLIAPRGYFK<br>MRTGKSSIMRSDAPI                                                                             | 42/20<br>27/19                                     | 23                             | 17.53                                     |
| HA 321-335<br>HA 326-340                                                           | CPKYVKQNTLKLATG<br>KQNTLKLATGMRNVP                                                                             | 32/37<br>57/30                                     | 34<br>30                       | 14.04<br>15.75                            |
| HA 441-455<br>HA 446-460                                                           | AELLVALENQHTIDL<br>ALENQHTIDLTDSEM                                                                             | 47/70<br>22/42                                     |                                |                                           |
| NP 91-105<br>NP 106-120                                                            | KTGGPIYRRVNGKWM<br>RELILYDKEEIRRIW                                                                             | 25/17<br>15/26                                     | 2                              | 38.05                                     |
| NP 136-150<br>NP 146-160<br>NP 151-165                                             | MMIWHSNLNDATYQR<br>ATYQRTRALVRTGMD<br>TRALVRTGMDPRMCS                                                          | 26/14<br>30/17<br>48/22                            | 22<br>5                        | 17.72<br>27.89                            |
| NP 161–175                                                                         | PRMCSLMQGSTLPRR                                                                                                | 45/22                                              | 47                             | 8.96                                      |
| NP 196-210<br>NP 201-215<br>NP 206-220<br>NP 211-225                               | MIKRGINDRNFWRGE<br>INDRNFWRGENGRKT<br>FWRGENGRKTRIAYE<br>NGRKTRIAYERMCNI                                       | 30/21<br>34/39<br>91/82<br>82/61                   |                                |                                           |
| NP 216-230                                                                         | RIAYERMCNILKGKF                                                                                                | 44/43                                              | 49                             | 8.53                                      |
| NP 311-325<br>NP 316-330<br>NP 326-340                                             | QVYSLIRPNENPAHK<br>IRPNENPAHKSQLVW<br>SOLVWMACHSAAFED                                                          | 38/41<br>20/23<br>26/17                            | 14<br>41                       | 19.98<br>10.71                            |
| PA 251-265<br>PA 256-270<br>PA 276-290                                             | KEVNARIEPFLKTTP<br>RIEPKLKTTPRPLRL<br>CSQRSKFLLMDALKL                                                          | 26/14<br>29/17<br>26/27                            | 22<br>30                       | 18.00<br>15.83                            |
| PA 311-325<br>PA 316-330                                                           | MRTFFGWKEPNVVKP<br>GWKEPNVVKPHEKGI                                                                             | 11/14<br>16/16                                     | 2<br>2                         | 37.96<br>37.96                            |
| PA 411-425<br>PA 456-470<br>NS2 91-105<br>PB2 91-105<br>PB2 106-120<br>PB2 196-210 | FNKACELTDSSWIEL<br>RATEYIMKGVYINTA<br>ENSFEQITFMQALHL<br>VSPLAVTWWNRNGPM<br>TNTVHYPKIYKTYFE<br>CKISPLMVAYMLERE | 29/12<br>18/13<br>11/61<br>20/20<br>32/17<br>42/30 | 24<br>1<br>1<br>33<br>21       | 17.21<br>38.11<br>21.32<br>14.86<br>19.35 |
| M1 201-215<br>M1 211-225                                                           | EAMEVASQARQMVQA<br>QMVQAMITIGTHPSS                                                                             | 12/32<br>11/29                                     | 5                              | 23.73                                     |
| Region previously idea                                                             | ntified by Gao et al. [9, 10]                                                                                  |                                                    |                                |                                           |
| NP 261-275<br>NP 266-280<br>NP 271-285<br>NP 276-290                               | RSALILRGSVAHKSC<br>LRGSVAHKSCLPACV<br>AHKSCLPACVYGPAV<br>LPACVYGPAVASGYD                                       | 28/13<br>56/30<br>47/23<br>100/69                  | 12<br>12<br>6<br>3             | 22.37<br>22.37<br>27.67<br>32.96          |

Table 2. Amino acid sequence, ELISpot results, and RANKPEP results from influenza virus peptides selected for further investigation

Brackets indicate overlapping peptides.

<sup>a</sup> Number of ELISpots from 10<sup>5</sup> spleen cells, determined in two independent experiments (experiment 1/experiment 2).

<sup>b</sup> Relative rank of the predicted peptide within the input protein.

<sup>c</sup> Percentile score of the predicted peptide relative to that of the sequence that yields the maximum score for the selected profile (I-A<sup>b</sup>).

responses that can be first detected on day 8 post infection in the lung airways. The frequency of  $HA_{211-225}$  and  $NP_{311-325}$  specific cells peaked at 10% and 11%, respectively, of the total CD4 cells. Since 67% of the total CD4 T cells in the lung airways rapidly respond to activation with PMA and ionomycin treatment, we conclude that approximately 31% of the total influenza-specific CD4 T

cells in the lung airways are specific for the HA<sub>211-225</sub> and NP<sub>311-325</sub> epitopes (Figure 4B). Together, these data confirm that HA<sub>211-225</sub> and NP<sub>311-325</sub> are *bona fide* class II-restricted epitopes and further demonstrate that they are relatively dominant epitopes in the class II-restricted CD4<sup>+</sup> T cell response following influenza virus infection of C57BL/6 mice.



**Figure 3.** IFN $\gamma$  production by antigen-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells on day 10 post infection. C57BL/6 mice were intranasally infected with 300 EID<sub>50</sub> x31 influenza virus. On day 10 post infection, lung cells were collected and incubated for 5 h in the presence of the indicated peptide and Brefeldin A. Following stimulation, the cells were stained with anti-CD4 FITC, anti-CD8 PerCP, anti-IFN $\gamma$  PE, and anti-CD44 allophycocyanin. Shown are the percentages of CD4 or CD8 cells producing IFN $\gamma$  following stimulation with the indicated peptide from one of two representative experiments. Also shown are representative FACs plots. Brackets indicate overlapping peptides.

# 3.4. The HA<sub>211-225</sub> epitope is presented in the lungs and local draining lymph nodes during influenza virus infection

To further investigate the characteristics of the  $HA_{211-225}/A^b$  epitope, we generated a panel of T cell hybridomas. Spleen cells from mice that had recovered from a prior x31 infection were stimulated in vitro with the  $HA_{211-225}$  peptide and subsequently fused to a lacZ expressing variant of BW5147 [19]. The resulting hybridomas were screened for reactivity to the  $HA_{211-225}$  peptide and one hybridoma, H-#-SM101.3, was selected for further study. This hybridoma was re-cloned and was shown to specifically respond to the HA<sub>211-225</sub> peptide pulsed L cells transfected with the I-A<sup>b</sup> molecule (Figure 5A). The hybridoma also responded to syngeneic spleen cells infected with various doses of x31 influenza virus (Figure 5B). We next used the H-#-SM101.3 hybridoma to investigate the presentation of the HA<sub>211-225</sub>/A<sup>b</sup> epitope ex vivo by antigen presenting cells isolated from infected mice. Cells were isolated from the lung airways, lung parenchyma, MLN, and spleen on days 4 (Figure 5C) and 6 (Figure 5D) post influenza virus infection. Increasing numbers of cells from infected mice were then cultured with the H-#-SM101.3 hybrid and the number of hybridoma cells responding to the HA<sub>211-225</sub> peptide was determined one day later. As shown in Figure 5 panels C and D, cells presenting the HA<sub>211-225</sub>/A<sup>b</sup> epitope were clearly detected at days 4 and 6 in the lung airways, lung parenchyma, and MLN, but not in the spleen. Extrapolation of the titration curves in Figure 4 indicates that at least 1 in 1000 cells in the lungs and MLN are presenting the HA<sub>211-225</sub>/A<sup>b</sup> epitope at both time points. Together, these data indicate that the HA<sub>211-225</sub>/A<sup>b</sup> epitope is widely expressed during the course of an influenza virus infection.

## 3.5. Partial control of viral infection in HA<sub>211-225</sub> vaccinated mice

To investigate the capacity of T cells specific for the HA<sub>211-225</sub>/A<sup>b</sup> epitope to mediate antiviral control, we vaccinated mice with dendritic cells that had been pulsed with the HA<sub>211-225</sub> peptide (control mice were left unvaccinated). Three weeks post vaccination, the mice were boosted with peptide emulsified in incomplete Freud's adjuvant and then infected with x31 influenza virus 2 weeks later. The absolute numbers of antigen-specific T cells in the secondary lymphoid organs and the viral loads in the lungs were determined on various days postinfection. Vaccination with dendritic cells pulsed with the HA<sub>211-225</sub> peptide did not significantly alter the number of CD8<sup>+</sup> T cells migrating to the lungs following infection (data not shown). However, HA<sub>211-225</sub>/A<sup>b</sup>-specific cells were detected earlier in the lymphoid organs of vaccinated mice as compared to unvaccinated mice (day 6 versus day 8) (Figure 6A). In addition, substantially greater numbers of antigen-specific T cells were detected in vaccinated mice on day 8 post-infection (Figure 6A). Analysis of viral loads indicated that there was a significant reduction in viral titers on days 4 and 6 in the vaccinated mice (Figure 6B). However, viral clearance was not accelerated, with both vaccinated and unvaccinated mice clearing virus on day 12 (Figure 6B). Together these data indicate that vaccination with the HA<sub>211-225</sub> peptide resulted in a significantly enhanced T cell response to viral challenge and a corresponding decrease viral titers in the lungs. However, it did not result in the accelerated clearance of virus from the lungs.

#### 4. Discussion

A major limitation in our understanding of the CD4<sup>+</sup> T cell response to influenza virus infection has been the lack of information on the numbers, source proteins, and relative contributions of class II epitopes that drive the response. To begin to address this problem, we undertook a peptide screen of all the major influenza virus proteins to identify specific epitopes in C57BL/6 mice. This approach identified a large number of T cell epitopes that were derived predominantly from a relatively limited number of proteins. We had initially speculated that the number of epitopes would reflect the length of the protein and its relative abundance in infected cells. Consistent with this,

the nucleoprotein and hemagglutinin proteins contained large numbers of epitopes. However, the neuraminidase protein, which is also relatively abundant, did not contain any I-A<sup>b</sup>-restricted epitopes at all and the acidic polymerase protein, which has a relatively low abundance, appeared to contain multiple epitopes. It should be noted that although no epitopes were detected in the NA protein, this did not appear to reflect a general feature of this protein as multiple epitopes were identified in x31 NA protein in a parallel screen with BALB/c (H-2<sup>d</sup>) mice (data not shown). As expected, there was no cross-reactivity between the HA and NA proteins derived from x31 and PR8 viruses in C57BL/6 mice. This is consistent with reports that these proteins do not elicit cross-reactive antibodies or T cell responses [30, 31].



**Figure 4.** Kinetics of the antigen-specific CD4<sup>+</sup> T cell response following influenza virus infection. C57BL/6 mice were intranasally infected with 300 EID<sub>50</sub> x31 influenza virus. Panel A: On days 4, 6, 8, 10, and 12 post infection, cells from the lung airways were collected and incubated for 5 h in the presence of the HA<sub>211-225</sub> or NP<sub>311-325</sub> peptide and Brefeldin A. Following stimulation, the cells were stained with anti-CD4 FITC, anti-CD8 PerCP, anti-IFN $\gamma$  PE, and anti-CD44 allophycocyanin. Shown is the number of epitope-specific CD4<sup>+</sup> T cells on the different days post infection. Panel B shows the percentage of lung airway cells producing IFN $\gamma$  following stimulation on day 10 post infection.



**Figure 5.** Antigen presentation of the  $HA_{211-225}/A^b$  epitope following infection with influenza virus. Panel A: clone H-#-SM101.3 was screened using I-A<sup>b</sup> transfected L cells incubated overnight with either the PB1<sub>703-711</sub> or  $HA_{211-225}$  peptides at the indicated concentrations. The graphs show the number of positive Lac Z hybridomas per well (no more than 2000 spots were counted per well). Panel B: splenocytes were collected from uninfected mice and then infected in vitro with influenza virus at a multiplicity of infection of 0, 2, 10, or 50 for 4 h. The infected cells were irradiated and then plated in increasing numbers in a standard antigen presentation assay with the H-#-SM101.3 hybridoma. Panels C and D: mice were infected intranasally with x31 and cells from the lung airways, lung parenchyma, MLN, and spleens were collected on day 4 (panel C) or day 6 (panel D) post infection. Two-fold serial dilutions of cells were made in flat-bottom, 96-well plates starting at 10<sup>5</sup> cells/well and a standard antigen presentation assay was performed using the I-A<sup>b</sup> HA<sub>211-225</sub> restricted H-#-SM101.3 Lac Z-inducible hybridoma.

An important question raised by these studies is what is the absolute number of class II-restricted epitopes involved in the response to infection? Any analysis of the ELISpot data must take into account that: (i) a single epitope can reside on up to three neighboring peptides; (ii) there is potential inclusion of class I-restricted epitopes and (iii) the data include some false positives. The issue of adjacent peptides and known class I epitopes is easily addressed, and taking these issues into account, we estimate that there are approximately 60 putative epitopes in H-2<sup>b</sup> mice (approximately 10 each in HA and PB2 and 20 each in NP and PA). The issue of false positives is more difficult to address. However, we can estimate the frequency of real class II epitopes among positive responses based on the analysis of a selected set of peptides in Figure 3. In this case, we analyzed 36 peptides that corresponded to 21 putative epitopes (taking into account overlapping peptides and excluding peptides that were only positive in the RANKPEP analysis). Ten of them (48%) appeared to be real class II-restricted epitopes that elicited a significant T cell response in an independent intracellular cytokine assay (greater than 1% of CD4<sup>+</sup> T cells in the lung airways during an acute response to infection). Thus, we speculate that about 48% of the 60 putative epitopes (about 29 epitopes) identified in the entire screen are

likely to be real epitopes. This is in the same range as the number of class I-restricted epitopes that have been identified in this MHC haplotype (16 K<sup>b</sup> and D<sup>b</sup>-restricted epitopes) [8, 32]. Moreover, two of the epitopes, HA<sub>211-225</sub>/  $A^{b}$  and  $NP_{311-325}/A^{b}$ , were shown dominate the CD4<sup>+</sup> T cell response to infection, accounting for 31% of the CD4<sup>+</sup> T cells present in the lung airways at the peak of the response. This is very similar to the pattern of immunodominance in the CD8<sup>+</sup> T cell response where a limited number of epitopes dominate the entire response [8, 32]. However, it should be noted that C57BL/6 mice only express a single MHC class II molecule (I-A<sup>b</sup>) due to the deletion of the I-Ea gene. Thus, our estimate of the breadth of the CD4<sup>+</sup> T cell repertoire in C57BL/6 mice may underestimate the breadth of the repertoire in mice that express multiple MHC class II molecules. Further estimation of the repertoire will come from more detailed follow up analysis of the many putative epitopes identified in this study and a study of responses in mice expressing different MHC haplotypes.

In addition to analyzing T cell responses using an ELISpot assay, we also analyzed the proteins using the RANKPEP algorithm. There was generally only a modest correlation between the two approaches in terms of their ability to identify epitopes (Table 2). For example,

the HA<sub>211-225</sub>/A<sup>b</sup> epitope, which was found to contribute substantially to the CD4<sup>+</sup> T cell response, was predicted by RANKPEP to be an immunodominant epitope with a 33.6% optimal binding score and a rank of 3. However, another epitope, which also contributed to the CD4<sup>+</sup> T cell response (NP<sub>311-325</sub>/A<sup>b</sup>), was not predicted as an immunodominant epitope by RANKPEP with only a 20% optimal binding score and a rank of 14. In contrast, the PA<sub>456-470</sub> peptide elicited weak ELISpot responses but was predicted by RANKPEP to be an optimal binder (38% optimal binding and number 1 rank). Therefore, while the RANKPEP algorithms can be useful in predicting immunodominant epitopes, this methodology can result in both "false positives" (such as PA<sub>456-470</sub>) and "false negatives" (such as NP<sub>311-325</sub>).

A critical question regarding the inflammatory CD4<sup>+</sup> T cell response has been its capacity to mediate protective immunity. Several studies have indicated that CD4<sup>+</sup> T cells are generally not required for protection [33, 34]. However, evidence from a parainfluenza virus system suggests that CD4<sup>+</sup> T cells can mediate substantial viral control against secondary challenge [16, 26] and studies using B cell deficient mice have suggested that CD4 T cells play an important role in enhancing protective antibody responses [35]. To address these issues in the influenza virus system, we vaccinated mice with the  $HA_{211-225}$ peptide and demonstrated that this resulted in significant reductions in viral titers following a subsequent viral challenge. Interestingly, although the numbers of antigenspecific CD4<sup>+</sup> T cells was significantly enhanced in the vaccinated mice and persisted through day 12, this did not result in accelerated viral clearance. It is possible that this may reflect a general feature of inflammatory CD4<sup>+</sup> T cell responses to influenza virus or the need for antibodies to mediate late viral clearance. However, we have found that transgenic CD4<sup>+</sup> effector T cells are able to mediate viral clearance and protection in an adoptive transfer model, suggesting that the effect may be epitope-dependent and reflect differences in effector functions, such as levels of TNFa secretion [36]. In this regard, we have shown that different MHC class I-restricted influenza virus epitopes differ in their capacity to elicit protective immune responses. We are currently addressing these differences experimentally.

In summary, the data presented here indicate that the numbers of influenza virus MHC class II and class I-restricted epitopes in C57BL/6 mice are not significantly different and the T cell response to these epitopes tend to be dominated by only a limited number of epitopes. The data presented here will also provide a basis for further detailed studies of CD4<sup>+</sup> T cell responses to influenza virus.

#### Acknowledgements

We would like to thank Simon Monard for assistance with flow cytometry, the Molecular Biology Core and Drs. Marcy Blackman, Ken Ely, Jake Kohlmeier, and Iain Scott for critically reviewing the manuscript.



Figure 6. Vaccination with the  $HA_{211-225}$  peptide results in increased epitope-specific T cells and decreased viral load on days 4 and 6. Mice were injected i.v. with  $0.5 \times 10^6$  dendritic cells pulsed with the  $\mathrm{HA}_{\mathrm{211-225}}$  peptide of influenza. Three weeks post vaccination, the mice were boosted by a subcutaneous injection of the HA<sub>211-225</sub> peptide in incomplete Feud's adjuvant. Two weeks following boosting, the mice were infected with 600 EID<sub>50</sub> x31. Panel A: on days 4, 6, 8, 10, and 12 post infection, cells from the spleen were collected, restimulated with the HA<sub>211-225</sub> peptide, and stained anti-CD4 FITC, anti-CD8 PerCP, anti-IFNy PE, and anti-CD44 allophycocyanin. Shown is the number (average ± S.D.) of epitope-specific CD4<sup>+</sup> T cells on the different days post infection. Panel B shows the viral titer (average ± S.D.) in the lungs on the different days post infection. The data shown are the average and standard deviation from three independent experiments with each experiment containing six mice per time point (three control and three vaccinated).

#### References

- P. C. Doherty and J. P. Christensen, Accessing complexity: the dynamics of virus-specific T cell responses, *Annu Rev Immunol* 18 (2000), pp. 561–592.
- J. W. Yewdell and J. R. Bennink, Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes, *Adv Immunol* 52 (1992), pp. 1–123.
- P. C. Doherty, D. J. Topham, R. A. Tripp, R. D. Cardin, J. W. Brooks, and P. G. Stevenson, Effector CD4+ and CD8+ T cell mechanisms in the control of respiratory virus infections, *Immunol Rev* 159 (1997), pp. 105–117.

- D. J. Topham, R. A. Tripp, and P. C. Doherty, CD8+ T cells clear influenza virus by perforin or Fas-dependent processes, *J Immunol* 159 (1997) (11), pp. 5197–5200.
- K. J. Flynn, G. T. Belz, J. D. Altman, R. Ahmed, D. L. Woodland and P. C. Doherty, Virus-specific CD8+ T cells in primary and secondary influenza pneumonia, *Immunity* 8 (1998) (6), pp. 683–691.
- G. T. Belz, P. G. Stevenson and P. C. Doherty, Contemporary analysis of MHC-related immunodominance hierarchies in the CD8+ T cell response to influenza A viruses, *J Immunol* 165 (2000) (5), pp. 2404–2409.
- W. Chen, L. C. Anton, J. R. Bennink and J. W. Yewdell, Dissecting the multifactorial causes of immunodominance in class Irestricted T cell responses to viruses, *Immunity* **12** (2000) (1), pp. 83–93.
- W. Zhong, P. A. Reche, C. C. Lai, B. Reinhold and E. L. Reinherz, Genome-wide characterization of a viral cytotoxic T lymphocyte epitope repertoire, *J Biol Chem* 278 (2003) (46), pp. 45135–45144.
- X. M. Gao, F. Y. Liew and J. P. Tite, Identification and characterization of T helper epitopes in the nucleoprotein of influenza A virus, *J Immunol* 143 (1989) (9), pp. 3007–3014.
- X. M. Gao, F. Y. Liew and J. P. Tite, A dominant Th epitope in influenza nucleoprotein. Analysis of the fine specificity and functional repertoire of T cells recognizing a single determinant, *J Immunol* 144 (1990) (7), pp. 2730–2737.
- P. A. Reche, J. P. Glutting and E. L. Reinherz, Prediction of MHC class I binding peptides using profile motifs, *Hum Immunol* 63 (2002) (9), pp. 701–709.
- P. A. Reche, J. P. Glutting, H. Zhang and E. L. Reinherz, Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles, *Immunogenetics* 56 (2004) (6), pp. 405–419.
- B. C. Barnett, D. S. Burt, C. M. Graham, A. P. Warren, J. J. Skehel and D. B. Thomas, I-A<sup>d</sup>-restricted T cell recognition of influenza hemagglutinin. Synthetic peptides identify multiple epitopes corresponding to antibody- binding regions of the HA1 subunit, *J Immunol* 143 (1989) (8), pp. 2663–2669.
- 14. B. C. Barnett, I. Hartlmayr, C. M. Graham and D. B. Thomas, Single amino acid residues in a synthetic peptide of influenza haemagglutinin, HA 1 177-199, distinguish I-A<sup>d</sup>- and I-E<sup>d</sup>-restricted T cell epitopes, *Immunology* **70** (1990) (1), pp. 48–54.
- 15. K. Daly, P. Nguyen, D. L. Woodland and M. A. Blackman, Immunodominance of major histocompatibility complex class Irestricted influenza virus epitopes can be influenced by the T cell receptor repertoire, *J Virol* 69 (1995) (12), pp. 7416–7422.
- R. J. Hogan, W. Zhong, E. J. Usherwood, T. Cookenham, A. D. Roberts and D. L. Woodland, Protection from respiratory virus infections can be mediated by antigen- specific CD4+ T cells that persist in the lungs, *J Exp Med* **193** (2001) (8), pp. 981–986.
- 17. G. A. Cole, T. L. Hogg and D. L. Woodland, The MHC class I-restricted T cell response to Sendai virus infection in C57BL/6 mice: a single immunodominant epitope elicits an extremely diverse repertoire of T cells, *Int Immunol* 6 (1994) (11), pp. 1767–1775.
- L. Liu, E. J. Usherwood, M. A. Blackman and D. L. Woodland, T cell vaccination alters the course of murine herpesvirus 68 infection and the establishment of viral latency in mice, *J Virol* 73 (1999) (12), pp. 9849–9857.
- J. White, M. Blackman, J. Bill, J. Kappler, P. Marrack and D. P. Gold *et al.*, Two better cell lines for making hybridomas expressing specific T cell receptors, *J Immunol* **143** (1989) (6), pp. 1822–1825.

- E. J. Usherwood, T. L. Hogg and D. L. Woodland, Enumeration of antigen-presenting cells in mice infected with Sendai virus, *J Immunol* 162 (1999) (6), pp. 3350–3355.
- S. Sanderson and N. Shastri, LacZ inducible, antigen/MHCspecific T cell hybrids, *Int Immunol* 6 (1994) (3), pp. 369–376.
- L. Liu, E. Flano, E. J. Usherwood, S. Surman, M. A. Blackman and D. L. Woodland, Lytic cycle T cell epitopes are expressed in two distinct phases during MHV-68 infection, *J Immunol* 163 (1999) (2), pp. 868–874.
- J. Karttunen and N. Shastri, Measurement of ligand-induced activation in single viable T cells using the lacZ reporter gene, *Proc Natl Acad Sci USA* 88 (1991) (9), pp. 3972–3976.
- 24. S. R. Crowe, S. J. Turner, S. C. Miller, A. D. Roberts, R. A. Rappolo and P. C. Doherty *et al.*, Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections, *J Exp Med* **198** (2003) (3), pp. 399–410.
- M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rößner, F. Koch and N. Romani *et al.*, An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow, *J Immunol Methods* 223 (1999) (1), pp. 77–92.
- W. Zhong, D. Marshall, C. Coleclough and D. L. Woodland, CD4+ T cell priming accelerates the clearance of Sendai virus in mice, but has a negative effect on CD8+ T cell memory, *J Immunol* 164 (2000) (6), pp. 3274–3282.
- Y. Chen, E. J. Usherwood, S. L. Surman, T. L. Hogg and D. L. Woodland, Long-term CD8+ T cell memory to Sendai virus elicited by DNA vaccination, *J Gen Virol* 80 (1999) (Pt 6), pp. 1393–1399.
- W. M. Kast, C. J. Boog, B. O. Roep, A. C. Voordouw and C. J. Melief, Failure or success in the restoration of virus-specific cytotoxic T lymphocyte response defects by dendritic cells, *J Immunol* 140 (1988) (9), pp. 3186–3193.
- J. W. Yewdell and J. R. Bennink, Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses, *Annu Rev Immunol* 17 (1999), pp. 51–88.
- B. R. Murphy and R. G. Webster, Orthomyxoviruses. In: B. N. Fields, Editor, *In Fields Virology*, vol. 1, Lippincott-Raven Publishers, Philadelphia (1996), pp. 1397–1445.
- E. D. Kilbourne, Future influenza vaccines and the use of genetic recombinants, *Bull World Health Organ* 41 (1969) (3), pp. 643–645.
- 32. G. T. Belz, W. Xie, J. D. Altman and P. C. Doherty, A previously unrecognized H-2D(b)-restricted peptide prominent in the primary influenza A virus-specific CD8(+) T cell response is much less apparent following secondary challenge, *J Virol* 74 (2000) (8), pp. 3486–3493.
- 33. M. B. Graham, V. L. Braciale and T. J. Braciale, Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection, *J Exp Med* **180** (1994) (4), pp. 1273–1282.
- 34. W. Allan, Z. Tabi, A. Cleary and P. C. Doherty, Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells, *J Immunol* 144 (1990) (10), pp. 3980–3986.
- 35. D. J. Topham, R. A. Tripp, A. M. Hamilton-Easton, S. R. Sarawar and P. C. Doherty, Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig, J Immunol 157 (1996) (7), pp. 2947–2952.
- D. M. Brown, E. Roman and S. L. Swain, CD4 T cell responses to influenza infection, *Semin Immunol* 16 (2004) (3), pp. 171–177.

### Appendix B. Supplementary data

Supplemental Table 1. x31 Influenza virus peptides

|            | Peptide Sequence | Elis | pot <sup>a</sup> |
|------------|------------------|------|------------------|
| HA 1-15    | MKTIIALSYIFCLAL  | 9    | 14               |
| HA 6-20    | ALSYIFCLALGQDLP  | 2    | 6                |
| HA 11-25   | FCLALGQDLPGNDNS  | 1    | 5                |
| HA 16-30   | GQDLPGNDNSTATLC  | 3    | 4                |
| HA 21-35   | GNDNSTATLCLGHHA  | 2    | 3                |
| HA 26-40   | TATLCLGHHAVPNGT  | 7    | 2                |
| HA 31-45   | LGHHAVPNGTLVKTI  | 7    | 2                |
| HA 36-50   | VPNGTLVKTITDDQI  | 3    | 6                |
| HA 41-55   | LVKTITDDQIEVTNA  | 2    | 4                |
| HA 46-60   | TDDQIEVTNATELVQ  | 9    | 7                |
| HA 51-65   | EVTNATELVQSSSTG  | 5    | 5                |
| HA 56-70   | TELVQSSSTGKICNN  | 2    | 3                |
| HA 61-75   | SSSTGKICNNPHRIL  | 3    | 5                |
| HA 66-80   | KICNNPHRILDGIDC  | 4    | 4                |
| HA 71-85   | PHRILDGIDCTLIDA  | 4    | 7                |
| HA 76-90   | DGIDCTLIDALLGDP  | 3    | 5                |
| HA 81-95   | TLIDALLGDPHCDVF  | 2    | 5                |
| HA 86-100  | LLGDPHCDVFQNETW  | 6    | 8                |
| HA 91-105  | HCDVFQNETWDLFVE  | 4    | 8                |
| HA 96-110  | QNETWDLFVERSKAF  | 3    | 10               |
| HA 101-115 | DLFVERSKAFSNCYP  | 2    | 7                |
| HA 106-120 | RSKAFSNCYPYDVPD  | 3    | 6                |
| HA 111-125 | SNCYPYDVPDYASLR  | 5    | 5                |
| HA 116-130 | YDVPDYASLRSLVAS  | 5    | 4                |
| HA 121-135 | YASLRSLVASSGTLE  | 3    | 6                |
| HA 126-140 | SLVASSGTLEFITEG  | 2    | 4                |
| HA 131-145 | SGTLEFITEGFTWTG  | 4    | 4                |
| HA 136-150 | FITEGFTWTGVTQNG  | 3    | 2                |
| HA 141-155 | FTWTGVTQNGGSNAC  | 10   | 10               |
| HA 146-160 | VTQNGGSNACKRGPG  | 12   | 10               |
| HA 151-165 | GSNACKRGPGSGFFS  | 16   | 14               |
| HA 156-170 | KRGPGSGFFSRLNWL  | 6    | 5                |
| HA 161-175 | SGFFSRLNWLTKSGS  | 3    | 11               |
| HA 166-180 | RLNWLTKSGSTYPVL  | 9    | 4                |
| HA 171-185 | TKSGSTYPVLNVTMP  | 1    | 7                |
| HA 176-190 | TYPVLNVTMPNNDNF  | 0    | 6                |
| HA 181-195 | NVTMPNNDNFDKLYI  | 10   | 10               |
| HA 186-200 | NNDNFDKLYIWGIHH  | 2    | 4                |
| HA 191-205 | DKLYIWGIHHPSTNQ  | 11   | 4                |
| HA 196-210 | WGIHHPSTNQEQTSL  | 14   | 16               |
| HA 201-215 | PSTNQEQTSLYVQAS  | 33   | 14               |
| HA 206-220 | EQTSLYVQASGRVTV  | 46   | 28               |
| HA 211-225 | YVQASGRVTVSTRRS  | 43   | 35               |
| HA 216-230 | GRVTVSTRRSQQTII  | 3    | 5                |
| HA 221-235 | STRRSQQTIIPNIGS  | 2    | 8                |
| HA 226-240 | QQTIIPNIGSRPWVR  | 2    | 4                |
| HA 231-245 | PNIGSRPWVRGLSSR  | 4    | 8                |
| HA 236-250 | RPWVRGLSSRISIYW  | 3    | 6                |

|            | Peptide Sequence  | Elis   | pot <sup>a</sup> |
|------------|-------------------|--------|------------------|
| HA 241-255 | GLSSRISIYWTIVKP   | 1      | 4                |
| HA 246-260 | ISIYWTIVKPGDVLV   | 3      | 5                |
| HA 251-265 | TIVKPGDVLVINSNG   | 2      | 5                |
| HA 256-270 | GDVLVINSNGNLIAP   | 2      | 9                |
| HA 261-275 | INSNGNLIAPRGYFK   | 42     | 20               |
| HA 266-280 | NLIAPRGYFKMRTGK   | 5      | 13               |
| HA 271-285 | RGYFKMRTGKSSIMR   | 1      | 10               |
| HA 276-290 | MRTGKSSIMRSDAPI   | 27     | 19               |
| HA 281-295 | SSIMRSDAPIDTCIS   | 4      | 5                |
| HA 286-300 | SDAPIDTCISECITP   | 1      | 2                |
| HA 291-305 | DTCISECITPNGSIP   | 0      | 4                |
| HA 296-310 | ECITPNGSIPNDKPF   | 0      | 6                |
| HA 301-315 | NGSIPNDKPFQNVNK   | 3      | 2                |
| HA 306-320 | NDKPFQNVNKITYGA   | 4      | 4                |
| HA 311-325 | QNVNKITYGACPKYV   | 9      | 12               |
| HA 316-330 | ITYGACPKYVKQNTL   | 17     | 14               |
| HA 321-335 | CPKYVKQNTLKLATG   | 32     | 37               |
| HA 326-340 | KQNTLKLATGMRNVP   | 57     | 30               |
| HA 331-345 | KLATGMRNVPEKQTR   | 3      | 3                |
| HA 336-350 | MRNVPEKQTRGLFGA   | 6      | 6                |
| HA 341-355 | EKQTRGLFGAIAGFI   | 5      | 8                |
| HA 346-360 | GLFGAIAGFIENGWE   | 2      | 4                |
| HA 351-365 | IAGFIENGWEGMIDG   | 4      | 2                |
| HA 356-370 | ENGWEGMIDGWYGFR   | 2      | 4                |
| HA 361-375 | GMIDGWYGFRHQNSE   | 2      | 4                |
| HA 366-380 | WYGFRHQNSEGTGQA   | 1      | 2                |
| HA 371-385 | HQNSEGTGQAADLKS   | 7      | 10               |
| HA 376-390 | GIGQAADLKSIQAAI   | 18     | 20               |
| HA 381-395 | ADLKSTQAAIDQING   | 17     | 14               |
| HA 386-400 |                   | 1      | 16               |
| HA 391-405 | DQINGKLNRVIEKIN   | 11     | 12               |
| HA 396-410 | KLINKVIEKTINEKFHQ | 5      | 2                |
| HA 401-415 | EKENOEKEESEVEC    | 3      | 2                |
|            |                   | 1      | 3<br>1           |
| HA 411-425 |                   | 4      | 2<br>1           |
| HA 410-430 |                   | 1      | 3<br>1           |
| HA 426-440 |                   | 15     | 10               |
| HA 420-440 |                   | 10     | 10               |
| HA 436-450 |                   | 10     | 16               |
| HA 441-455 |                   | 47     | 70               |
| HA 446-460 |                   | 22     | 42               |
| HA 451-465 |                   | 15     | 14               |
| HA 456-470 |                   | 1      | 3                |
| HA 461-475 |                   | -<br>1 | 2                |
| HA 466-480 | KTRROLRENAFFMGN   | 2      | 3                |
| HA 471-485 | LRENAEEMGNGCFKI   | 3      | 3                |
| HA 476-490 | EEMGNGCFKIYHKCD   | 8      | 4                |
| HA 481-495 | GCFKIYHKCDNACIE   | 1      | 6                |
| HA 486-500 | YHKCDNACIESIRNG   | 5      | 5                |
|            |                   | -      | -                |

|             | Peptide Sequence | Elis     | pota   |
|-------------|------------------|----------|--------|
| HA 491-505  | NACIESIRNGTYDHD  | 18       | 14     |
| HA 496-510  | SIRNGTYDHDVYRDF  | 13       | 11     |
| HA 501-515  |                  | 9        | 3      |
| HA 506-520  |                  | 4        | 13     |
| HA 511-525  |                  | 7        | 8      |
|             |                  | 2        | 5      |
| HA 510-550  |                  | 3        | 10     |
| HA 521-535  |                  | 4        | 12     |
| HA 526-540  | GYNDWILWISFAISC  | 2        | 4      |
| HA 531-545  | ILWISFAISCFLLCV  | 0        | 7      |
| HA 536-550  | FAISCELLCVVLLGE  | 0        | (      |
| HA 541-555  | FLLCVVLLGFIMWAC  | 8        | 3      |
| HA 546-560  | VLLGFIMWACQRGNI  | 1        | 6      |
| HA 551-565  | IMWACQRGNIRCNI   | 3        | 4      |
| HA 556-566  | QRGNIRCNICI      | 2        | 4      |
| NA 1-15     | MNPNQKIITIGSVSL  | 1        | 2      |
| NA 6-20     | KIITIGSVSLTIATV  | 0        | 5      |
| NA 11-25    | GSVSLTIATVCFLMQ  | 4        | 6      |
| NA 16-30    | TIATVCFLMQIAILV  | 3        | 5      |
| NA 21-35    | CFLMQIAILVTTVTL  | 0        | 6      |
| NA 26-40    | IAILVTTVTLHFKQY  | 1        | 4      |
| NA 31-45    | TTVTLHFKQYECDSP  | 1        | 5      |
| NA 36-50    | HFKQYECDSPASNQV  | 5        | 3      |
| NA 41-55    | ECDSPASNQVMPCEP  | 9        | 5      |
| NA 46-60    | ASNQVMPCEPIIIER  | 1        | 8      |
| NA 51-65    | MPCEPIIIERNITEI  | 6        | 8      |
| NA 56-70    | IIIERNITEIVYLNN  | 2        | З      |
| NA 61-75    | NITEIVYLNNTTIEK  | 0        | 2      |
| NA 66-80    | VYLNNTTIEKEICPK  | 2        | 3      |
| NA 71-85    | TTIEKEICPKVVEYR  | 2        | 3      |
| NA 76-90    | EICPKVVEYRNWSKP  | 4        | 7      |
| NA 81-95    | VVEYRNWSKPQCQIT  | 2        | 5      |
| NA 86-100   | NWSKPOCOITGFAPF  | 1        | 6      |
| NA 91-105   | OCOITGFAPFSKDNS  | 4        | 5      |
| NA 96-110   | GFAPFSKDNSIRLSA  | 3        | 6      |
| NA 101-115  | SKDNSIRLSAGGDIW  | 2        | 8      |
| NA 106-120  | IRI SAGGDIWVTRFP | 3        | 5      |
| NA 111-125  | GGDIWVTRFPYVSCD  | 4        | 10     |
| NA 116-130  | VTREPYVSCDHGKCY  | 1        | 1      |
| NA 121-135  |                  | <u>`</u> | ⊥<br>⊿ |
| NA 126-140  | HGKCYOFALCOCTT   | 0        | т<br>6 |
| NA 121-1/5  |                  | 1        | 7      |
| NA 126 150  |                  | т<br>2   | r<br>F |
| NA 141 4EE  |                  | כ<br>₁   | 1      |
| NA 140 100  |                  | 1        | 4      |
| INA 146-160 |                  | 1        | 2      |
| NA 151-165  | DRIPHRILLMNELGV  | 0        | 3      |
| NA 156-170  | RILLMNELGVPFHLG  | 2        | 3      |
| NA 161-175  | NELGVPFHLGTRQVC  | 4        | 5      |
| NA 166-180  | PFHLGTRQVCIAWSS  | 1        | 4      |
| NA 171-185  | TRQVCIAWSSSSCHD  | 2        | 6      |
| NA 176-190  | IAWSSSSCHDGKAWL  | 2        | 7      |

|             | Peptide Sequence | Elis   | pot <sup>a</sup> |
|-------------|------------------|--------|------------------|
| NA 181-195  | SSCHDGKAWLHVCIT  | 2      | 5                |
| NA 186-200  | GKAWLHVCITGDDKN  | 2      | 6                |
| NA 191-205  | HVCITGDDKNATASF  | 1      | 3                |
| NA 196-210  | GDDKNATASFIYDGR  | 1      | 6                |
| NA 201-215  | ATASFIYDGRLVDSI  | 4      | 12               |
| NA 206-220  | IYDGRLVDSIGSWSO  | 1      | 6                |
| NA 211-225  | LVDSIGSWSONILRT  | 2      | 5                |
| NA 216-230  | GSWSONII RTOFSEC | 3      | 6                |
| NA 221-235  | NII RTOFSECVCING | 2      | 5                |
| NA 226-240  | OESECVCINGTCTVV  | 3      | 4                |
| NA 231-245  | VCINGTCTVVMTDGS  | 1      | 6                |
| NA 236-250  |                  | 2      | 3                |
| NA 2/1 255  |                  | 2      | 1                |
| NA 241-255  |                  | 2<br>1 | 4                |
| NA 246-260  |                  | T      | 5                |
| NA 251-265  |                  | 3      | 4                |
| INA 256-270 | FIEEGKIVHISPLSG  | 2      | 5                |
| NA 261-275  | KIVHISPLSGSAQHV  | 3      | 3                |
| NA 266-280  | SPLSGSAQHVEECSC  | 2      | 6                |
| NA 271-285  | SAQHVEECSCYPRYP  | 1      | 4                |
| NA 276-290  | EECSCYPRYPGVRCI  | 2      | 14               |
| NA 281-295  | YPRYPGVRCICRDNW  | 1      | 4                |
| NA 286-300  | GVRCICRDNWKGSNR  | 0      | 7                |
| NA 291-305  | CRDNWKGSNRPVVDI  | 2      | 7                |
| NA 296-310  | KGSNRPVVDINMEDY  | 3      | 4                |
| NA 301-315  | PVVDINMEDYSIDSS  | 0      | 3                |
| NA 306-320  | NMEDYSIDSSYVCSG  | 2      | 2                |
| NA 311-325  | SIDSSYVCSGLVGDT  | 2      | 4                |
| NA 316-330  | YVCSGLVGDTPRNDD  | 3      | 13               |
| NA 321-335  | LVGDTPRNDDRSSNS  | 0      | 6                |
| NA 326-340  | PRNDDRSSNSNCRNP  | 0      | 3                |
| NA 331-345  | RSSNSNCRNPNNERG  | 1      | 2                |
| NA 336-350  | NCRNPNNERGNQGVK  | 1      | 4                |
| NA 341-355  | NNERGNQGVKGWAFD  | 1      | 4                |
| NA 346-360  | NOGVKGWAFDNGDDV  | 2      | 6                |
| NA 351-365  | GWAFDNGDDVWMGRT  | 3      | 4                |
| NA 356-370  | NGDDVWMGRTISKDI  | 2      | 5                |
| NA 361-375  | WMGRTISKDI RSGYF | 0      | 4                |
| NA 366-380  |                  | 1      | 2                |
| NA 371-385  | RSGVETEKVIGGWST  | 2      | 7                |
| NA 371-300  |                  | 2      | 5                |
| NA 370-390  |                  | 0      | 7                |
| NA 381-395  |                  | 1      | י<br>ר           |
| NA 386-400  | PINSKSQINRQVIVDS | T      | 3                |
| INA 391-405 | VINCONDOCIONIS   | 2      | 3                |
| NA 396-410  | VIVDSDNRSGYSGIF  | 1      | 3                |
| NA 401-415  | DNRSGYSGIFSVEGK  | 1      | 10               |
| NA 406-420  | YSGIFSVEGKSCINR  | 1      | 4                |
| NA 411-425  | SVEGKSCINRCFYVE  | 2      | 10               |
| NA 416-430  | SCINRCFYVELIRGR  | 2      | 12               |
| NA 421-435  | CFYVELIRGRKQETR  | 2      | 4                |
| NA 424-438  | VELIRGRKQETRVWW  | 3      | 7                |

|            | Peptide Sequence | Elis | pot <sup>a</sup> |
|------------|------------------|------|------------------|
| NA 429-443 | GRKQETRVWWTSNSI  | 0    | 5                |
| NA 434-448 | TRVWWTSNSIVVFCG  | 0    | 4                |
| NA 439-453 | TSNSIVVFCGTSGTY  | 0    | 4                |
| NA 444-458 | VVFCGTSGTYGTGSW  | 3    | 8                |
| NA 449-463 | TSGTYGTGSWPDGAN  | 1    | 4                |
| NA 454-468 | GTGSWPDGANINFMP  | 1    | 4                |
| NA 459-469 | PDGANINFMPI      | 0    | 12               |
| NP 1-15    | MASQGTKRSYEQMET  | 4    | 5                |
| NP 6-20    | TKRSYEQMETDGERQ  | 9    | 6                |
| NP 11-25   | EQMETDGERQNATEI  | 3    | 10               |
| NP 16-30   | DGERQNATEIRASVG  | 2    | 15               |
| NP 21-35   | NATEIRASVGKMIGG  | 14   | 5                |
| NP 26-40   | RASVGKMIGGIGRFY  | 10   | 12               |
| NP 31-45   | KMIGGIGRFYIQMCT  | 5    | 6                |
| NP 36-50   | IGRFYIQMCTELKLS  | 10   | 10               |
| NP 41-55   | IQMCTELKLSDYEGR  | 3    | 3                |
| NP 46-60   | ELKLSDYEGRLIONS  | 3    | 12               |
| NP 51-65   | DYEGRLIQNSLTIER  | 6    | 11               |
| NP 56-70   | LIQNSLTIERMVLSA  | 3    | 6                |
| NP 61-75   | LTIERMVLSAFDERR  | 9    | 12               |
| NP 66-80   | MVLSAFDERRNKYLE  | 17   | 5                |
| NP 71-85   | FDERRNKYLEEHPSA  | 3    | 3                |
| NP 76-90   | NKYLEEHPSAGKDPK  | 2    | 9                |
| NP 81-95   | EHPSAGKDPKKTGGP  | 2    | 8                |
| NP 86-100  | GKDPKKTGGPIYRRV  | 6    | 5                |
| NP 91-105  | KTGGPIYRRVNGKWM  | 25   | 17               |
| NP 96-110  | IYRRVNGKWMRELIL  | 9    | 13               |
| NP 101-115 | NGKWMRELILYDKEE  | 2    | 10               |
| NP 106-120 | RELILYDKEEIRRIW  | 15   | 26               |
| NP 111-125 | YDKEEIRRIWRQANN  | 8    | 2                |
| NP 116-130 | IRRIWRQANNGDDAT  | 8    | 12               |
| NP 121-135 | RQANNGDDATAGLTH  | 12   | 11               |
| NP 126-140 | GDDATAGLTHMMIWH  | 16   | 6                |
| NP 131-145 | AGLTHMMIWHSNLND  | 13   | 7                |
| NP 136-150 | MMIWHSNLNDATYQR  | 26   | 14               |
| NP 141-155 | SNLNDATYQRTRALV  | 12   | 16               |
| NP 146-160 | ATYQRTRALVRTGMD  | 30   | 17               |
| NP 151-165 | TRALVRTGMDPRMCS  | 48   | 22               |
| NP 156-170 | RTGMDPRMCSLMQGS  | 42   | 12               |
| NP 161-175 | PRMCSLMQGSTLPRR  | 45   | 22               |
| NP 166-180 | LMQGSTLPRRSGAAG  | 12   | 5                |
| NP 171-185 | TLPRRSGAAGAAVKG  | 3    | 5                |
| NP 176-190 | SGAAGAAVKGVGTMV  | 6    | 3                |
| NP 181-195 | AAVKGVGTMVMELVR  | 7    | 3                |
| NP 186-200 | VGTMVMELVRMIKRG  | 8    | 8                |
| NP 191-205 | MELVRMIKRGINDRN  | 12   | 16               |
| NP 196-210 | MIKRGINDRNFWRGE  | 30   | 21               |
| NP 201-215 | INDRNFWRGENGRKT  | 34   | 39               |
| ND 206 220 |                  |      |                  |
| NF 200-220 | FWRGENGRKTRIAYE  | 91   | 82               |

|    |         | Peptide Sequence | Elis | oot <sup>a</sup> |
|----|---------|------------------|------|------------------|
| NP | 216-230 | RIAYERMCNILKGKF  | 44   | 43               |
| NP | 221-235 | RMCNILKGKFQTAAQ  | 64   | 8                |
| NP | 226-240 | LKGKFQTAAQKAMMD  | 6    | 6                |
| NP | 231-245 | QTAAQKAMMDQVRES  | 4    | 8                |
| NP | 236-250 | KAMMDQVRESRNPGN  | 5    | 6                |
| NP | 241-255 | QVRESRNPGNAEFED  | 2    | 0                |
| NP | 246-260 | RNPGNAEFEDLTFLA  | 7    | 3                |
| NP | 251-265 | AEFEDLTFLARSALI  | 8    | 5                |
| NP | 256-270 | LTFLARSALILRGSV  | 6    | 4                |
| NP | 261-275 | RSALILRGSVAHKSC  | 28   | 13               |
| NP | 266-280 | LRGSVAHKSCLPACV  | 56   | 30               |
| NP | 271-285 | AHKSCLPACVYGPAV  | 47   | 23               |
| NP | 276-290 | LPACVYGPAVASGYD  | 100  | 69               |
| NP | 281-295 | YGPAVASGYDFEREG  | 16   | 6                |
| NP | 286-300 | ASGYDFEREGYSLVG  | 10   | 3                |
| NP | 291-305 | FEREGYSLVGIDPFR  | 6    | 3                |
| NP | 296-310 | YSLVGIDPFRLLQNS  | 22   | 2                |
| NP | 301-315 | IDPFRLLQNSQVYSL  | 8    | 2                |
| NP | 306-320 | LLQNSQVYSLIRPNE  | 34   | 8                |
| NP | 311-325 | QVYSLIRPNENPAHK  | 38   | 41               |
| NP | 316-330 | IRPNENPAHKSQLVW  | 20   | 23               |
| NP | 321-335 | NPAHKSQLVWMACHS  | 22   | 7                |
| NP | 326-340 | SQLVWMACHSAAFED  | 26   | 17               |
| NP | 331-345 | MACHSAAFEDLRVLS  | 3    | 7                |
| NP | 336-350 | AAFEDLRVLSFIKGT  | 5    | 15               |
| NP | 341-355 | LRVLSFIKGTKVLPR  | 4    | 3                |
| NP | 346-360 | FIKGTKVLPRGKLST  | 3    | 5                |
| NP | 351-365 | KVLPRGKLSTRGVQI  | 2    | 10               |
| NP | 356-370 | GKLSTRGVQIASNEN  | 18   | 14               |
| NP | 361-375 | RGVQIASNENMETME  | 177  | 139              |
| NP | 366-380 | ASNENMETMESSTLE  | 188  | 3                |
| NP | 371-385 | METMESSTLELRSRY  | 28   | 13               |
| NP | 376-390 | SSTLELRSRYWAIRT  | 7    | 2                |
| NP | 381-395 | LRSRYWAIRTRSGGN  | 3    | 2                |
| NP | 386-400 | WAIRTRSGGNTNQQR  | 6    | 4                |
| NP | 391-405 | RSGGNTNQQRASAGQ  | 4    | 3                |
| NP | 396-410 | TNQQRASAGQISIQP  | 2    | 4                |
| NP | 401-415 | ASAGQISIQPTFSVQ  | 7    | 4                |
| NP | 406-420 | ISIQPTFSVQRNLPF  | 2    | 3                |
| NP | 411-425 | TFSVQRNLPFDRTTI  | 3    | 4                |
| NP | 416-430 | RNLPFDRTTIMAAFN  | 26   | 8                |
| NP | 421-435 | DRTTIMAAFNGNTEG  | 6    | 10               |
| NP | 423-437 | TIMAAFNGNTEGRTS  | 24   | 11               |
| NP | 428-442 | FNGNTEGRTSDMRTE  | 1    | 3                |
| NP | 433-447 | EGRTSDMRTEIIRMM  | 3    | 2                |
| NP | 438-452 | DMRTEIIRMMESARP  | 8    | 7                |
| NP | 443-457 | IIRMMESARPEDVSF  | 4    | 14               |
| NP | 448-462 | ESARPEDVSFQGRGV  | 3    | 3                |
| NP | 453-467 | EDVSFQGRGVFELSD  | 8    | 4                |
| NP | 458-472 | QGRGVFELSDEKAAS  | 2    | 3                |

|            | Peptide Sequence | Elispot <sup>a</sup> |
|------------|------------------|----------------------|
| NP 463-477 | FELSDEKAASPIVPS  | 4 7                  |
| NP 468-482 | EKAASPIVPSFDMSN  | 3 3                  |
| NP 473-487 | PIVPSFDMSNEGSYF  | 0 4                  |
| NP 478-493 | FDMSNEGSYFFGDNA  | 0 2                  |
| NP 484-498 | EGSYFFGDNAEEYDN  | 0 5                  |
| NP 489-498 | FGDNAEEYDN       | 2 3                  |
| PA 1-15    | MEDFVRQCFNPMIVE  | 52                   |
| PA 6-20    | RQCFNPMIVELAEKT  | 38                   |
| PA 11-25   | PMIVELAEKTMKEYG  | 2 6                  |
| PA 16-30   | LAEKTMKEYGEDLKI  | 0 8                  |
| PA 21-35   | MKEYGEDLKIETNKF  | 4 8                  |
| PA 26-40   | EDLKIETNKFAAICT  | 94                   |
| PA 31-45   | ETNKFAAICTHLEVC  | 3 12                 |
| PA 36-50   | AAICTHLEVCFMYSD  | 38                   |
| PA 41-55   | HLEVCFMYSDFHFIN  | 5 10                 |
| PA 46-60   | FMYSDFHFINEOGES  | 6 10                 |
| PA 51-65   | FHFINEOGESIIVEL  | 96                   |
| PA 56-70   | EOGESIIVELGDPSA  | 1 7                  |
| PA 61-75   | IIVELGDPSALLKHR  | 3 10                 |
| PA 66-80   | GDPSALLKHRFEIIE  | 2 10                 |
| PA 71-85   | LLKHRFEIIEGRDRT  | 7 7                  |
| PA 76-90   | FEIIEGRDRTMAWTV  | 1 9                  |
| PA 81-95   | GRDRTMAWTVVNSIC  | 4 10                 |
| PA 86-100  | MAWTVVNSICNTTGA  | 9 12                 |
| PA 91-105  | VNSICNTTGAEKPKF  | 4 14                 |
| PA 96-110  | NTTGAEKPKFLPDLY  | 2 9                  |
| PA 101-115 | EKPKFLPDLYDYKEN  | 2 6                  |
| PA 106-120 | LPDLYDYKENRFIEI  | 68                   |
| PA 111-125 | DYKENRFIEIGVTRR  | 4 4                  |
| PA 116-130 | RFIEIGVTRREVHIY  | 1 4                  |
| PA 121-135 | GVTRREVHIYYLEKA  | 6 1                  |
| PA 126-140 | EVHIYYLEKANKIKS  | 21 4                 |
| PA 131-145 | YLEKANKIKSEKTHI  | 4 7                  |
| PA 136-150 | NKIKSEKTHIHIFSF  | 2 6                  |
| PA 141-155 | EKTHIHIFSFTGEEM  | 35                   |
| PA 146-160 | HIFSFTGEEMATKAD  | 14 5                 |
| PA 151-165 | TGEEMATKADYTLDE  | 93                   |
| PA 156-170 | ATKADYTLDEESRAR  | 54                   |
| PA 161-175 | YTLDEESRARIKTRL  | 15 6                 |
| PA 166-180 | ESRARIKTRLFTIRQ  | 12 4                 |
| PA 171-185 | IKTRLFTIRQEMASR  | 63                   |
| PA 176-190 | FTIRQEMASRGLWDS  | 3 3                  |
| PA 181-195 | EMASRGLWDSFRQSE  | 13 3                 |
| PA 186-200 | GLWDSFROSERGEET  | 4 4                  |
| PA 191-205 | FROSERGEETIEERF  | 5 22                 |
| PA 196-210 | RGEETIEERFEITGT  | 12 15                |
| PA 201-215 | IEERFEITGTMRKLA  | 5 8                  |
| PA 206-220 | EITGTMRKLADOSLP  | 17 8                 |
| PA 211-225 | MRKLADQSLPPNFSS  | 13 5                 |
| PA 216-230 | DQSLPPNFSSLENFR  | 134 24               |

|                  | Peptide Sequence   | Elis     | oot <sup>a</sup> |
|------------------|--------------------|----------|------------------|
| PA 221-235       | PNFSSLENFRAYVDG    | 293      | 53               |
| PA 226-240       | LENFRAYVDGFEPNG    | 74       | 8                |
| PA 231-245       | AYVDGFEPNGYIEGK    | 7        | 4                |
| PA 236-250       | FEPNGYIEGKLSQMS    | 0        | 3                |
| PA 241-255       | YIEGKLSQMSKEVNA    | 2        | 3                |
| PA 246-260       | LSQMSKEVNARIEPF    | 23       | 14               |
| PA 251-265       | KEVNARIEPFLKTTP    | 26       | 14               |
| PA 256-270       | RIEPFLKTTPRPLRL    | 29       | 17               |
| PA 261-275       | LKTTPRPLRLPNGPP    | 23       | 3                |
| PA 266-280       | RPLRLPNGPPCSQRS    | 32       | 6                |
| PA 271-285       | PNGPPCSQRSKFLLM    | 48       | 6                |
| PA 276-290       | CSQRSKFLLMDALKL    | 26       | 27               |
| PA 281-295       | KFLLMDALKLSIEDP    | 27       | 6                |
| PA 286-300       | DALKLSIEDPSHEGE    | 14       | 3                |
| PA 291-305       | SIEDPSHEGEGIPLY    | 4        | 5                |
| PA 296-310       | SHEGEGIPLYDAIKC    | 2        | 9                |
| PA 301-315       | GIPLYDAIKCMRTFF    | 10       | 7                |
| PA 306-320       | DAIKCMRTFFGWKEP    | 2        | 9                |
| PA 311-325       | MRTFFGWKEPNVVKP    | 11       | 14               |
| PA 316-330       | GWKEPNVVKPHEKGI    | 16       | 16               |
| PA 321-335       | NVVKPHEKGINPNYL    | 19       | 8                |
| PA 326-340       | HEKGINPNYLLSWKO    | 14       | 12               |
| PA 331-345       | NPNYLLSWKOVLAEL    | 6        | 3                |
| PA 336-350       | I SWKOVI AFI ODIEN | 19       | 6                |
| PA 341-355       | VLAELODIENEEKIP    | 21       | 4                |
| PA 346-360       |                    | 4        | 4                |
| PA 351-365       | FFKIPKTKNMKKTSO    | 3        | 6                |
| PA 356-370       | KTKNMKKTSOI KWAI   | 5        | 6                |
| PA 361-375       | KKTSOLKWALGENMA    | 2        | 4                |
| PA 366-380       | I KWAI GENMAPEKVD  | 3        | 2                |
| PA 371-385       | GENMAPEKVDEDDCK    | 22       | 2                |
| PA 376-390       |                    | 4        | 6                |
| PA 381-395       |                    | a        | 4                |
| PA 386-400       |                    | 3        | 5                |
| PA 391-405       |                    | 18       | 3                |
| PA 396-410       |                    | 20       | 3                |
| PA 390-410       |                    | 1/       | 10               |
| PA 401-413       |                    | 24       | 10               |
| DA 411-425       |                    | 24       | 10               |
| PA 411-423       |                    | 29       | 12               |
| PA 410-430       |                    | 2<br>1   | 4                |
| PA 421-435       |                    | 4        | 0                |
| FA 430-44U       |                    | ∠<br>10  | 0<br>0           |
| FA 431-443       |                    | тЭ<br>Е  | 0                |
| FA 430-45U       |                    | 5        | 3<br>F           |
| PA 441-455       |                    | ю<br>10  | 5<br>10          |
| PA 446-460       |                    | 12<br>47 | 10               |
| PA 451-465       |                    | 1/       | 10               |
| <b>FA 436-47</b> |                    | 18       | 13               |
| PA 401-4/5       |                    | 1        | -<br>72          |
| PA 466-480       | YINTALLNASCAAMD    | 8        | 1                |

|            | Peptide Sequence   | Elis   | pot <sup>a</sup> |
|------------|--------------------|--------|------------------|
| PA 471-185 | LLNASCAAMDDFQLI    | 1      | 6                |
| PA 476-490 | CAAMDDFQLIPMISK    | 12     | 10               |
| PA 481-495 | DFQLIPMISKCRTKE    | 17     | 12               |
| PA 486-500 | PMISKCRTKEGRRKT    | 16     | 4                |
| PA 491-505 | CRTKEGRRKTNLYGF    | 7      | 3                |
| PA 496-510 | GRRKTNLYGFIIKGR    | 5      | 2                |
| PA 501-515 | NLYGFIIKGRSHLRN    | 3      | 2                |
| PA 506-520 | IIKGRSHLRNDTDVV    | 4      | 7                |
| PA 511-525 | SHLRNDTDVVNFVSM    | 2      | 4                |
| PA 516-530 | DTDVVNFVSMEFSLT    | 1      | 7                |
| PA 521-535 | NFVSMEFSLTDPRLE    | 4      | 5                |
| PA 526-540 | EFSLTDPRLEPHKWE    | 2      | 4                |
| PA 531-545 | DPRLEPHKWEKYCVL    | 6      | 3                |
| PA 536-550 | PHKWEKYCVLEIGDM    | 11     | 2                |
| PA 541-555 | KYCVLEIGDMLIRSA    | 8      | 3                |
| PA 546-560 | EIGDMLIRSAIGOVS    | 6      | 6                |
| PA 551-565 | LIRSAIGQVSRPMFL    | 2      | 6                |
| PA 556-570 | IGOVSRPMFLYVRTN    | 4      | 2                |
| PA 561-575 | RPMFLYVRTNGTSKI    | 7      | 3                |
| PA 566-580 | YVRTNGTSKIKMKWG    | 4      | 4                |
| PA 571-585 | GTSKIKMKWGMEMRR    | 1      | 3                |
| PA 576-590 | KMKWGMEMRRCLLOS    | 1      | 4                |
| PA 581-595 | MEMRRCI I OSI OOIE | 5      | . 11             |
| PA 586-500 |                    | 1      | 16               |
| PA 591-605 |                    | 3      | 16               |
| PA 596-610 | SMIFAFSSVKEKDMT    | 12     | 17               |
| PA 601-615 | ESSVKEKDMTKEEFE    | 7      | 32               |
| PA 606-620 | EKDMTKEEFENKSET    | 8      | 24               |
| PA 611-625 | KEEEENKSETWPIGE    | 6      | 5                |
| PA 616-630 | NKSETWPIGESPKGV    | 2      | 5                |
| PA 621-635 | WPIGESPKGVEESSI    | 3      | 2                |
| PA 626-640 | SPKGVEESSIGKVCR    | 3      | 2                |
| PA 631-645 | FESSICK//CRTLLAK   | 1      | 5                |
| PA 636-650 | GKVCRTLLAKSVENS    | 2      | 7                |
| PA 6/1-655 |                    | 2      | 1                |
| PA 646-660 |                    | 2      | 7                |
| PA 651-665 |                    | 1      | 8                |
| PA 656-670 |                    | 0      | 1                |
| PA 661 675 |                    | 2      | 2                |
| DV 666 660 |                    | 3      | د<br>۱           |
| DA 671 605 |                    | 1<br>1 | -<br>-           |
| DA 676 600 |                    | с<br>Т | ∠<br>1           |
| FA 0/0-09U |                    | 0      | Ť                |
| CGG-TOO    |                    | т<br>Т | 2                |
| PA 000-700 |                    | ک<br>₄ | 1                |
| PA 691-705 |                    | 1      | 3                |
| PA 696-710 |                    | 2      | 8                |
| PA /U1-/15 | WVLLNASWENSELIH    | 4      | (                |
| PA /06-716 | ASWFNSFLTHALS      | 1      | 1                |
| PB1 1-15   |                    | 2      | 4                |
| PB1 6-20   | TLLFLKVPAQNAIST    | 1      | 7                |

|             | Peptide Sequence  | Elis   | pot <sup>a</sup> |
|-------------|-------------------|--------|------------------|
| PB1 11-25   | KVPAQNAISTTFPYT   | 0      | 2                |
| PB1 16-30   | NAISTTFPYTGDPPY   | 4      | 12               |
| PB1 21-35   | TFPYTGDPPYSHGTG   | 2      | 4                |
| PB1 26-40   | GDPPYSHGTGTGYTM   | 1      | 6                |
| PB1 31-45   | SHGTGTGYTMDTVNR   | 0      | 1                |
| PB1 36-50   | TGYTMDTVNRTHQYS   | 2      | 4                |
| PB1 41-55   | DTVNRTHQYSEKGRW   | 0      | 10               |
| PB1 46-60   | THQYSEKGRWTTNTE   | 0      | 10               |
| PB1 51-65   | EKGRWTTNTETGAPQ   | 2      | 5                |
| PB1 56-70   | TTNTETGAPQLNPID   | 0      | 6                |
| PB1 61-75   | TGAPQLNPIDGPLPE   | 2      | 5                |
| PB1 66-80   | LNPIDGPLPEDNEPS   | 3      | 40               |
| PB1 71-85   | GPLPEDNEPSGYAQT   | 9      | 6                |
| PB1 76-90   | DNEPSGYAQTDCVLE   | 4      | 12               |
| PB1 81-95   | GYAOTDCVLEVMAFL   | 5      | 7                |
| PB1 86-100  | DCVLEVMAFLEESHP   | 8      | 13               |
| PB1 91-105  | VMAFLEESHPGIFEN   | 0      | 11               |
| PB1 96-110  | EESHPGIFENSCIET   | 4      | 9                |
| PB1 101-115 | GIFENSCIETMEVVO   | 9      | 6                |
| PB1 106-120 | SCIETMEVVOOTRVD   | 9      | 11               |
| PB1 111-125 | MEVVOOTRVDKITOG   | 1      | 4                |
| PB1 116-130 |                   | 2      | 12               |
| PB1 121-135 |                   | 0      | 6                |
| PB1 126-140 | ROTYDWTI NRNOPAA  | 2      | 11               |
| PB1 131-145 | WTI NRNOPAATAI AN | 2      | 3                |
| PB1 136-150 |                   | 2      | 6                |
| PB1 141-155 |                   | 5      | 4                |
| PB1 146-160 | TIEVERSNGLTANES   | 1      | 12               |
| PB1 151-165 | RSNGLTANESGRUD    | 1      | 9                |
| PB1 156-170 | TANESGRI IDEI KDV | 4      | 18               |
| PB1 161-175 | GRI IDFI KDVMFSMN | 1      | 7                |
| PB1 166-180 | FLKDVMESMNKEEMG   | 2      | 5                |
| PB1 171-185 | MESMNKEEMGITTHE   | 3      | 4                |
| PB1 176-190 | KEEMGITTHEORKRR   | 1      | 6                |
| PB1 181-195 | ITTHEORKRRVRDNM   | 2      | 5                |
| PB1 186-200 |                   | 3      | 3                |
| PB1 191-205 | VRDNMTKKMITORTM   | 3      | 9                |
| PB1 196-210 | TKKMITORTMGKKKO   | 5      | 9                |
| PB1 201-215 |                   | 4      | 4                |
| PB1 206-220 | GKKKORI NKRSYLIR  | 1      | 5                |
| PB1 211-225 | RI NKRSYLIRALTI N | 2      | 6                |
| PB1 216-230 | SYLIBALTI NTMTKD  | 2      | 14               |
| PB1 221-235 |                   | 6      | 3                |
| PB1 226-240 |                   | 0      | 6                |
| PB1 231-245 |                   | 1      | 7                |
| PB1 236-250 |                   | 0      | 8                |
| PB1 241-255 |                   | 5      | 3                |
| PB1 246-260 |                   | 2      | 11               |
| PB1 251-265 | EVYEVETI ARSICEK  | 2<br>4 | 4                |
| PB1 256-270 | FTI ARSICEKI EOSG | 1      | 3                |
| 101200-210  |                   | -      | 5                |

|             | Peptide Sequence  | Elis   | pota    |
|-------------|-------------------|--------|---------|
| PB1 261-275 | SICEKI FOSGI PVGG | 0      | 4       |
| PB1 266-280 |                   | 2      | 0       |
| PB1 271-285 |                   | 2      | 1       |
| PB1 271-285 |                   | 2<br>1 | 4       |
| PB1 270-290 |                   | 4      | 4       |
| PB1 201-295 |                   | 2      | 32      |
| PB1 286-300 | VRKMMINSQDIELSF   | 5      | 12      |
| PB1 291-305 | INSQUIELSFIIIGD   | 4      | (       |
| PB1 296-310 | TELSFITIGDNTKWN   | 3      | 5       |
| PB1 301-315 | TITGDNTKWNENQNP   | 1      | 7       |
| PB1 306-320 | NTKWNENQNPRMFLA   | 0      | 16      |
| PB1 311-325 | ENQNPRMFLAMITYM   | 1      | 10      |
| PB1 316-330 | RMFLAMITYMTRNQP   | 1      | 9       |
| PB1 321-335 | MITYMTRNQPEWFRN   | 3      | 10      |
| PB1 326-340 | TRNQPEWFRNVLSIA   | 4      | 17      |
| PB1 331-345 | EWFRNVLSIAPIMFS   | 4      | 16      |
| PB1 336-350 | VLSIAPIMFSNKMAR   | 0      | 9       |
| PB1 341-355 | PIMFSNKMARLGKGY   | 1      | 7       |
| PB1 346-360 | NKMARLGKGYMFESK   | 2      | 6       |
| PB1 351-365 | LGKGYMFESKSMKLR   | 7      | 3       |
| PB1 356-370 | MFESKSMKLRTQIPA   | 0      | 6       |
| PB1 361-375 | SMKLRTQIPAEMLAS   | 0      | 7       |
| PB1 366-380 | TQIPAEMLASIDLKY   | 2      | 6       |
| PB1 371-385 | EMLASIDLKYFNDST   | 2      | 5       |
| PB1 376-390 | IDLKYFNDSTRKKIE   | 0      | 7       |
| PB1 381-395 | FNDSTRKKIEKIRPL   | 0      | 6       |
| PB1 386-400 | RKKIEKIRPLLIEGT   | 7      | 2       |
| PB1 391-405 | KIRPLLIEGTASLSP   | 3      | 2       |
| PB1 396-410 | LIEGTASLSPGMMMG   | 1      | 1       |
| PB1 401-415 | ASLSPGMMMGMFNML   | 6      | 5       |
| PB1 406-420 | GMMMGMFNMLSTVLG   | 0      | 15      |
| PB1 411-425 | MFNMLSTVLGVSILN   | 5      | 7       |
| PB1 416-430 | STVLGVSILNLGOKR   | 2      | 2       |
| PB1 421-435 | VSILNLGOKRYTKTT   | 0      | 3       |
| PB1 426-440 | LNLGOKRYTKTTYWW   | 0      | 4       |
| PB1 431-445 | KRYTKTTYWWDGI OS  | 3      | 8       |
| PB1 436-450 | TTYWWDGI OSSDDFA  | 2      | 7       |
| PB1 441-455 | DGI OSSDDFALIVNA  | 4      | 3       |
| PB1 446-460 | SDDFALIVNAPNHEG   | 1      | 5       |
| PB1 451-465 |                   | 2      | 7       |
| PB1 456-470 |                   | 2      | '<br>11 |
| PR1 461-475 |                   | 2      | Δ       |
| DE1 /66 /00 |                   | 5<br>F | 4<br>10 |
| FD1 400-48U |                   | 0      | τQ      |
| FD1 470 400 |                   | 2      | 0       |
| PB1 4/6-490 | GINNISAAASYINKIG  | 5      | 4       |
| PB1 481-495 | KKKSYINRIGIFEFT   | 3      | 1       |
| PB1 486-500 | INRIGIFEFTSFFYR   | 6      | 1       |
| РВ1 491-505 | TFEFTSFFYRYGFVA   | 7      | 19      |
| PB1 496-510 | SFFYRYGFVANFSME   | 3      | 16      |
| PB1 501-515 | YGFVANFSMELPSFG   | 7      | 22      |
| PB1 506-520 | NFSMELPSFGVSGIN   | 6      | 8       |

|                           | Peptide Sequence | Elis       | pot <sup>a</sup> |
|---------------------------|------------------|------------|------------------|
| PB2 6-20                  | ELRNLMSQSRTREIL  | 2          | 1                |
| PB2 11-25                 | MSQSRTREILTKTTV  | 3          | 3                |
| PB2 16-30                 | TREILTKTTVDHMAI  | 12         | 11               |
| PB2 21-35                 | TKTTVDHMAIIKKFT  | 3          | 5                |
| PB2 26-40                 | DHMAIIKKFTSGRQE  | 4          | 6                |
| PB2 31-45                 | IKKFTSGRQEKNPAL  | 2          | 7                |
| PB2 36-50                 | SGROEKNPALRMKWM  | 6          | 8                |
| PB2 41-55                 | KNPALRMKWMMAMKY  | 9          | 6                |
| PB2 46-60                 | RMKWMMAMKYPITAD  | 11         | 5                |
| PB2 51-65                 | MAMKYPITADKRITE  | 7          | 8                |
| PB2 56-70                 | PITADKRITEMIPER  | 4          | 4                |
| PB2 61-75                 | KRITEMIPERNEOGO  | 1          | 6                |
| PB2 66-80                 | MIPERNEQGOTLWSK  | 4          | 7                |
| PB2 71-85                 | NEQGOTLWSKMNDAG  | 5          | 15               |
| PB2 76-90                 | TLWSKMNDAGSDRVM  | 7          | 7                |
| PB2 81-95                 | MNDAGSDRVMVSPLA  | 4          | 6                |
| PB2 86-100                | SDRVMVSPLAVTWWN  | 13         | 10               |
| PB2 91-105                | VSPLAVTWWNRNGPM  | 20         | 20               |
| PB2 96-110                | VTWWNRNGPMTNTVH  | <u>19</u>  | 22               |
| B2 101-115                | RNGPMTNTVHYPKIY  | <u>1</u> 4 | 12               |
| B2 106-120                | TNTVHYPKIYKTYFE  | 32         | 17               |
| B2 111-125                | YPKIYKTYFERVERL  | 1          | 4                |
| B2 116-130                | KTYFERVERLKHGTF  | 6          | 6                |
| B2 121-135                | RVERLKHGTFGPVHF  | 5          | 2                |
| B2 126-140                | KHGTFGPVHFRNOVK  | 0          | 4                |
| B2 131-145                | GPVHFRNOVKIRRRV  | 4          | 14               |
| B2 136-150                | RNOVKIRRRVDINPG  | 8          | 4                |
| B2 141-155                | IRRRVDINPGHADIS  | 8          | 13               |
| B2 146-160                |                  | 4          | 10               |
| B2 151-165                | HADI SAKFAODVIME | 5          | 12               |
| B2 156-170                |                  | 3          | 6                |
| PR2 161-175               |                  | 3          | 12               |
| B2 166-180                |                  | 4          | 7                |
| DE 100-100<br>PR2 171-125 | FVGARIITSFSOITI  | 7<br>2     | י<br>פ           |
| B2 176-100                |                  | 10         | 7                |
| B2 181-195                |                  | <u>۲</u> ۲ | ĥ                |
| B2 186-200                |                  | 4          | a                |
| B2 100-200                |                  | +<br>5     | 11               |
| B2 191-200                |                  | 42         | <b>3U</b>        |
| DR2 201-215               |                  | <b>44</b>  | <b>30</b>        |
| B5 201-510                |                  | с<br>С     | 4<br>5           |
| DZ 200-220                |                  | 2          |                  |
| DZ ZII-ZZO                |                  | 0<br>7     | 3                |
| DZ ZIO-23U                |                  | 1          | 10               |
| DZ ZZI-Z35                | AGGISSVILEVLHLI  | 11<br>E    | т0               |
| D2 220-240                | SVIEVENLIQGICW   | 5          | 5                |
| °DZ Z31-245               |                  | 2          | /<br>_           |
| °DZ 230-250               |                  | T          | 5                |
| ′в2 241-255               |                  | 8          | 2                |
| ′BZ 246-260               | PGGEVRNDDVDQSL   | 3          | З                |
|                           |                  |            | _                |

|             | Peptide Sequence  | Elis   | pot    |
|-------------|-------------------|--------|--------|
| PB2 256-270 | DQSLIIAARNIVRRA   | 5      | 5      |
| PB2 261-275 | IAARNIVRRAAVSAD   | 6      | 3      |
| PB2 266-280 | IVRRAAVSADPLASL   | 7      | 10     |
| PB2 271-285 | AVSADPLASLLEMCH   | 10     | 5      |
| PB2 276-290 | PLASLLEMCHSTQIG   | 6      | 3      |
| PB2 281-295 | LEMCHSTQIGGIRMV   | 4      | 10     |
| PB2 286-300 | STQIGGIRMVDILRQ   | 5      | 6      |
| PB2 291-305 | GIRMVDILRQNPTEE   | 6      | 8      |
| PB2 296-310 | DILRQNPTEEQAVDI   | 4      | 3      |
| PB2 301-315 | NPTEEQAVDICKAAM   | 7      | 5      |
| PB2 306-320 | QAVDICKAAMGLRIS   | 5      | 4      |
| PB2 311-325 | CKAAMGLRISSSFSF   | 3      | 6      |
| PB2 316-330 | GLRISSSFSFGGFTF   | 11     | 12     |
| PB2 321-335 | SSFSFGGFTFKRTSG   | 12     | 12     |
| PB2 326-340 | GGFTFKRTSGSSVKR   | 1      | 10     |
| PB2 331-345 | KRTSGSSVKREEEVL   | 14     | 7      |
| PB2 336-350 | SSVKREEEVLTGNLO   | 1      | 5      |
| PB2 341-355 | EEEVLTGNLOTLKIR   | 3      | 10     |
| PB2 346-360 | TGNI OTI KIRVHEGY | 4      | 4      |
| PB2 351-365 |                   | 2      | 9      |
| PB2 356-370 | VHEGYEEETMVGRRA   | 1      | 10     |
| PB2 361-375 | FFFTMVGRRATAILR   | 3      | 6      |
| PB2 366-380 |                   | 4      | 7      |
| PB2 371-385 |                   | 6      | 19     |
| PB2 376-390 |                   | 4      | 2      |
| PB2 381-395 |                   | 3      | 7      |
| PB2 386-400 |                   | 2      | 7      |
| PB2 301-400 | FOSIAFAIIVAMVES   | 2      | ,<br>Л |
| DP2 306 410 |                   | 2      | 7      |
| PB2 390-410 |                   | 1      | 7      |
| PB2 401-413 |                   |        | і<br>Л |
| PB2 406-420 |                   | 5      | 4      |
| PB2 411-425 |                   | 0      |        |
| FDZ 410-430 |                   | ð<br>1 | 14     |
| PD2 421-435 |                   | 4      | 4      |
| PB2 426-440 |                   | 6      | 4      |
| PB2 431-445 |                   | 0      | 1      |
| PB2 436-450 |                   | 2      | 4      |
| PB2 441-455 | QKDAKVLFQNWGVEP   | 4      | 6      |
| PB2 446-460 | VLFQNWGVEPIDNVM   | 8      | 6      |
| PB2 451-465 | WGVEPIDNVMGMIGI   | 6      | 6      |
| РВ2 456-470 | IDNVMGMIGILPDMT   | 4      | 5      |
| PB2 461-475 | GMIGILPDMTPSIEM   | 3      | 9      |
| PB2 466-480 | LPDMTPSIEMSMRGV   | 4      | 1      |
| PB2 471-485 | PSIEMSMRGVRISKM   | 4      | 6      |
| PB2 476-490 | SMRGVRISKMGVDEY   | 1      | 2      |
| PB2 481-495 | RISKMGVDEYSSTER   | 3      | 2      |
| PB2 486-500 | GVDEYSSTERVVVSI   | 2      | 4      |
| PB2 491-505 | SSTERVVVSIDRFLR   | 4      | 3      |
| PB2 496-510 | VVVSIDRFLRIRDQR   | 7      | 4      |
| PB2 501-515 | DRFI RIRDORGNVI I | 6      | 3      |

|             | Peptide Sequence  | Elis     | pot <sup>a</sup> |
|-------------|-------------------|----------|------------------|
| PB2 506-520 | IRDQRGNVLLSPEEV   | 4        | 4                |
| PB2 511-525 | GNVLLSPEEVSETQG   | 10       | 7                |
| PB2 516-530 | SPEEVSETQGTEKLT   | 8        | 4                |
| PB2 521-535 | SETQGTEKLTITYSS   | 15       | 9                |
| PB2 526-540 | TEKLTITYSSSMMWE   | 4        | 2                |
| PB2 531-545 | ITYSSSMMWEINGPE   | 26       | 2                |
| PB2 536-550 | SMMWEINGPESVLVN   | 6        | 3                |
| PB2 541-555 | INGPESVLVNTYQWI   | 8        | 4                |
| PB2 546-560 | SVLVNTYQWIIRNWE   | 3        | 6                |
| PB2 551-565 | TYQWIIRNWETVKIQ   | 2        | 2                |
| PB2 556-570 | IRNWETVKIQWSQNP   | 7        | 4                |
| PB2 561-575 | TVKIQWSQNPTMLYN   | 3        | 6                |
| PB2 566-580 | WSQNPTMLYNKMEFE   | 8        | 3                |
| PB2 571-585 | TMLYNKMEFEPFQSL   | 5        | 2                |
| PB2 576-590 | KMEFEPFQSLVPKAI   | 3        | 2                |
| PB2 581-595 | PFQSLVPKAIRGQYS   | 2        | 2                |
| PB2 586-600 | VPKAIRGQYSGFVRT   | 12       | 2                |
| PB2 591-605 | RGQYSGFVRTLFOOM   | 3        | 3                |
| PB2 596-610 | GFVRTLFQQMRDVLG   | 8        | 5                |
| PB2 601-615 | LFQQMRDVLGTFDTA   | 3        | 1                |
| PB2 606-620 | RDVLGTFDTAOIIKL   | 5        | 1                |
| PB2 611-625 | TFDTAQIIKLLPFAA   | 4        | 3                |
| PB2 616-630 | QIIKLLPFAAAPPKO   | 0        | 2                |
| PB2 621-635 | LPFAAAPPKOSRMOF   | 1        | 4                |
| PB2 626-640 | APPKQSRMQFSSFTV   | 0        | 4                |
| PB2 631-645 | SRMOFSSFTVNVRGS   | 2        | 3                |
| PB2 636-650 | SSFTVNVRGSGMRIL   | 2        | 4                |
| PB2 641-655 | NVRGSGMRILVRGNS   | 2        | 6                |
| PB2 646-660 | GMRILVRGNSPVFNY   | 2        | 9                |
| PB2 651-665 | VRGNSPVFNYNKATK   | 1        | 4                |
| PB2 656-670 | PVFNYNKATKRLTVL   | 6        | 20               |
| PB2 661-675 | NKATKRLTVLGKDAG   | 3        | 5                |
| PB2 666-680 | RLTVLGKDAGTLTED   | 3        | 2                |
| PB2 671-685 | GKDAGTLTEDPDEGT   | 6        | -                |
| PB2 676-690 | TLTEDPDEGTAGVFS   | <u>1</u> | 2                |
| PB2 681-695 | PDEGTAGVESAVLRG   | 1        | 4                |
| PB2 686-700 | AGVESAVLRGFLILG   | 1        | 1                |
| PB2 691-705 | AVLRGFLILGKFDKR   | 4        | 4                |
| PB2 696-710 | FI II GKEDKRYGPAI | 3        | 5                |
| PB2 701-715 | KEDKRYGPAI SINFI  | 5        | 44               |
| PB2 706-720 | YGPALSINFI SNI AK | 1        | 4                |
| PB2 711-725 | SINFLSNI AKGEKAN  | 3        | 5                |
| PB2 716-730 | SNI AKGEKANVI IGO | 1        | 6                |
| PB2 721-735 | GEKANVI IGOGDV//I | -<br>1   | 10               |
| PB2 726-740 |                   | -<br>5   | 5                |
| PB2 731-745 | GDWIVMKRKRDSSI    | 13       | 5                |
| PR2 734-748 | VMKRKRDSSILTDSO   | 0        | 8                |
| PR2 737-751 | RDSSILTDSOTATKP   | 0        | 29               |
| PB2 742-756 |                   | 2        | 1                |
| PB2 747-757 | TATKRIRMAIN       | -<br>1   | 3                |

|             | Peptide Sequence |    | pot <sup>a</sup> |
|-------------|------------------|----|------------------|
| NS1 1-15    | MDPNTVSSFQVDCFL  | 1  | 5                |
| NS1 6-20    | VSSFQVDCFLWHVRK  | 4  | 3                |
| NS1 11-25   | VDCFLWHVRKRVADQ  | 2  | 2                |
| NS1 16-30   | WHVRKRVADQELGDA  | 3  | 7                |
| NS1 21-35   | RVADQELGDAPFLDR  | 0  | 8                |
| NS1 26-40   | ELGDAPFLDRLRRDQ  | 4  | 2                |
| NS1 31-45   | PFLDRLRRDQKSLRG  | 1  | 4                |
| NS1 36-50   | LRRDQKSLRGRGSTL  | 0  | 3                |
| NS1 41-55   | KSLRGRGSTLGLDIK  | 3  | 3                |
| NS1 46-60   | RGSTLGLDIKTATRA  | 1  | 5                |
| NS1 51-65   | GLDIKTATRAGKQIV  | 1  | 1                |
| NS1 56-70   | TATRAGKQIVERILK  | 4  | 3                |
| NS1 61-75   | GKQIVERILKEESDE  | 2  | 3                |
| NS1 66-80   | ERILKEESDEALKMT  | 6  | 4                |
| NS1 71-85   | EESDEALKMTMASVP  | 3  | 2                |
| NS1 76-90   | ALKMTMASVPASRYL  | 5  | 4                |
| NS1 81-95   | MASVPASRYLTDMTL  | 1  | 5                |
| NS1 86-100  | ASRYLTDMTLEEMSR  | 3  | 3                |
| NS1 91-105  | TDMTLEEMSRDWSML  | 7  | 3                |
| NS1 96-110  | EEMSRDWSMLIPKQK  | 3  | 2                |
| NS1 101-115 | DWSMLIPKQKVAGPL  | 6  | 12               |
| NS1 106-120 | IPKQKVAGPLCIRMD  | 5  | 23               |
| NS1 111-125 | VAGPLCIRMDQAIMD  | 9  | 5                |
| NS1 116-130 | CIRMDQAIMDKNIIL  | 3  | 3                |
| NS1 121-135 | QAIMDKNIILKANFS  | 2  | 5                |
| NS1 126-140 | KNIILKANFSVIFDR  | 6  | 1                |
| NS1 131-145 | KANFSVIFDRLETLI  | 2  | 4                |
| NS1 136-150 | VIFDRLETLILLRAF  | 5  | 8                |
| NS1 141-155 | LETLILLRAFTEEGA  | 5  | 5                |
| NS1 146-160 | LLRAFTEEGAIVGEI  | 12 | 2                |
| NS1 151-165 | TEEGAIVGEISPLPS  | 2  | 3                |
| NS1 156-170 | IVGEISPLPSLPGHT  | 7  | 6                |
| NS1 161-175 | SPLPSLPGHTAEDVK  | 7  | 2                |
| NS1 166-180 | LPGHTAEDVKNAVGV  | 3  | 2                |
| NS1 171-185 | AEDVKNAVGVLIGGL  | 4  | 6                |
| NS1 176-190 | NAVGVLIGGLEWNDN  | 3  | 4                |
| NS1 181-195 | LIGGLEWNDNTVRVS  | 7  | 3                |
| NS1 186-200 | EWNDNTVRVSETLQR  | 2  | 2                |
| NS1 191-205 | TVRVSETLQRFAWRS  | 6  | 1                |
| NS1 196-210 | ETLQRFAWRSSNENG  | 14 | 2                |
| NS1 201-215 | FAWRSSNENGRPPLT  | 11 | 3                |
| NS1 206-220 | SNENGRPPLTPKQKR  | 8  | 7                |
| NS1 211-225 | RPPLTPKQKREMAGT  | 3  | 11               |
| NS1 216-230 | PKQKREMAGTIRSEV  | 6  | 8                |
| NS1 221-230 | EMAGTIRSEV       | 2  | 10               |
| NS2 1-15    | MDPNTVSSFQDILLR  | 0  | 2                |
| NS2 6-20    | VSSFQDILLRMSKMQ  | 2  | 3                |
| NS2 11-25   | DILLRMSKMQLESSS  | 1  | 0                |
| NS2 16-30   | MSKMQLESSSEDLNG  | 1  | 1                |
| NS2 21-35   | LESSSEDLNGMITQF  | 2  | 0                |

|            | Peptide Sequence Elisp |    | pot <sup>a</sup> |
|------------|------------------------|----|------------------|
| M1 161-175 | SHRQMVTTTNPLIRH        | 2  | 6                |
| M1 166-180 | VTTTNPLIRHENRMV        | 3  | 2                |
| M1 171-185 | PLIRHENRMVLASTT        | 1  | 2                |
| M1 176-190 | ENRMVLASTTAKAME        | 4  | 7                |
| M1 181-195 | LASTTAKAMEQMAGS        | 7  | 6                |
| M1 186-200 | AKAMEQMAGSSEQAA        | 4  | 2                |
| M1 191-205 | QMAGSSEQAAEAMEV        | 0  | 3                |
| M1 196-210 | SEQAAEAMEVASQAR        | 1  | 9                |
| M1 201-215 | EAMEVASQARQMVQA        | 12 | 32               |
| M1 206-220 | ASQARQMVQAMITIG        | 9  | 35               |
| M1 211-225 | QMVQAMITIGTHPSS        | 11 | 29               |
| M1 216-230 | MITIGTHPSSSAGLK        | 3  | 8                |
| M1 221-230 | THPSSSAGLKNDLLE        | 4  | 14               |
| M1 226-240 | SAGLKNDLLENLQAY        | 7  | 3                |
| M1 231-245 | NDLLENLQAYQKRMG        | 8  | 5                |
| M1236-250  | NLQAYQKRMGVQMQR        | 3  | 5                |
| M1 241-252 | QKRMGVQMQRFK           | 1  | 2                |
| M2 1-15    | MSFLTEVETPIRNEW        | 0  | 5                |
| M2 6-20    | EVETPIRNEWGCRCN        | 0  | 5                |
| M2 11-25   | IRNEWGCRCNGSSDP        | 1  | 4                |
| M2 16-30   | GCRCNGSSDPLTIAA        | 4  | 4                |
| M2 21-35   | GSSDPLTIAANIIGI        | 1  | 6                |
| M2 26-40   | LTIAANIIGILHLTL        | 0  | 4                |
| M2 31-45   | NIIGILHLTLWMLDR        | 1  | 5                |
| M2 36-50   | LHLTLWMLDRLFFKC        | 5  | 14               |
| M2 41-55   | WMLDRLFFKCIYRRF        | 10 | 5                |
| M2 46-60   | LFFKCIYRRFKYGLK        | 5  | 10               |
| M2 51-65   | IYRRFKYGLKGGPST        | 5  | 6                |
| M2 56-70   | KYGLKGGPSTEGVPK        | 3  | 3                |
| M2 61-75   | GGPSTEGVPKSMREE        | 2  | 3                |
| M2 66-80   | EGVPKSMREEYRKEQ        | 6  | 4                |
| M2 71-85   | SMREEYRKEQQSAVD        | 4  | 4                |
| M2 76-90   | YRKEQQSAVDTDDGH        | 6  | 8                |
| M2 81-95   | QSAVDTDDGHFVSIE        | 5  | 10               |
| M2 86-97   | TDDGHFVSIELE           | 8  | 10               |

<sup>a</sup> Number of Elispots from  $10^5$  spleen cells, determined in two independent experiments. <u>Peptides were screened on mice that had recovered from an x31 infection</u>. The regions containing the known Class I and Class II epitopes are indicated by shading and the peptides investigated further are in bold.

|             |                  | _    |                  |
|-------------|------------------|------|------------------|
|             | Peptide Sequence | Elis | oot <sup>a</sup> |
| NS2 26-40   | EDLNGMITQFESLKL  | 8    | 5                |
| NS2 31-45   | MITQFESLKLYRDSL  | 10   | 6                |
| NS2 36-50   | ESLKLYRDSLGEAVM  | 5    | 3                |
| NS2 41-55   | YRDSLGEAVMRMGDL  | 3    | 5                |
| NS2 46-60   | GEAVMRMGDLHSLQN  | 1    | 4                |
| NS2 51-65   | RMGDLHSLQNRNEKW  | 0    | 3                |
| NS2 56-70   | HSLQNRNEKWREQLG  | 2    | 6                |
| NS2 61-75   | RNEKWREQLGQKFEE  | 4    | 2                |
| NS2 66-80   | REQLGQKFEEIRWLI  | 2    | 6                |
| NS2 71-85   | QKFEEIRWLIEEVRH  | 0    | 6                |
| NS2 76-90   | IRWLIEEVRHKLKIT  | 2    | 10               |
| NS2 81-95   | EEVRHKLKITENSFE  | 0    | 3                |
| NS2 86-100  | KLKITENSFEQITFM  | 4    | 4                |
| NS2 91-105  | ENSFEQITFMQALHL  | 11   | 61               |
| NS2 96-110  | QITFMQALHLLLEVE  | 2    | 5                |
| NS2 101-115 | QALHLLLEVEQEIRT  | 1    | 8                |
| NS2 106-120 | LLEVEQEIRTFSFQL  | 2    | 4                |
| NS2 111-121 | QEIRTFSFQLI      | 5    | 5                |
| M1 1-15     | MSFLTEVETYVLSII  | 2    | 5                |
| M1 6-20     | EVETYVLSIIPSGPL  | 2    | 6                |
| M1 11-25    | VLSIIPSGPLKAEIA  | 3    | 7                |
| M1 16-30    | PSGPLKAEIAQRLED  | 5    | 5                |
| M1 21-35    | KAEIAQRLEDVFAGK  | 1    | 13               |
| M1 26-40    | QRLEDVFAGKNTDLE  | 3    | 3                |
| M1 31-45    | VFAGKNTDLEVLMEW  | 4    | 2                |
| M1 36-50    | NTDLEVLMEWLKTRP  | 3    | 2                |
| M1 41-55    | VLMEWLKTRPILSPL  | 5    | 6                |
| M1 46-60    | LKTRPILSPLTKGIL  | 9    | 3                |
| M1 51-65    | ILSPLTKGILGFVFT  | 6    | 2                |
| M1 56-70    | TKGILGFVFTLTVPS  | 3    | 16               |
| M1 61-75    | GFVFTLTVPSERGLQ  | 7    | 4                |
| M1 66-80    | LTVPSERGLORRRFV  | 3    | 3                |
| M1 71-85    | ERGLORRRFVONALN  | 1    | 3                |
| M1 76-90    | RRRFVONALNGNGDP  | 3    | 4                |
| M1 81-95    | QNALNGNGDPNNMDK  | 6    | 3                |
| M1 86-100   | GNGDPNNMDKAVKLY  | 6    | 2                |
| M1 91-105   | NNMDKAVKLYRKLKR  | 1    | 2                |
| M1 96-110   | AVKLYRKLKREITFH  | 4    | 14               |
| M1 101-115  | RKLKREITFHGAKEI  | 4    | 6                |
| M1 106-120  | EITFHGAKEISLSYS  | 12   | 4                |
| M1 111-125  | GAKEISLSYSAGALA  | 2    | 2                |
| M1 116-130  | SLSYSAGALASCMGL  | 3    | 6                |
| M1 121-135  | AGALASCMGLIYNRM  | 7    | 6                |
| M1 126-140  | SCMGLIYNRMGAVTT  | 5    | 4                |
| M1 131-145  | IYNRMGAVTTEVAFG  | 2    | 10               |
| M1 136-150  | GAVTTEVAFGLVCAT  | 2    | 7                |
| M1 141-155  | EVAFGLVCATCEOIA  | 7    | 7                |
| M1 146-160  | LVCATCEQIADSOHR  | 4    | 4                |
| M1 151-165  | CEQIADSQHRSHRQM  | 4    | 16               |
| M1 156-170  | DSQHRSHRQMVTTTN  | 6    | 3                |
|             |                  |      |                  |

### Supplemental Table 2 .PR8 Influenza virus peptides

|            | Peptide Sequence | Elisp | ota |
|------------|------------------|-------|-----|
| HA 1-15    | MKANLLVLLSALAAA  | 0     | 0   |
| HA 6-20    | LVLLSALAAADADTI  | 0     | 0   |
| HA 11-25   | ALAAADADTICIGYH  | 1     | 1   |
| HA 16-30   | DADTICIGYHANNST  | 3     | 1   |
| HA 21-35   | CIGYHANNSTDTVDT  | 2     | 1   |
| HA 26-40   | ANNSTDTVDTVLEKN  | 4     | 2   |
| HA 31-45   | DTVDTVLEKNVTVTH  | 3     | 3   |
| HA 36-50   | VLEKNVTVTHSVNLL  | 6     | 4   |
| HA 41-55   | VTVTHSVNLLEDSHN  | 5     | 2   |
| HA 46-60   | SVNLLEDSHNGKLCR  | 1     | 1   |
| HA 51-65   | EDSHNGKLCRLKGIA  | 3     | 5   |
| HA 56-70   | GKLCRLKGIAPLQLG  | 2     | 1   |
| HA 61-75   | LKGIAPLQLGKCNIA  | 1     | 1   |
| HA 66-80   | PLQLGKCNIAGWLLG  | 0     | 0   |
| HA 71-85   | KCNIAGWLLGNPECD  | 2     | 2   |
| HA 76-90   | GWLLGNPECDPLLPV  | 13    | 6   |
| HA 81-95   | NPECDPLLPVRSWSY  | 4     | 1   |
| HA 86-100  | PLLPVRSWSYIVETP  | 6     | 3   |
| HA 91-105  | RSWSYIVETPNSENG  | 2     | 4   |
| HA 96-110  | IVETPNSENGICYPG  | 10    | 2   |
| HA 101-115 | NSENGICYPGDFIDY  | 7     | 1   |
| HA 106-120 | ICYPGDFIDYEELRE  | 3     | 3   |
| HA 111-125 | DFIDYEELREQLSSV  | 7     | 5   |
| HA 116-130 | EELREQLSSVSSFER  | 1     | 4   |
| HA 121-135 | QLSSVSSFERFEIFP  | 2     | 6   |
| HA 126-140 | SSFERFEIFPKESSW  | 3     | 7   |
| HA 131-145 | FEIFPKESSWPNHNT  | 4     | 1   |
| HA 136-150 | KESSWPNHNTNGVTA  | 5     | 2   |
| HA 141-155 | PNHNTNGVTAACSHE  | 3     | 4   |
| HA 146-160 | NGVTAACSHEGKSSF  | 2     | 1   |
| HA 151-165 | ACSHEGKSSFYRNLL  | 6     | 2   |
| HA 156-170 | GKSSFYRNLLWLTEK  | 6     | 3   |
| HA 161-175 | YRNLLWLTEKEGSYP  | 4     | 5   |
| HA 166-180 | WLTEKEGSYPKLKNS  | 3     | 4   |
| HA 171-185 | EGSYPKLKNSYVNKK  | 6     | 1   |
| HA 176-190 | KLKNSYVNKKGKEVL  | 4     | 0   |
| HA 181-195 | YVNKKGKEVLVLWGI  | 1     | 0   |
| HA 186-200 | GKEVLVLWGIHHPPN  | 1     | 1   |
| HA 191-205 | VLWGIHHPPNSKEQQ  | 1     | 1   |
| HA 196-210 | HHPPNSKEQQNIYQN  | 2     | 2   |
| HA 201-215 | SKEQQNIYQNENAYV  | 2     | 3   |
| HA 206-220 | NIYQNENAYVSVVTS  | 6     | 4   |
| HA 211-225 | ENAYVSVVTSNYNRR  | 3     | 5   |
| HA 216-230 | SVVTSNYNRRFTPEI  | 5     | 2   |
| HA 221-235 | NYNRRFTPEIAERPK  | 8     | 1   |
| HA 226-240 | FTPEIAERPKVRDQA  | 1     | 5   |
| HA 231-245 | AERPKVRDQAGRMNY  | 2     | 1   |
| HA 236-250 | VRDQAGRMNYYWTLL  | 4     | 3   |
| HA 241-255 | GRMNYYWTLLKPGDT  | 0     | 0   |
| HA 246-260 | YWTLLKPGDTIIFEA  | 1     | 0   |
| HA 251-265 | KPGDTIIFEANGNLI  | 0     | 0   |

|            | Peptide Sequence  | Elisp  | ot <sup>a</sup> |
|------------|-------------------|--------|-----------------|
| HA 256-270 | IIFEANGNLIAPMYA   | 1      | 5               |
| HA 261-275 | NGNLIAPMYAFALSR   | 2      | 4               |
| HA 266-280 | APMYAFALSRGFGSG   | 1      | 3               |
| HA 271-285 | FALSRGFGSGIITSN   | 2      | 1               |
| HA 276-290 | GFGSGIITSNASMHE   | 3      | 5               |
| HA 281-295 | IITSNASMHECNTKC   | 4      | 1               |
| HA 286-300 | ASMHECNTKCQTPLG   | 3      | 7               |
| HA 291-305 | CNTKCOTPLGAINSS   | 8      | 5               |
| HA 296-310 | OTPLGAINSSLPYON   | 6      | 1               |
| HA 301-315 | AINSSLPYONIHPVT   | 0      | 2               |
| HA 306-320 |                   | 0      | 2               |
| HA 311-325 | IHPVTIGECPKYVRS   | 0      | 0               |
| HA 316-330 | IGECPKYVRSAKLRM   | 0      | 0               |
| HA 321-335 | KYVRSAKLRMVTGLR   | 1      | 0               |
| HA 326-340 | AKI RMVTGI RNTPSI | 2      | 0               |
| HA 331-345 | VTGI RNTPSIOSRGI  | 4      | 1               |
| HA 336-350 | NTPSIOSRGI FGAIA  | 8      | 3               |
| HA 341-355 | OSRGI EGAIAGEIEG  | 2      | 2               |
| HA 346-360 | FGAIAGEIEGGWTGM   | 4      | 5               |
| HA 351-365 | GEIEGGWTGMIDGWY   | 3      | 1               |
| HA 356-370 | GWTGMIDGWYGYHHO   | 4      | 5               |
| HA 361-375 | IDGWYGYHHONFOGS   | 2      | 4               |
| HA 366-380 | GYHHONEOGSGYAAD   | 1      | 7               |
| HA 371-385 | NEOGSGVAADOKSTO   | 3      | 6               |
| HA 376-390 |                   | 2      | 3               |
| HA 381-395 |                   | 1      | 1               |
| HA 386-400 |                   | 3      | 1               |
| HA 301-405 |                   | 8      | 2               |
| HA 306 /10 |                   | 3      | 2               |
| HA 401-415 |                   | 1      | 2               |
| HA 401-413 |                   | 2      | 2               |
| HA 400-420 |                   | 1      | 2               |
| HA 411-425 |                   | 0      | 2               |
| HA 410-430 |                   | 0      | 2<br>1          |
| HA 421-435 |                   | 2      | т<br>Б          |
|            |                   | 2      | 2               |
|            |                   | ∠<br>1 | о<br>О          |
|            |                   | 1      | 0               |
|            |                   | 2      | 0               |
|            |                   | 2      | 2               |
| HA 451-405 |                   | о<br>0 | 3               |
| HA 400-470 |                   | 0      | 4               |
| HA 461-475 |                   | 1      | ∠<br>1          |
|            |                   | 4      | т<br>2          |
| HA 471-465 |                   | 2      | с<br>1          |
| HA 476-490 |                   | 3      | т<br>2          |
| HA 461-495 |                   | 3      | ວ<br>₁          |
|            |                   | 2      | т<br>С          |
|            | DIPRISESALINKEK   | 1      | ა<br>⊿          |
|            | SEESKLINKERVUGVK  | Ĩ      | T C             |
| HA 501-515 |                   | 4      | 2               |
| HA 506-520 |                   | 0      | 1               |
| HA 511-525 | LESIVIGIYQILAIYSI | 0      | 0               |

|            | Peptide Sequence | Elisp | ota |
|------------|------------------|-------|-----|
| HA 516-530 | IYQILAIYSTVASSL  | 2     | 1   |
| HA 521-535 | AIYSTVASSLVLLVS  | 2     | 4   |
| HA 526-540 | VASSLVLLVSLGAIS  | 0     | 0   |
| HA 531-545 | VLLVSLGAISFWMCS  | 0     | 0   |
| HA 536-550 | LGAISFWMCSNGSLQ  | 1     | 0   |
| HA 541-554 | FWMCSNGSLQCRIC   | 2     | 1   |
| HA 546-555 | NGSLQCRICI       | 0     | 3   |
| NA 1-15    | MNPNQKITTIGSICL  | 0     | 4   |
| NA 6-20    | KITTIGSICLVVGLI  | 0     | 0   |
| NA 11-25   | GSICLVVGLISLILQ  | 2     | 1   |
| NA 16-30   | VVGLISLILQIGNII  | 1     | 2   |
| NA 21-35   | SLILQIGNIISIWIS  | 8     | 4   |
| NA 26-40   | IGNIISIWISHSIQT  | 1     | 3   |
| NA 31-45   | SIWISHSIQTGSQNH  | 0     | 2   |
| NA 36-50   | HSIQTGSQNHTGICN  | 3     | 1   |
| NA 41-55   | GSQNHTGICNQNIIT  | 0     | 4   |
| NA 46-60   | TGICNQNIITYKNST  | 4     | 3   |
| NA 51-65   | QNIITYKNSTWVKDT  | 2     | 5   |
| NA 56-70   | YKNSTWVKDTTSVIL  | 4     | 4   |
| NA 61-75   | WVKDTTSVILTGNSS  | 3     | 1   |
| NA 66-80   | TSVILTGNSSLCPIR  | 8     | 3   |
| NA 71-85   | TGNSSLCPIRGWAIY  | 2     | 4   |
| NA 76-90   | LCPIRGWAIYSKDNS  | 6     | 1   |
| NA 81-95   | GWAIYSKDNSIRIGS  | 4     | 3   |
| NA 86-100  | IRIGSKGDVFVIREP  | 7     | 0   |
| NA 91-105  | KGDVFVIREPFISCS  | 2     | 0   |
| NA 96-110  | VIREPFISCSHLECR  | 3     | 0   |
| NA 101-115 | FISCSHLECRTFFLT  | 4     | 3   |
| NA 106-120 | HLECRTFFLTOGALL  | 2     | 1   |
| NA 111-125 | TFFLTOGALLNDKHS  | 0     | 4   |
| NA 116-130 | QGALLNDKHSNGTVK  | 1     | 1   |
| NA 121-135 | NDKHSNGTVKDRSPY  | 2     | 0   |
| NA 126-140 | NGTVKDRSPYRALMS  | 0     | 0   |
| NA 131-145 | DRSPYRALMSCPVGE  | 5     | 2   |
| NA 136-150 | RALMSCPVGEAPSPY  | 6     | 2   |
| NA 141-155 | CPVGEAPSPYNSRFE  | 5     | 1   |
| NA 146-160 | APSPYNSRFESVAWS  | 2     | 4   |
| NA 151-165 | NSRFESVAWSASACH  | 2     | 3   |
| NA 156-170 | SVAWSASACHDGMGW  | 3     | 2   |
| NA 161-175 | ASACHDGMGWLTIGI  | 9     | 5   |
| NA 166-180 | DGMGWLTIGISGPDN  | 5     | 4   |
| NA 171-185 | LTIGISGPDNGAVAV  | 2     | 1   |
| NA 176-190 | SGPDNGAVAVLKYNG  | 2     | 2   |
| NA 181-195 | GAVAVLKYNGIITET  | 2     | 3   |
| NA 186-200 | LKYNGIITETIKSWR  | 2     | 5   |
| NA 191-205 | IITETIKSWRKKILR  | 3     | 5   |
| NA 196-210 | IKSWRKKILRTOESE  | 1     | 3   |
| NA 201-215 | KKILRTQESECACVN  | 2     | 3   |
| NA 206-220 | TQESECACVNGSCFT  | 4     | 4   |
| NA 211-225 | CACVNGSCFTIMTDG  | 2     | 2   |
| NA 216-230 | GSCFTIMTDGPSDGL  | 2     | 3   |
|            |                  |       |     |

|            | Peptide Sequence | Elisp | ota |
|------------|------------------|-------|-----|
| NA 221-235 | IMTDGPSDGLASYKI  | 1     | 6   |
| NA 226-240 | PSDGLASYKIFKIEK  | 3     | 2   |
| NA 231-245 | ASYKIFKIEKGKVTK  | 0     | 0   |
| NA 236-250 | FKIEKGKVTKSIELN  | 2     | 0   |
| NA 241-255 | GKVTKSIELNAPNSH  | 2     | 1   |
| NA 246-260 | SIELNAPNSHYEECS  | 1     | 2   |
| NA 251-265 | APNSHYEECSCYPDT  | 1     | 5   |
| NA 256-270 | YEECSCYPDTGKVMC  | 5     | 0   |
| NA 261-275 | CYPDTGKVMCVCRDN  | 3     | 1   |
| NA 266-280 | GKVMCVCRDNWHGSN  | 1     | 2   |
| NA 271-285 | VCRDNWHGSNRPWVS  | 6     | 5   |
| NA 276-290 | WHGSNRPWVSFDQNL  | 4     | 3   |
| NA 281-295 | RPWVSFDQNLDYQIG  | 5     | 4   |
| NA 286-300 | FDQNLDYQIGYICSG  | 2     | 3   |
| NA 291-305 | DYQIGYICSGVFGDN  | 8     | 2   |
| NA 296-310 | YICSGVFGDNPRPED  | 0     | 2   |
| NA 301-315 | VFGDNPRPEDGTGSC  | 0     | 5   |
| NA 306-320 | PRPEDGTGSCGPVYV  | 0     | 3   |
| NA 311-325 | GTGSCGPVYVDGANG  | 0     | 3   |
| NA 316-330 | GPVYVDGANGVKGFS  | 1     | 1   |
| NA 321-335 | DGANGVKGFSYRYGN  | 2     | 2   |
| NA 326-340 | VKGFSYRYGNGVWIG  | 5     | 3   |
| NA 331-345 | YRYGNGVWIGRTKSH  | 1     | 4   |
| NA 336-350 | GVWIGRTKSHSSRHG  | 3     | 2   |
| NA 341-355 | RTKSHSSRHGFEMIW  | 4     | 2   |
| NA 346-360 | SSRHGFEMIWDPNGW  | 2     | 1   |
| NA 351-365 | FEMIWDPNGWTETDS  | 2     | 0   |
| NA 356-370 | DPNGWTETDSKFSVR  | 0     | 0   |
| NA 361-375 | TETDSKFSVRQDVVA  | 0     | 3   |
| NA 366-380 | KFSVRQDVVAMTDWS  | 0     | 2   |
| NA 371-385 | QDVVAMTDWSGYSGS  | 1     | 2   |
| NA 376-390 | MTDWSGYSGSFVQHP  | 0     | 1   |
| NA 381-395 | GYSGSFVQHPELTGL  | 0     | 2   |
| NA 386-400 | FVQHPELTGLDCMRP  | 4     | 1   |
| NA 391-405 | ELTGLDCMRPCFWVE  | 4     | 2   |
| NA 396-410 | DCMRPCFWVELIRGR  | 3     | 3   |
| NA 401-415 | CFWVELIRGRPKEKT  | 2     | 4   |
| NA 406-420 | LIRGRPKEKTIWTS   | 9     | 7   |
| NA 411-425 | PKEKT IWTSASSIS  | 3     | 2   |
| NA 416-430 | IWTSASSISFCGVN   | 3     | 1   |
| NA 421-435 | ASSISFCGVNSDTVD  | 0     | 0   |
| NA 426-440 | FCGVNSDTVDWSWPD  | 0     | 1   |
| NA 431-444 | SDTVDWSWPDGAELP  | 0     | 2   |
| NA 436-450 | WSWPDGAELPFSIDK  | 0     | 0   |
| NA 441-450 | GAELPFSIDK       | 1     | 0   |

<sup>a</sup> Number of Elispots from 10<sup>5</sup> spleen cells, determined in two independent experiments.

Peptides were screened on mice that had recovered from an x31 infection. The regions containing the known Class I and Class II epitopes are indicated by shading and peptides investigated further are in bold.