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A major challenge for inference regarding aging-related change 
in longitudinal studies is that of study attrition and population 
mortality. Inferences in longitudinal studies can account for attri-
tion and mor-tality-related change as distinct processes, but this is 
made difficult when follow-up of all individuals (i.e., age at death) 
is not complete. This is a common problem because most longi-
tudinal studies of aging either have incomplete follow-up or are 
still collecting data on subsequent outcomes, including time of 
death. A statistical approach is suggested for including time-to-
death as a predictor in models with incomplete follow-up using a 
two-stage multiple-imputation procedure. An empirical example 
using data from the OCTO-Twin study is presented that shows 
the utility of his procedure for making inferences conditional on 

mortality when mortality data are incomplete.

Although there are numerous challenges for the investigation of aging-
related changes in older adults, statistical analysis with incomplete data 
and the conceptualization of population processes related to mortality is 
one of the most difficult. Selective attrition and mortality selection within 
longitudinal studies on aging are intrinsically related to many aging-
related changes and must be carefully considered in the analysis and 
interpretation of results (e.g., Baltes, 1968; Hofer & Sliwinski, 2006; Schaie, 
Labouvie, & Barrett, 1973). A key distinction is made between attrition 
(i.e., selective dropout) and mortality selection (i.e., selective survival) in 
that attrition affects characteristics of the particular sample under investi-
gation, whereas mortality selection affects both the definition of the pop-
ulation as well as the sample under study (Baltes, 1968). Including time-
to-death as a predictor in models for estimating change in outcomes of 
interest permits conditional inferences to defined populations based on 
age and survival (and their interaction) and is easily performed when 
complete data are available for both chronological age and age of death. 
In most studies, however, complete data for all individuals are not cur-
rently available and may not be available for a substantial period of time. 
The purpose of the current work is to present a two-stage multiple-impu-
tation approach for treating mortality and attrition as distinct processes 
leading to incomplete data and which permit the use of time-to-death in 
the predictive models when follow-up is incomplete.
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In major studies of cognitive aging, attrition rates between test occa-
sions may be as high as 50% (Cooney, Schaie, & Willis, 1988). Attrition is 
not likely to be random in relation to important age-related characteris-
tics. For example, older individuals and individuals with lower levels of 
education, socioeconomic status, compromised health, and cognitive abil-
ity are more likely to dropout from longitudinal studies (Cooney, Schaie, 
& Willis, 1988; Rabbitt, Watson, Donlan, Bent, & McInnes, 1994). Differ-
ences in attrition patterns are generally not found in terms of race, reli-
gion, or marital status (Siegler & Botwinick, 1979; Streib, 1966). Patterns of 
nonresponse are related to change in performance prior to attrition as well 
as to individual characteristics at the initiation of the study (Cooney et al., 
1988; Rabbitt et al., 1994).

Raising the issue of selective attrition in the 1960s, Riegel, Reigel, and 
Meyer (1967) initiated exploration of the terminal drop phenomenon, in 
which individuals who drop out of a study may exhibit a marked decline 
in both physiological health and concomitant cognitive performance prior 
to death. Because these individuals typically go unmeasured, the results 
will be upwardly biased towards inferences of less decline in the popu-
lation than is actually true. Findings of decline across a range of cogni-
tive abilities associated with time to death provide evidence for “termi-
nal decline” or “terminal drop” (for reviews see Berg, 1987, 1996; Siegler, 
1975; Small & Bäckman, 1999; Bosworth & Siegler, 2002). Of the longitudi-
nal studies that have evaluated this hypothesis, significant findings have 
typically included spans between measurement occasions of less than 
3 years (e.g., Deeg, Hofman, & van Zonneveld, 1990; Johansson & Berg, 
1989; Smits, Deeg, Kriegsman, & Schmand, 1999).

The issue of population mortality, however, challenges most standard 
analyses of change and undermines inference to a single, representative, 
population of aging individuals. An important question to consider is 
should death be considered a missing value? In some types of longitudinal 
studies, such as clinical trials of treatments for cancer or acquired immu-
nodeficiency syndrome (AIDS), death itself is the end point of interest, and 
the analysis focuses on modeling time of survival. In other studies, death 
is infrequent and unrelated to the outcome being measured; in these cases 
it might be appropriate to consider the counterfactual (i.e., possible) out-
come a participant could have if he or she had not died. Although a ratio-
nale and state-of-the-art techniques for addressing incomplete data have 
been developed (Diggle & Kenward, 1994; Diggle, Liang, & Zeger, 1994; 
Little & Rubin, 1987; Rubin, 1976, 1987; Schafer, 1997; Schafer & Graham, 
2002), the application of these methods to later-life longitudinal samples 
remains problematic, conceptually and computationally (Hofer & Hoff-
man, in press; Hofer & Sliwinski, 2006).
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In gerontological studies, death is a common and natural end point that 
defines the limits of inference in both individuals and populations and 
therefore cannot be simply viewed as a source of missing values. Consider 
a study with four time points in which one of the participants died after 
the second time point. The data record for this individual is complete; no 
additional information could be added. Alternatively, consider the perfect 
scenario in longitudinal studies of older adults in which there is no drop-
out other than mortality. One common method to model the data is to use 
a population-average or marginal curve in order to represent the popula-
tion trends. However, due to the selection processes occurring over time 
that change the nature of the population, the population of participants 
at age 80 is quite different than the population comprised of individuals 
at age 95. An average curve, obtained from cross-sectional between-per-
son data or aggregate longitudinal data will not represent the behavior of 
any given individual in this older population. An alternative to the pop-
ulation-average curve is the representation of multiple populations that 
are conditional on chronological age, time to death, and their interaction. 
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Figure 1 shows a hypothetical example of a set of conditional curves 
for individuals who die at specific ages. Notice that in this hypothetical 
example, participants were in the study for varying lengths of time based 
on their age at the initial assessment. To estimate these curves, time to 
death is introduced as an additional covariate in a linear mixed-effects 
or semiparametric model. This method will tend to reflect the multiple 
influences on individual outcomes more accurately, allowing a distinc-
tion between the effects of proximity to death and aging in terms of dis-
tance from birth (Berg, 1996; Bosworth & Siegler, 2002; see also Sliwinski, 
Hofer, & Hall, 2003), and permitting modeling of the interaction of age 
and mortality.

The presence of dropout (i.e., non-mortality-related attrition) in addi-
tion to mortality complicates matters because any appropriate missing-
ness model must account for these two separate kinds of missing values. 
The dropout process right-censors the time of death and masks cognitive 
functioning between time of dropout and time of death. Currently recom-
mended methods that assume data are missing at random (MAR) do not 
distinguish between missingness due to death and due to dropout. How-
ever, a recently developed approach, two-stage multiple imputation (MI), 
extends single-stage conventional MI by permitting separation of miss-
ing values into two types through sequential imputation, and also per-
mits estimation of rates of missing information. Moreover, two-stage MI 
is useful for applying a framework of assumptions (i.e., models) for two 
types of missing values (Harel, 2003; Harel, Hofer, & Schafer, 2003; Rubin, 
2003; Shen, 2000).

The focus of the present study is on the application of a two-stage multi-
ple-imputation method to obtain inferences in the presence of incomplete 
data when the primary cause for dropout is mortality-related and when 
age at death is partially missing. Inferences can then be defined as condi-
tional on the probability of surviving and=or remaining in the study (e.g., 
DuFouil, Brayne, & Clayton, 2004; Kurland, 2002; Ribaudo, Thompson, & 
Allen-Mersh, 2000). The rationale for this approach is that it will help to 
alleviate concerns regarding inference to conditional populations defined 
by both age and survival by permitting mortality outcomes (age at death) 
to be modeled when there is incomplete sample follow-up.

METHOD

Participants

Participants included 507 community-dwelling elders (178 men, 329 
women) drawn from the ongoing longitudinal study, Origins of Variance 
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in the Old-Old (OCTO-Twin Study; McClearn et al., 1997). This is a sub-
sample of the 702 individuals (351 complete same-sex twin pairs; 149 
monozygotic [MZ] pairs and 202 same-sex dizygotic [DZ] pairs) who 
were not diagnosed with dementia over the 6-year study (according to 
the DSM-III-R criteria; American Psychiatric Association, 1987). Partici-
pants were assessed at four different occasions spaced by a 2-year inter-
val. At the baseline occasion of measurement participants ranged in age 
from 79 to 98 years (M = 83.2, SD = 2.98) and averaged 7 years of education 
(SD = 2.42, range = 0-23). The gender ratio, education, socioeconomic sta-
tus, marital status, and housing of the OCTO-Twin sample correspond to 
population statistics for this age segment of the Swedish population (Sim-
mons et al., 1997).

Measures

The sample was tested with a broad spectrum of biobehavioral mea-
sures of health and functional capacity, personality, well-being, and inter-
personal functioning. Cognitive functioning was assessed with a widely 
used Swedish psychometric battery (SRB; Dureman & Sälde, 1959). For 
purposes of demonstration and analysis in the present study, a test of visu-
ospatial ability was used as the outcome measure (Koh’s Block Design I, 
similar to Block Design subtest in the WAIS battery). In this test (Dureman 
& Sälde, 1959) the participant is presented with colored blocks and sev-
eral patterns on cards. The task is to arrange the proper blocks to form the 
design shown on the card. The maximum score is 42, with higher scores 
indicating better performance. Scores at all occasions were standardized 
to a pseudo t-score (M = 5; SD = 1) using the first occasion mean and stan-
dard deviation as the standardization base to preserve mean and variance 
changes over time.

Statistical Analysis

Missing Data

The majority of participant nonresponse over the course of this study 
was due to mortality. Once mortality is taken into account, less than 10% 
is due to refusal to participate, mainly related to frailty and compromised 
health. Based on the work of Rubin (1976; see also Diggle & Kenward, 
1994; Diggle, Liang, & Zeger, 1994; Little & Rubin, 1987), participant non-
response is often categorized as missing completely at random (MCAR), miss-
ing at random (MAR), or missing not at random (MNAR). The key distinc-
tion is whether the cause of the missingness is related directly to levels of



Population Inference with Mortality and Attrition in Longitudinal Studies on Aging   193

the outcome variable (MNAR) or whether the missingness is due to other 
variables that are either irrelevant (MCAR) or measured and included 
in the statistical model (MAR). Currently used methods for analysis in 
the presence of incomplete data (e.g., full information maximum likeli-
hood, single-stage multiple imputation) are based on assumptions that 
responses are missing at random, or that the probability of missing informa-
tion is related to covariates and previously measured outcomes.

In the data set there are 7 variables, 264 observations, and 21 patterns 
of missing values. Table 1 summarizes the patterns and frequencies of the 
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missing values by variable. Five variables have at least one missing value 
(a dot represents an observed value while m represents missing values). 
There were 253 observations with at least one missing value; 85 par-
ticipants have age, sex, and all outcomes observed but missing time of 
death.

Dependencies Related to Twin Pair

In the longitudinal analyses the twins were treated as unrelated single-
tons. Therefore, it is important to note that the parameters obtained in the 
analysis will be unbiased estimates of the population parameters. How-
ever, under conditions of positive and moderate to substantial intraclass 
correlations, standard errors of these parameters will be downwardly 
biased due to the dependencies associated with analyzing co-twins simul-
taneously. In these octogenarian twins, the intraclass association at the first 
occasion is low to moderate (e.g., 0.51 combined sample) and decreases 
across occasions, and thus would have little to no influence on the signif-
icance of the results regarding magnitude of change (see Johansson et al., 
2004).

Imputation Model

Conventional single-stage multiple imputation (MI; Rubin, 1987) 
replaces the missing values in a data set by m > 1 sets of simulated values. 
Two-stage MI (Harel, 2003) is an extension in which the missing values are 
partitioned into two groups and imputed N = mn times in a nested fash-
ion, and point estimates and standard errors from the mn complete data 
analyses are consolidated by simple rules derived by analogy to nested 
analysis of variance. The choice of m and n depends on the inference in 
mind, as discussed in Rubin (1987) and extended in Harel (2003). A rel-
atively small number of imputations (m in single-stage MI and N =  mn 
in two-stage MI) is sufficient when one is interested in the estimates and 
their standard errors, as was used in the present study.

Let Ycom =  (Yobs, Ymis) denote the complete data set, which in the pres-
ent example includes scores from up to four block design measurements 
every 2 years. Block design is treated as a continuous variable. Predictors 
of initial status and change in block design included chronological age, 
sex, and time to death, as calculated as the number of years from the age at 
the initial measurement occasion to the age at time of death for each indi-
vidual. Age and time to death were treated as categorical due to the lim-
ited number of categories. The missing data are then separated into two 
types: let the missing time of death be denoted as  and missing cogni-
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tive functioning measures be .using an extended theory of ignorabil-
ity presented by Harel (2003), one can show that the processes that cause 
the missing values can be ignored in two-stage MI if (a)  is MAR, and 
(b) the process that divides  into   and  does not depend onany 
portion of . Other conditions under which part or all of the missing-
ness mechanism can be ignored in one or both stages of two-stage MI are 
described by Harel (2003).

The imputation model used belongs to the family of general loca-
tion models for multivariate continuous and categorical data (Little & 
Schluchter, 1985; Olkin & Tate, 1961). The general location model com-
bines a loglinear model for the categorical variables with a multivariate 
normal linear regression for the continuous variables given the categori-
cal variables. We expect measures of block design to be related not only to 
a participant’s age and sex, but also to time to death. A person may expe-
rience a decline in cognitive performance prior to death that is more dra-
matic than a gradual decline often associated with aging. Therefore, it is 
crucial that the imputation model preserve interactions between age and 
time to death for block design.

The loglinear part of the model included all associations among age, sex, 
and time to death, the linear part of the model allowed the means of the 
four block design scores to depend on age, sex, and time to death and all 
interactions among them, with unstructured residual covariances among 
the block design measures. Under this model, we generated 20 multiple 
imputations by the Markov chain Monte Carlo procedure described by 
Schafer (1997) using Splus version 6.0. More specifically, due to the struc-
ture of the data (both categorical and continuous variables), we used the 
Conditional Gaussian Model in the missing data library to perform the 
imputations. To the best of our knowledge Splus is the only commercial 
software that permits the use of the Conditional Gaussian Model. Other 
packages (e.g., SAS Proc MI) support the statistical modeling of only con-
tinuous variables. We then removed the imputed values for block design 
measures from each imputed data set and reimputed them once, treating 
the imputed values for time to death as fixed, to produce mn = 40 com-
pleted data sets in a nested design with m = 20 blocks of size n = 2. As 
a final step, any imputed values for the block design measures beyond 
death were removed, reflecting the fact that they logically cannot exist.

RESULTS

Two-stage multiple imputations were performed and two descriptive 
analyses were fit to the imputed data. The first model estimated average 
population curves for the relationship between age and block design for 
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men and women, and included an intercept, age, sex, and the interaction 
of sex with age. The second model estimated population curves condi-
tional on time to death, and included an intercept, age, time to death, sex, 
and the interactions Age × Time to Death, Age × Sex, Sex × Time to Death, 
and Sex × Age × Time to Death. Quadratic effects were nonsignificant and 
were thus excluded. Several alternative structures to account for correla-
tions among time points were tested and an autoregressive (AR-1) struc-
ture was chosen for both sets of models. Maximum likelihood estimates 
and standard errors were computed for each imputed data set, and the 
results were combined by Shen’s (2000) rules (see Appendix 1).

Due to the fact that there are several parameter estimates for each 
curve, and multivariate theory for combining two-stage multiple-impu-
tation estimates is not yet available, we used the point-wise estimates and 
95% confidence intervals for producing plots of expected trajectories. For 
given covariate levels (sex, age, time to death) we estimated block design 
scores and their variance from the 40 complete data sets. These univariate 
results were combined using Shen’s (2000) rules. For a given sex and time 
of death we created a grid of values (6 years) for age, which will represent 
the trajectory for this specific time of death. Results are shown in Figures 
2a and b for men and Figures 3a and b for women, in which age was plot-
ted on the x-axis from 79 to 102 years, with intervals of 0.1 for the marginal 
curves. The choices for the specific trajectories are arbitrary; the researcher 
can decide the specific trajectories of interest to be plotted.

Estimated average block design trajectories for men and women, along 
with point-wise 95% confidence intervals, are shown in Figures 2a and 3a, 
respectively. Block design performance declined with age, and the confi-
dence intervals about this decline are noticeably narrower at younger ages 
in which a greater number of individuals contributed to the estimates. The 
trajectory for women lies above the trajectory for men, and the sex differ-
ence increased with age. Similarly, the conditional population curves with 
time to death included as a covariate for men (Figure 2b) and women (Fig-
ure 3b) were computed by using the point-wise combining rules. The con-
ditional curves are plotted for 6 years, the longest possible interval for a 
given individual (i.e., four time points at 2-year intervals). For example, 
in the case where an individual entered the study at age 80, with com-
pleted data at 80, 82, 84, and died at age 85 (age at death is either known 
or imputed), the age-based information will be from 79 to 85 years of age. 
Using the conditional curves we can see the change of slope as the individ-
uals age (both men and women), such that steeper slopes are expected for 
older individuals. Again, the confidence intervals are noticeably narrower 
for younger ages reflecting where there is greater sample size.
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DISCUSSION

At the population level, causal influences on individual age-related 
change in cognitive and functional abilities are likely to be highly het-
erogeneous (e.g., aging, dementia, health). In longitudinal studies on 
aging, attrition is a function of not only dropout, but also of mortality. 
These differential causes of missingness are not well addressed by current 
approaches of analysis that make general assumptions regarding drop-
out (MI-MAR) and therefore treat missingness due to death as ignorable. 
In this paper we present an application of a two-stage multiple-imputa-
tion (MI) approach in which time to death is imputed in one step, and this 
information is then used to improve imputed estimates of missing out-
comes in a second step. The two-stage MI procedures employed here thus 
permit the partial distinction of the effects of age (distance from birth) and 
mortality (distance from death), respectively, and permit a more realistic 
description of change as a joint function of chronological age and mortal-
ity.

When information on time to death is complete, a single-stage MI (con-
ventional MI) procedure or full information maximum likelihood approach 
is appropriate and will permit conditional estimation as shown here (e.g., 
Pederson et al., 2003). The two-stage MI procedure is most likely to be use-
ful when date of death or other important covariates are unknown for 
a portion of the longitudinal sample, because cases with missing cova-
riates are omitted from analysis in most multilevel modeling programs, 
and interactions among covariates with missing values remain difficult 
to model in structural equation modeling approaches. In particular, when 
both age and time to death (i.e., known age at death) are included in the 
model, the two-stage MI permits computation of the interaction of age 
and time to death.

A related issue is the extent to which inferences to a single population 
of aging individuals is possible, given that the population composition is 
changing over time due to selective mortality. As such, population aver-
age or marginal curves are not likely to be reflective of individual out-
comes as intended and described what has been referred to as an “immor-
tal” population (DuFouil et al., 2003). We instead recommend the use of 
predicted trajectories in which inferences are defined as conditional on 
the probability of surviving and/or remaining in the study. As an illus-
tration we compared estimated marginal curves of predicted declines in 
visual spatial abilities  (as measured by block design scores) in older age 
with change trajectories conditioned not only on age and sex, but also on 
time to death. Trajectories from the conditional models are likely to be 
more accurate than those from marginal models when time to death plays 
a role in magnitude of decline in older age (i.e., terminal drop phenome-
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non), and allows us to better assess and distinguish the multiple factors of 
age-related decline. For example, marginal trajectories would not provide 
sufficient information for individual participants relative to age and life 
span. However, the conditional expected trajectory provides information 
for similar participants of age 84 with a maximum life span of 90 years. 
This two-stage MI procedure permits such conditional analysis in both 
SEM and MLM analysis approaches, and is likely to be useful in other 
applications in which multiple time-dependent developmental processes 
underlie individual and population change.

APPENDIX 1: SHEN’S RULES

Let  denote a scalar quantity to be estimated (e.g., a population mean, 
regression coefficient or odds ratio), and  = (Yobs, Ymis) be the estimate 
for  if complete data were available. Also let U = U(Yobs, Ymis) denote its 
squared standard error. With complete data, we assume tests and intervals 
based on the normal approximation ( - )/ U N(0,1) would be appropri-
ate. From each of the N = mn completed data sets, we calculate the point 
and variance estimates ( (j,k), U(j,k)), j = 1 ... m; k = 1 ... n. The overall point 
estimate is

where j. = (jk). The uncertainty in .. arises from three components: 
the estimated complete-data variance

the between-block imputation variance
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and the within-block imputation variance

The total variance is

and inferences are based on the approximation  ( tv with 
degrees of freedom

When n = 1, W becomes undefined and drops out of the total variance and 
the method reduces to Rubin’s rules for conventional MI. 
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