
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2006

A Constraint-Based Approach to Solving Minesweeper A Constraint-Based Approach to Solving Minesweeper

Ken Bayer
University of Nebraska-Lincoln, kbayer@cse.unl.edu

Josh Snyder
University of Nebraska-Lincoln, jsnyde@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska-Lincoln, choueiry@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Bayer, Ken; Snyder, Josh; and Choueiry, Berthe Y., "A Constraint-Based Approach to Solving Minesweeper"
(2006). CSE Conference and Workshop Papers. 170.
https://digitalcommons.unl.edu/cseconfwork/170

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/170?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages

Ken Bayer, Josh Snyder, and Berthe Y. Choueiry
Constraint Systems Laboratory • University of Nebraska-Lincoln

A Constraint-Based Approach to Solving Minesweeper

1. Minesweeper

1. Kaye, R.: Minesweeper is NP-complete. Mathematical Intelligencer 22.

This research was supported by CAREER Award #0133568 from the National Science Foundation.

4. The Application

References

Minesweeper is a game of logic. It originated from ‘Relentless Logic,’
which was written by Conway, Hong, and Smith around 1985. In
Relentless Logic, the player is a soldier trying to crawl back to the
Command Center, avoiding mines. The player knows only the number
of mines adjacent to his/her current position.

The modern form of Minesweeper was developed by Donner and was
released with Windows in 1989. The player can click on any square to
reveal it. If the square has a mine on it, the player loses. If it doesn’t
have a mine, the square is replaced with a number indicating how
many adjacent squares are mined. Using this information, the player
tries to mark all of the mines on the board.

Recently, Kaye showed that determining whether a Minesweeper
configuration is consistent is NP-Complete [1].

Relentless Logic

Minesweeper
in Windows
Vista

Minesweeper,
circa 2000

 Motivate the students for the study of Constraint Processing
(CP). Minesweeper is perfect to this end because it allows us
to illustrate the use of CP algorithms in a familiar context and
show how they operate.

 Understand and demystify humans’ fascination with puzzles.

 Discourage graduate students from losing too much time
playing the game by making a program that plays the game for
them.

2. Our Goals

3. Our Approach

We model Minesweeper as a Constraint Satisfaction Problem
(CSP) and explore the application of constraint propagation
techniques to interactively determine safe and mined squares.

Constraint C1: Scope = {A,B,C,D,E,I,J}

 Exactly 2 neighboring squares

 must have mines

Constraint C2: Scope = {D,E,F,G,H,I,J}

 Exactly 3 neighboring squares

must have mines

 Every square is a variable with two possible values: safe or
mined.

 Every safe square yields a ‘sum constraint’ over its 8
neighbors. For example, a square labeled 3 yields a constraint
stating the square be surrounded by 3 mines.

We use the same rules as the Windows version of

Minesweeper. The player can:

 Choose a pre-defined level of difficulty or specify the board size
and number of mines.

 Load a predefined game stored in an xml file.

 Trigger constraint propagation at 3 consistency levels:

o GAC

o 2-relational consistency, and

o 3-relational consistency.

 We project the generated higher-arity constraints on the
domains, but do not save those generated constraints in order to
save on memory space.

 Execute each consistency algorithm to proceed either step-by-
step or to run in a loop until quiescence.

5. Constraint Propagation

3-RC

2-RC

GAC

GAC, 2-RC, and 3-RC are of increasing complexity: GAC
ensures the consistency of each single constraint, 2-RC
(respectively 3-RC) ensures the consistency of every
combination of 2 (respectively 3) constraints with overlapping
scopes. Higher levels of consistency are more costly, but can
infer more information. Given the computational cost, one
always applies GAC first, then 2-RC, followed by 3-RC.

7. Interesting Configurations

Another interesting configuration

is the circle of 2’s: neither GAC

nor 2-RC yields any filtering.

3-RC is necessary to solve this

puzzle!

While increasing the level of consistency allows one to
eventually find all possible solutions to a given configuration
of a Minesweeper instance, constraint propagation cannot
guarantee that the player will win every game…

… because of situations
such as the one
pictured here where
two possible solutions
exist.

6. Previewing Propagation

This configuration illustrates a

situation where GAC is unable to

filter any values; we must look at

pairs of constraints (2-RC) to

solve this puzzle.

2-RC

3-RC

To illustrate the effects of the different levels of consistency,
‘Peek’ buttons show the user, using a color code, the squares
whose ‘state’ can be determined by each level of consistency
propagation without actually flagging them to reveal them.

We use blue for GAC, green for 2-RC, and yellow for 3-RC.

Available online at

consystlab.unl.edu/our_work/minesweeper.html

	A Constraint-Based Approach to Solving Minesweeper
	

	PowerPoint Presentation

