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Logic Simulation using an Asynchronous Parallel Discrete-Event 
Simulation Model on a SIMD Machine 

Sharad Seth, Lee Gowen, Matt Payne, and Don Sylwester 
Department of Computer Science and Engineering 

University of Nebraska - Lincoln 

Abstract 

The Chandy-Mism-Bryant (CMB) model has been 
applied to  logic simulation of synchronous sequential 
circuits using a massively parallel SIMD computer, a 
CM-2 Connection Machine. Seveml methods of re- 
ducing message tmf ic  in a logic simulation have been 
adapted to  the SIMD architecture of the CM-2, with 
the result that each method of reducing message tmf ic  
actually decreases the speed of the simulation. This 
suggests that communication costs required to support 
logic simulation are small compared to  the cost of de- 
ciding which messages need not be sent. 

1 Introduction 

Logic simulation on a parallel computer is an in- 
triguing idea; the goal being to match the parallelism 
possible among the elements of a logic circuit with the 
parallelism of the processor supporting the simulation. 

Several new models for asynchronous parallel 
discrete-event simulation (PDES) have been proposed 
[4] which distribute the simulation over a network of 
parallel processors that exchange messages to com- 
municate state changes. The Chandy-Misra-Bryant 
[3, 2, 51 approach is a conservative model, restrict- 
ing processors from simulating past the latest time for 
which correct results can be guaranteed. 

The asynchronous distributed simulation model has 
the following features [4,5]. The physical system is di- 
vided into a set of processes which are mapped in some 
fashion to the available parallel processors. Each pro- 
cess is able to operate asynchronously with respect 
to the other processes, and may either send or receive 
messages from the other processes. Messages may take 
an arbitrary time to traverse the communication chan- 
nel, but messages sent along a specific channel must 
arrive in the same order in which they were sent. Each 
message is time stamped with the local time of the 
process sending the message. A process that receives 
messages on several input channels can correctly de- 

duce its own behavior as a result of these messages up 
to the time given by the minimum of the times of the 
latest message received on each channel. 

The major problem with the asynchronous model is 
the possibility of deadlocks [6]. It is not generally nec- 
essary that each message corresponding to some com- 
munication in the actual physical system be sent in the 
simulation. In fact, restricting the number of messages 
sent is important in achieving maximum speed in the 
simulation since communications resources are usually 
a critical resource in parallel computer systems. It is 
unfortunately possible that if some messages are not 
sent then some processes will be unable to advance 
their local clocks and a deadlock might occur. A vari- 
ety of techniques have been suggested for avoiding or 
preventing deadlocks. 

Our work parallels that of Soule and Gupta [7] in 
applying the CMB algorithm, but we use a Merent 
architecture, a massively parallel SIMD machine. We 
find that attempts to reduce the number of messages 
sent, essential for the machine model used by Soule 
and Gupta, are counterproductive for the specific ar- 
chitecture of CM-2, a massively parallel SIMD ma- 
chine. 

2 Parallel Asynchronous Simulation 

We have applied an asynchronous PDES dis- 
tributed processing model to the simulation of a se- 
quential logic circuit using a massively parallel SIMD 
computer. Our physical process will be an individual 
gate, the communications channels between processes 
are the wires connecting the pins on the gates, and 
the state changes of input and output pins wil l  be our 
messages. 

Apart from those aspects of the implementation 
specifically related to the parallel implementation, the 
simulation is straightforward. Three valued logic is 
wed throughout, unit delays are assigned to each gate 
and zero delay to inter-gate connections. Gates are 
evaluated in parallel across all processors using table 
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lookup. 
Critical, then, to the parallel implementation are 

the selection of a communication mechanism on the 
CM-2, and selection of a method for handling the po- 
tential for deadlocks in the simulation, adapted to a 
parallel architecture. 

In the simulator a small number of gates, typically 
one, are mapped to a logical processor. The wired 
connection between the output of one gate and the in- 
put of another is modeled as a message path between 
the logical processors storing the gates. Logical pro- 
cessors evaluate their gates when they receive input 
messages and send appropriate messages to the gates 
on their fanout lists. The maximum speedup possible 
for a synchronous simulation is bounded by the max- 
imum circuit activity [l]. This bound may not apply 
to an asynchronous simulator. 

2.1 Communication Mechanism 

The Connection Machine allows several different 
communication mechanisms, with the expected trade- 
off between ease of use and efficiency. General com- 
munication, the least restrictive, allows processors to 
send data to or receive data from any other proces- 
sor by specifying its location. Hardware is responsi- 
ble for routing all messages over the limited number 
of communication paths available. Grid communica- 
tion restricts communication to processors separated 
by a fixed distance in a given operation but allows all 
processors in the system to simultaneously communi- 
cate. In simple experiments designed to compare these 
two mechanisms general communication took approx- 
imately 3 times as long as grid communication. How- 
ever, given the irregular topology of a logic circuit, 
it seems difficult to map the gates to the logical pro- 
cessors to insure that communication always occurs 
between processors separated by a fixed distance. If 
there are several different separation distances among 
the processors that must communicate in a given step 
of the simulator then the grid communication mech- 
anism requires that each distance be handled in a 
separate operation. As a result we have selected the 
general communication mechanism for our simulator. 
This choice also simplified the problem of partitioning 
gates among processors. With the general communica- 
tion mechanism gates could be partitioned randomly 
among the available processors. 

2.2 Minimization of Message Tr&c and 
Deadlocks 

The message bandwidth on the Connection Ma- 
chine, or any other parallel processor, is a limiting 

resource, and minimization of the message trafiic is 
expected to be a major factor in the speedup possi- 
ble in an asynchronous simulation. If a gate changes 
state, a message must be sent to all gates on the fanout 
list. This message is time stamped with the local clock 
value of the sending gate, and receipt of this message 
possibly updates the local clock of the receiving gate. 
If a gate receives an input event and is evaluated, but 
the output state does not change then it is not imme- 
diately necessary to send a message to the gates on the 
fanout list, since no immediate change in their state 
would result. Such a message, which only communi- 
cates an updated time stamp and not a state change, 
is called a nuZZ message. If a null message is always 
sent then the simulation proceeds normally to com- 
pletion but the number of total messages sent is a 
maximum. If all null messages are suppressed then, 
while the number of total messages is a minimum, it 
is likely that the simulation wil l  deadlock. Deadlocks 
might occur because the local clock for a gate cannot 
advance past the minimum of the time stamps of the 
most recent messages received on its input pins. To 
advance past this time would be equivalent to predict- 
ing the future. Several approaches to minimizing the 
message traffic have been suggested in the literature 
[3, 71. We have adapted several of these methods to 
the SIMD architecture of the CM2, with descriptions 
following in section 3. 

3 Deadlocks: Avoidance, Detection 
and Resolution 

We have implemented a variety of methods for han- 
dling deadlocks, ranging from methods that prevent 
them from occurring to methods that allow the dead- 
lock to occur and then take action to recover. Dead- 
lock resolution methods differ in the way they handle 
null messages. A null message does not change the 
logic value but it may carry a more recent time stamp. 
Since a gate can only advance its own clock to the min- 
imum of the time stamps of its input messages, plus 
the delay of the gate, if it does not receive a null mes- 
sage it might be prevented from accepting a non-null 
message from another gate, resulting in a deadlock. It 
is clear that all non-null messages, which reflect real 
changes in logic values, must be sent. Presumably, 
restricting the number of null messages, and thereby 
reducing the message traffic on the CM2 computer, 
wil l  increase the speed of the simulation. 
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3.1 Deadlock Avoidance 

Avoidance 
Null Messages Sent 

With Delay 0 
With Delay 1 
With Delay 5 

Nulls Assumed 
With Nulls Sent 
Without Nulls Sent 

Resolution 
Demand Driven 
Source Gates Send 
All Gates Send 

All null messages: If all null messages are sent with 
no delay then all local clocks are advanced as often as 
possible and a deadlock cannot occur. 

Null messuges ufter a delay: If null messages are 
sent only after a delay of one or more cycles, then it 
is possible that a real message may be generated in 
that gate during those next few cycles, removing the 
need to send the null message and reducing the mes- 
sage traffic. Since all null messages, or replacement 
real messages, are always eventually sent a deadlock 
cannot occur. 

Null messuges assumed: Upon receiving any mes- 
sage, real or null, a gate evaluates, effectively assuming 
it has received null messages with the same time stamp 
on all inactive input pins. This assumption might be 
initially wrong, leading to temporarily incorrect value 
on the output line and a violation of the CMB model, 
but when the circuit is finally stable all lines must have 
correct values. 

252 
261 
66 

239 
638 

84 
114 
134 

3.2 Deadlock Detection and Resolution 

The following three methods suppress all null mes- 
sages, wait for a deadlock to occur and then recover 
from it by forcing selected null messages to be sent. 
It is reasonable to expect that there is some relatively 
small set of gates which can resolve the deadlock by 
sending null messages. It is not easy to determine 
which gates are in this set. These three methods se- 
lect the set in different ways. During this deadlock 
resolution phase each gate is required to send a null 
message once if it receives one, an action it would not 
take during the normal communication phase. 

Demand-driven: Presumably those gates with min- 
imum local clock times are the focus of the deadlock. 
They have not received null messages to advance their 
own clocks, and are prevented from sending null mes- 
sages to their fanout list. We identify the gates with 
minimum local clock values, move several levels back 
up their fanin cone, typically 2 levels, and mark these 
gates to send null messages. These gates must have lo- 
cal clock times greater than the set of gates with mini- 
mum clock times (otherwise they would be in that set) 
so the null messages must eventually cause the gates 
in the minimum clock value set to advance. 

Source gates send null messages: The source gates, 
the D flipflops and the input gates, have internal 
clocks that are advanced with the global system clock. 
Normally D flipflops and input gates send messages 
only when a new input vector is accepted and the sys- 
tem is clocked. To resolve the deadlock we require 
that each source gate send a null message containing 
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the current global time. 
All gates send null messages: When a deadlock is 

detected, all gates send a null message. While this 
method generates more message traffic than the pre- 
vious two methods the time required to mark the gates 
is minimal since all gates are marked and this marking 
is a single parallel operation on the CM2. 

4 Results 

Table 1 displays performance data for three test cir- 
cuits for each of the six deadlock avoidance/resolution 
methods. Test circuits were selected primarily for size, 
s5378 and 935932 occupy most of one and four se- 
quencers, respectively, when one gate is assigned to 
each physical processor. 

Table 1: Gate Evaluations per Second for Three Test 
Circuits. 

Circuit 
Test Vectors 

s5378 
469 

436415 

848 
980 * 

1281 
1869 

* 
* 
* 

s35932 
295 

3673197 

3336 
3250 * 

10152 
15819 

* 
* 
* 

'erformance can be 
assumed to be worse than the slowest performance 
in the column. 

In all cases, the deadlock avoidance schemes per- 
formed better than the deadlock resolution schemes. 
The best performance was achieved for the s35932 cir- 
cuit: 3336 gate evals/sec with null messages sent with- 
out any delay and 15819 gate evals/sec when null mes- 
sages are assumed and not sent. 

In absolute terms, this performance is no better 
than that achievable by conventional logic simulation 
on a state-of-the-art workstation, bearing in mind, 
however, that the CM-2 hardware does not represent 
state-of-the-art. In a companion experiment a syn- 
chronous parallel event-driven simulator running on 
the same CM-2 hardware achieved a performance of 
9738 gate evaluations per second. 



4.1 T h i n g  

Circuit 11 G I Cycles I Tot E I Tot C 
s344 11 1 I 1290 I 1 5 s  1 1 7 s  

The performance results suggest that efforts to re- 
duce message traffic, possibly incurring the need to 
resolve deadlocks, is counterproductive since the over- 
head required to handle communications does not 
seem to vary much with the size of the circuit. To 
verify this we performed a simple experiment, a r t s -  
cially activating groups of gates to isolate and time 
the three phases of each cycle of the main simulation 
loop: evaluation, deadlock resolution, and communi- 
cation, denoted by E, D, and C in the following dis- 
cussion. The results are shown in Table 2, where G is 
the number of gates assigned to one CM-2 processor. 

Note that the time for the Cphase, while not con- 
stant, is increasing very slowly in proportion to the size 
of the circuit. This suggests that the message traffic 
required to do logic simulation is well within the band- 
width of the CM2, and it may not be worthwhile to 
attempt to reduce message traffic at the expense of 
executing additional code in the deadlock resolution 
phase. 

The two timings for s35932 have two and four gates 
assigned to one CM-2 processor, respectively. Some of 
the external message traffic between CM-2 processors 
in the 2:l case is converted to message traffic internal 
to one CM-2 processor in the 4:l case, and the speed of 
the simulation increases slightly as the communication 
time decreases slightly. 

C/cycle 
.013s 

Table 2: Timing Data 

95378 
s35932 
s35932 

1 10571 123 s 187s .Ol8 s 
2 7264*2 169 s 345 s .024s 
4 7264*4 338s 584s .020s 

5 Conclusion 

Deadlock resolution an CMB on a CM-2 is more 
ezpensive than deadlock avoidance. 

When we began this implementation of a logic sim- 
ulator using the CMB approach we expected the sim- 
ple variant that sends all possible null messages to 
be the slow benchmark against which other methods 
would be compared. However, the methods which 
minimile the sending of null messages and then resolve 
the resulting deadlocks when they occur by sending 
selected null message are substantially slower. The 
time required to execute additional instructions in the 
SIMD processor array to decide which messages need 
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not be sent exceeds the time required to send those 
messages. 

Random partitioning of gates to  processors is sufi- 
cient. 

The experiments described in section 4.1 indicate 
that the communication load required by logic sim- 
ulation, due to the generally low and irregular gate 
activity, and due to the sparse nature of the resulting 
message traffic, is not a limiting factor in the speed of a 
PDES logic simulator on a CM-2. Further, our results 
suggest that the partitioning problem, the mapping of 
gates to processors, is satisfactorily solved by random 
partitioning. 

Finally, it must be pointed out that any SIMD sim- 
ulation will have a certain amount of sequential code 
which places absolute limits on its performance ac- 
cording to the Amdahl's law. 
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