
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

1994

Logic Simulation using an Asynchronous Parallel Discrete-Event Logic Simulation using an Asynchronous Parallel Discrete-Event

Simulation Model on a SIMD Machine Simulation Model on a SIMD Machine

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Lee Gowen
University of Nebraska-Lincoln

Matt Payne
University of Nebraska-Lincoln

Don Sylwester
University of Nebraska-Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Seth, Sharad C.; Gowen, Lee; Payne, Matt; and Sylwester, Don, "Logic Simulation using an Asynchronous
Parallel Discrete-Event Simulation Model on a SIMD Machine" (1994). CSE Conference and Workshop
Papers. 51.
https://digitalcommons.unl.edu/cseconfwork/51

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/51?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages

Logic Simulation using an Asynchronous Parallel Discrete-Event
Simulation Model on a SIMD Machine

Sharad Seth, Lee Gowen, Matt Payne, and Don Sylwester
Department of Computer Science and Engineering

University of Nebraska - Lincoln

Abstract

The Chandy-Mism-Bryant (CMB) model has been
applied to logic simulation of synchronous sequential
circuits using a massively parallel SIMD computer, a
CM-2 Connection Machine. Seveml methods of re-
ducing message tmf ic in a logic simulation have been
adapted to the SIMD architecture of the CM-2, with
the result that each method of reducing message tmf ic
actually decreases the speed of the simulation. This
suggests that communication costs required to support
logic simulation are small compared to the cost of de-
ciding which messages need not be sent.

1 Introduction

Logic simulation on a parallel computer is an in-
triguing idea; the goal being to match the parallelism
possible among the elements of a logic circuit with the
parallelism of the processor supporting the simulation.

Several new models for asynchronous parallel
discrete-event simulation (PDES) have been proposed
[4] which distribute the simulation over a network of
parallel processors that exchange messages to com-
municate state changes. The Chandy-Misra-Bryant
[3, 2, 51 approach is a conservative model, restrict-
ing processors from simulating past the latest time for
which correct results can be guaranteed.

The asynchronous distributed simulation model has
the following features [4,5]. The physical system is di-
vided into a set of processes which are mapped in some
fashion to the available parallel processors. Each pro-
cess is able to operate asynchronously with respect
to the other processes, and may either send or receive
messages from the other processes. Messages may take
an arbitrary time to traverse the communication chan-
nel, but messages sent along a specific channel must
arrive in the same order in which they were sent. Each
message is time stamped with the local time of the
process sending the message. A process that receives
messages on several input channels can correctly de-

duce its own behavior as a result of these messages up
to the time given by the minimum of the times of the
latest message received on each channel.

The major problem with the asynchronous model is
the possibility of deadlocks [6]. It is not generally nec-
essary that each message corresponding to some com-
munication in the actual physical system be sent in the
simulation. In fact, restricting the number of messages
sent is important in achieving maximum speed in the
simulation since communications resources are usually
a critical resource in parallel computer systems. It is
unfortunately possible that if some messages are not
sent then some processes will be unable to advance
their local clocks and a deadlock might occur. A vari-
ety of techniques have been suggested for avoiding or
preventing deadlocks.

Our work parallels that of Soule and Gupta [7] in
applying the CMB algorithm, but we use a Merent
architecture, a massively parallel SIMD machine. We
find that attempts to reduce the number of messages
sent, essential for the machine model used by Soule
and Gupta, are counterproductive for the specific ar-
chitecture of CM-2, a massively parallel SIMD ma-
chine.

2 Parallel Asynchronous Simulation

We have applied an asynchronous PDES dis-
tributed processing model to the simulation of a se-
quential logic circuit using a massively parallel SIMD
computer. Our physical process will be an individual
gate, the communications channels between processes
are the wires connecting the pins on the gates, and
the state changes of input and output pins wil l be our
messages.

Apart from those aspects of the implementation
specifically related to the parallel implementation, the
simulation is straightforward. Three valued logic is
wed throughout, unit delays are assigned to each gate
and zero delay to inter-gate connections. Gates are
evaluated in parallel across all processors using table

7th Intetnatlonal Conference on VLSl Deslgn - January 1994
29

0-8186-4990-9/94 $3.00 Q 1994 IEEE

--1

doi: 0.1109/ICVD.1994.282635

lookup.
Critical, then, to the parallel implementation are

the selection of a communication mechanism on the
CM-2, and selection of a method for handling the po-
tential for deadlocks in the simulation, adapted to a
parallel architecture.

In the simulator a small number of gates, typically
one, are mapped to a logical processor. The wired
connection between the output of one gate and the in-
put of another is modeled as a message path between
the logical processors storing the gates. Logical pro-
cessors evaluate their gates when they receive input
messages and send appropriate messages to the gates
on their fanout lists. The maximum speedup possible
for a synchronous simulation is bounded by the max-
imum circuit activity [l]. This bound may not apply
to an asynchronous simulator.

2.1 Communication Mechanism

The Connection Machine allows several different
communication mechanisms, with the expected trade-
off between ease of use and efficiency. General com-
munication, the least restrictive, allows processors to
send data to or receive data from any other proces-
sor by specifying its location. Hardware is responsi-
ble for routing all messages over the limited number
of communication paths available. Grid communica-
tion restricts communication to processors separated
by a fixed distance in a given operation but allows all
processors in the system to simultaneously communi-
cate. In simple experiments designed to compare these
two mechanisms general communication took approx-
imately 3 times as long as grid communication. How-
ever, given the irregular topology of a logic circuit,
it seems difficult to map the gates to the logical pro-
cessors to insure that communication always occurs
between processors separated by a fixed distance. If
there are several different separation distances among
the processors that must communicate in a given step
of the simulator then the grid communication mech-
anism requires that each distance be handled in a
separate operation. As a result we have selected the
general communication mechanism for our simulator.
This choice also simplified the problem of partitioning
gates among processors. With the general communica-
tion mechanism gates could be partitioned randomly
among the available processors.

2.2 Minimization of Message Tr&c and
Deadlocks

The message bandwidth on the Connection Ma-
chine, or any other parallel processor, is a limiting

resource, and minimization of the message trafiic is
expected to be a major factor in the speedup possi-
ble in an asynchronous simulation. If a gate changes
state, a message must be sent to all gates on the fanout
list. This message is time stamped with the local clock
value of the sending gate, and receipt of this message
possibly updates the local clock of the receiving gate.
If a gate receives an input event and is evaluated, but
the output state does not change then it is not imme-
diately necessary to send a message to the gates on the
fanout list, since no immediate change in their state
would result. Such a message, which only communi-
cates an updated time stamp and not a state change,
is called a nuZZ message. If a null message is always
sent then the simulation proceeds normally to com-
pletion but the number of total messages sent is a
maximum. If all null messages are suppressed then,
while the number of total messages is a minimum, it
is likely that the simulation wil l deadlock. Deadlocks
might occur because the local clock for a gate cannot
advance past the minimum of the time stamps of the
most recent messages received on its input pins. To
advance past this time would be equivalent to predict-
ing the future. Several approaches to minimizing the
message traffic have been suggested in the literature
[3, 71. We have adapted several of these methods to
the SIMD architecture of the CM2, with descriptions
following in section 3.

3 Deadlocks: Avoidance, Detection
and Resolution

We have implemented a variety of methods for han-
dling deadlocks, ranging from methods that prevent
them from occurring to methods that allow the dead-
lock to occur and then take action to recover. Dead-
lock resolution methods differ in the way they handle
null messages. A null message does not change the
logic value but it may carry a more recent time stamp.
Since a gate can only advance its own clock to the min-
imum of the time stamps of its input messages, plus
the delay of the gate, if it does not receive a null mes-
sage it might be prevented from accepting a non-null
message from another gate, resulting in a deadlock. It
is clear that all non-null messages, which reflect real
changes in logic values, must be sent. Presumably,
restricting the number of null messages, and thereby
reducing the message traffic on the CM2 computer,
wil l increase the speed of the simulation.

30

3.1 Deadlock Avoidance

Avoidance
Null Messages Sent

With Delay 0
With Delay 1
With Delay 5

Nulls Assumed
With Nulls Sent
Without Nulls Sent

Resolution
Demand Driven
Source Gates Send
All Gates Send

All null messages: If all null messages are sent with
no delay then all local clocks are advanced as often as
possible and a deadlock cannot occur.

Null messuges ufter a delay: If null messages are
sent only after a delay of one or more cycles, then it
is possible that a real message may be generated in
that gate during those next few cycles, removing the
need to send the null message and reducing the mes-
sage traffic. Since all null messages, or replacement
real messages, are always eventually sent a deadlock
cannot occur.

Null messuges assumed: Upon receiving any mes-
sage, real or null, a gate evaluates, effectively assuming
it has received null messages with the same time stamp
on all inactive input pins. This assumption might be
initially wrong, leading to temporarily incorrect value
on the output line and a violation of the CMB model,
but when the circuit is finally stable all lines must have
correct values.

252
261
66

239
638

84
114
134

3.2 Deadlock Detection and Resolution

The following three methods suppress all null mes-
sages, wait for a deadlock to occur and then recover
from it by forcing selected null messages to be sent.
It is reasonable to expect that there is some relatively
small set of gates which can resolve the deadlock by
sending null messages. It is not easy to determine
which gates are in this set. These three methods se-
lect the set in different ways. During this deadlock
resolution phase each gate is required to send a null
message once if it receives one, an action it would not
take during the normal communication phase.

Demand-driven: Presumably those gates with min-
imum local clock times are the focus of the deadlock.
They have not received null messages to advance their
own clocks, and are prevented from sending null mes-
sages to their fanout list. We identify the gates with
minimum local clock values, move several levels back
up their fanin cone, typically 2 levels, and mark these
gates to send null messages. These gates must have lo-
cal clock times greater than the set of gates with mini-
mum clock times (otherwise they would be in that set)
so the null messages must eventually cause the gates
in the minimum clock value set to advance.

Source gates send null messages: The source gates,
the D flipflops and the input gates, have internal
clocks that are advanced with the global system clock.
Normally D flipflops and input gates send messages
only when a new input vector is accepted and the sys-
tem is clocked. To resolve the deadlock we require
that each source gate send a null message containing

31

the current global time.
All gates send null messages: When a deadlock is

detected, all gates send a null message. While this
method generates more message traffic than the pre-
vious two methods the time required to mark the gates
is minimal since all gates are marked and this marking
is a single parallel operation on the CM2.

4 Results

Table 1 displays performance data for three test cir-
cuits for each of the six deadlock avoidance/resolution
methods. Test circuits were selected primarily for size,
s5378 and 935932 occupy most of one and four se-
quencers, respectively, when one gate is assigned to
each physical processor.

Table 1: Gate Evaluations per Second for Three Test
Circuits.

Circuit
Test Vectors

s5378
469

436415

848
980 *

1281
1869

*
*
*

s35932
295

3673197

3336
3250 *

10152
15819

*
*
*

'erformance can be
assumed to be worse than the slowest performance
in the column.

In all cases, the deadlock avoidance schemes per-
formed better than the deadlock resolution schemes.
The best performance was achieved for the s35932 cir-
cuit: 3336 gate evals/sec with null messages sent with-
out any delay and 15819 gate evals/sec when null mes-
sages are assumed and not sent.

In absolute terms, this performance is no better
than that achievable by conventional logic simulation
on a state-of-the-art workstation, bearing in mind,
however, that the CM-2 hardware does not represent
state-of-the-art. In a companion experiment a syn-
chronous parallel event-driven simulator running on
the same CM-2 hardware achieved a performance of
9738 gate evaluations per second.

4.1 T h i n g

Circuit 11 G I Cycles I Tot E I Tot C
s344 11 1 I 1290 I 1 5 s 1 1 7 s

The performance results suggest that efforts to re-
duce message traffic, possibly incurring the need to
resolve deadlocks, is counterproductive since the over-
head required to handle communications does not
seem to vary much with the size of the circuit. To
verify this we performed a simple experiment, a r t s -
cially activating groups of gates to isolate and time
the three phases of each cycle of the main simulation
loop: evaluation, deadlock resolution, and communi-
cation, denoted by E, D, and C in the following dis-
cussion. The results are shown in Table 2, where G is
the number of gates assigned to one CM-2 processor.

Note that the time for the Cphase, while not con-
stant, is increasing very slowly in proportion to the size
of the circuit. This suggests that the message traffic
required to do logic simulation is well within the band-
width of the CM2, and it may not be worthwhile to
attempt to reduce message traffic at the expense of
executing additional code in the deadlock resolution
phase.

The two timings for s35932 have two and four gates
assigned to one CM-2 processor, respectively. Some of
the external message traffic between CM-2 processors
in the 2:l case is converted to message traffic internal
to one CM-2 processor in the 4:l case, and the speed of
the simulation increases slightly as the communication
time decreases slightly.

C/cycle
.013s

Table 2: Timing Data

95378
s35932
s35932

1 10571 123 s 187s .Ol8 s
2 7264*2 169 s 345 s .024s
4 7264*4 338s 584s .020s

5 Conclusion

Deadlock resolution an CMB on a CM-2 is more
ezpensive than deadlock avoidance.

When we began this implementation of a logic sim-
ulator using the CMB approach we expected the sim-
ple variant that sends all possible null messages to
be the slow benchmark against which other methods
would be compared. However, the methods which
minimile the sending of null messages and then resolve
the resulting deadlocks when they occur by sending
selected null message are substantially slower. The
time required to execute additional instructions in the
SIMD processor array to decide which messages need

32

not be sent exceeds the time required to send those
messages.

Random partitioning of gates to processors is sufi-
cient.

The experiments described in section 4.1 indicate
that the communication load required by logic sim-
ulation, due to the generally low and irregular gate
activity, and due to the sparse nature of the resulting
message traffic, is not a limiting factor in the speed of a
PDES logic simulator on a CM-2. Further, our results
suggest that the partitioning problem, the mapping of
gates to processors, is satisfactorily solved by random
partitioning.

Finally, it must be pointed out that any SIMD sim-
ulation will have a certain amount of sequential code
which places absolute limits on its performance ac-
cording to the Amdahl's law.

Acknowledgments

The authors gratefully acknowledge the assistance
of the following: V.D. Agrawal, Bell Labs;' S. S.
Thatte, (formerly at UNL); A. Grothe, UNO; and
P. Kenyon, W. Mahoney, and V. Sivaramakrishnan,
UNL.

References

[l] V. D. Agrawal and S . T. Chakradhar. Logic sim-
ulation and parallel processing. 27th Design Au-
tomation Conference, 1990.

[2] R. E. Bryant. Simulation of packet communica-
tions architecture computer systems. Technical
Report MIT-LCS-TR-188, MIT, 1977.

[3] K. M. Chandy and J. Misra. Asynchronous dis-
tributed simulation via a sequence of parallel com-
putations. CACM, 24:198-206, November 1981.

[4] R. Fujimoto. Parallel discrete event simulation.
CACM, 33:30-53, October 1990.

[5] J . Misra. Distributed discrete-event simulation.
ACM Computing Surveys, 18(1):39-60, March
1986.

[6] D. A. Reed and A. D. Malony. Parallel discrete
event simulation: The Chandy-Misra approach.
Proceedings of the SCS Multiconference on Das-
tributed Simulation, 19(3):8-13, July 1988.

[7] L. Soule and A. Gupta. Parallel distributed-time
logic simulation. IEEE Design E4 Test of Comput-
ers, pages 32-48, December 1989.

	Logic Simulation using an Asynchronous Parallel Discrete-Event Simulation Model on a SIMD Machine
	

	Logic simulation using an asynchronous parallel discrete-event simulation model on a SIMD machine - VLSI Design, 1994., Proceedings of the Seventh International Conference on

