
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2005

Neighborhood Interchangeability and Dynamic Bundling for Non-Neighborhood Interchangeability and Dynamic Bundling for Non-

binary CSPs binary CSPs

Anagh Lal
University of Nebraska-Lincoln, alal@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska-Lincoln, choueiry@cse.unl.edu

Eugene C. Freuder
University College Cork, e.freuder@cs.ucc.ie

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Lal, Anagh; Choueiry, Berthe Y.; and Freuder, Eugene C., "Neighborhood Interchangeability and Dynamic
Bundling for Non-binary CSPs" (2005). CSE Conference and Workshop Papers. 168.
https://digitalcommons.unl.edu/cseconfwork/168

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/168?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages

A Constraint Satisfaction Problem (CSP) is a combinatorial decision

problem defined by a set of variables, a set of domain values for

these variables, and a set of constraints restricting the allowable

combinations of values for variables, where the task is to find a

solution (i.e., an assignment of a value to each variable satisfying all

constraints), or to find all such solutions.

Neighborhood Interchangeability and Dynamic Bundling for Non-binary CSPs

S

c d, e, f

d V1

V2

Dynamic bundling [1]:
Interchangeability sets are

updated during search

Static bundling [3]:
Interchangeability sets are

computed before search

c e, f d

d V1

V2

S

Search without bundling

c e f d

d V1

V2

S

1. Interchangeability: An algorithm for computing interchangeability in

non-binary CSPs.

2. Dynamic bundling: Integration of the above with backtrack search for

solving non-binary CSPs.

3. Experiments demonstrating the benefits of dynamic bundling

 Finding multiple, robust solutions.

 Decreasing computational cost of search.

Contributions

C4

{1, 2, 3,

4, 5, 6}

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

C2

C1

C3

Constraint

Variable

Non-binary CSP (nb-CSP)

SELECT R1.A,R1.B,R1.C

FROM R1,R2

WHERE R1.A=R2.A

AND R1.B=R2.B

AND R1.C=R2.C

Result: 10 tuples

in 3 nested tuples

 Use new join algorithm when materializing join queries.

 Exploit bundled results in data-analysis/data-mining packages.

 Assist in query size estimation

 Improve accuracy of sampling operators

Interchangeability identifies values equivalent in all solutions of a

CSP [2].

Full Interchangeability (FI): d, e, and f can be

swapped for V2 in any solution.

Neighborhood Interchangeability (NI): finds e

and f but misses d. It efficiently approximates FI.

Interchangeability & Bundling

Modeling the join query as a CSP
Attributes variables

Attribute values domains

Relations relational constraints

Join conditions join-condition constraints

Dynamic Bundling in Databases [4]

Experiments: FC versus DynBndl
Relational constraint

Join-condition constraint

R1.A R1.B R1.C

R2.A R2.B R2.C

R1 R2

R1 R2 (Compacted)

A B C

{1, 5} {12, 13, 14} {23}

{2, 4} {10} {25}

{6} {13, 14} {27}

Sorting-based bundling algorithm

Sort-merge join algorithm based on dynamic bundling

 Reduces number of tuples compared in the main memory.

 Is memory efficient and produces compacted results, saving

– I/O for the next operator and

– disk space (and network bandwidth in distributed

databases).

Experiments

 Compaction rate achieved in a real-world problem: 2.26.

 Compaction rate achieved on a random data-set: 1.48 (10’000
tuples; memory size: 4’000 tuples; page size 200 tuples).

Task: Join query

V3

{d}

{a, b, d} {a, b, c}

{c, d, e, f}

V4

V2 V1

Binary CSP

1. Choueiry, B.Y., Davis, A.M.: Dynamic bundling: Less Effort for More Solutions. SARA 02.

2. Freuder, E.C.: Eliminating Interchangeable Values in Constraint Satisfaction Problems. AAAI

91.

3. Haselböck, A: Exploiting Interchangeabilities in Constraint Satisfaction Problems. IJCAI 93.

4. Lal, A., Choueiry, B.Y.: Constraint Processing Techniques for Improving Join Computation.

CDB 04.

{1, 2}

{3}

{3}

{1, 2}

{1, 3} {3}

{3} {3}

No-good

bundle

V

D

C

A

B

Solution

bundle

Constraint Satisfaction Problems

{c, d, e, f }

V3

{d}

{a, b, d} {a, b, c}

V4

V2 V1

This research was supported by a Maude Hammond Fling Faculty Research Fellowship, National Science Foundation CAREER Award

#0133568, and Science Foundation Ireland Grant 00/PI.I/C075.

Experiments were conducted utilizing the Research Computing Facility of the University of Nebraska-Lincoln.

Dynamic Bundling for Non-Binary CSPs

Interchangeability in non-binary CSPs

We show how to compute NI for non-binary constraints by:

1. Building the non-binary discrimination tree, nb-DT(V, C), a data-

structure that determines the NI sets of a variable V given a constraint

C defined on V.

2. Intersecting the NI sets from the nb-DTs of a set of constraints, which

yields the domain partition of the variable V given the constraints.

 Tested random CSPs, Model B, 1000 instances per sample

 Criteria: FBS (First Bundle Size), CPU time, number of nodes visited

(NV), and number of constraint checks.

 Statistical tools: ANOVA and t-distribution for confidence intervals.

 partitions domains in a memory

efficient manner.

 fits into the iterator model of

databases and produces one

bundle at a time.

Future Research Directions

References

Anagh Lal and Berthe Y. Choueiry
Constraint Systems Laboratory • University of Nebraska-Lincoln

Eugene C. Freuder
Constraint Computation Center • University College Cork

Dynamic bundling (DynBndl) was thought to be

an overkill. We show DynBndl is worthwhile for:

 Finding all solutions: theoretically best

 Finding first solutions: empirical evidence

Because DynBndl:

 Bundles solutions

 Bundles no-goods (i.e., bundles of

inconsistent partial solutions).

Constraint Ratio p2 c3 c4

CR1 0.25 3 2

CR2 0.25 6 5

CR3 0.40 3 2

CR4 0.40 6 5

High tightness

 Problems mostly
unsolvable.

 Minimal bundling
overhead.

Phase transition

 Multiple solutions exist.

 Maximum no-good
bundling yields max
savings in CPU time,
NV, & CC.

Low tightness

 Large FBS: 33 at t = 0.35
(2254 in Dataset #13).

 Small bundling overhead.

Varying tightness

Increasing domain size

Tightness

n=20
a=15
CR=CR3

0

2

4

6

8

10

12

14

16

18

20

0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 0.525 0.55 0.575 0.6

T
im

e
 [

s
e

c
]

#
N

V
,
h

u
n

d
re

d
s

 t FBS

0.350 33.44
0.400 10.91
0.425 7.13
0.437 6.38
0.450 5.62
0.462 2.37
0.475 0.66
0.500 0.03

0.550 0.00
#NV

CPU time

DynBndl

FC

DynBndl

FC

CR FBS CPU improvement

%

a=10 a=15 a=10 a=15

CR1 5.5 11.9 33.3 34.3

CR2 5.0 5.5 28.6 33.0

CR3 3.6 5.0 29.8 31.7

CR4 1.2 1.4 28.4 31.6

Bundling = Search + neighborhood interchangeability [3]

Dynamic bundling = Search + dynamic NI [1]

Increasing a, we note in the phase-
transition area:

 FBS increases (more chances for
symmetry).

 CPU time decreases (better no-good
bundling).

The benefits of DynBndl increase with

increasing domain size: Use DynBndl in

database applications where large

domains are typical.

A B C

1 12 23

1 13 23

1 14 23

2 10 25

3 16 30

3 16 24

4 10 25

5 12 23

5 13 23

5 14 23

6 13 27

6 14 27

7 14 28

7 19 20

R1

A B C

1 12 23

1 13 23

1 14 23

1 15 23

2 10 25

3 17 20

3 18 22

4 10 25

5 12 23

5 13 23

5 14 23

5 15 23

6 13 27

6 14 27

8 14 28

R2

Partition

Unequal

partitions

Symmetric

partitions

Bundle for
R1.A: {1, 5}

R1

A B C

1 12 23

1 13 23

1 14 23

2 10 25

5 12 23

5 13 23

5 14 23

	Neighborhood Interchangeability and Dynamic Bundling for Non-binary CSPs
	

	PowerPoint Presentation

