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CXQuery: A Novel XML Query Language
Yi Chen, Peter Revesz

Abstract— XML is becoming the data exchange standard on
the Internet. Previously proposed XML query languages, such
as XQuery, Quilt, YALT, Lorel, and XML-QL, lack schema def-
inition of the query result; therefore, they are limited for defin-
ing views, integrating data, updating, and further querying, all of
which are often needed in e-Business applications. We propose
a novel XML query language called CXQuery, which defines the
schema of the query results explicitly and can easily define views,
and integrate, update, and query XML data. In addition, CXQuery
can express spatial and spatio-temporal queries using a constraint-
based querying approach.

Index Terms—XML, Query Language, Constraint Database

I. INTRODUCTION

XML is the emerging standard for data representation and
exchange on the Internet. E-Business applications de-

mand a powerful query language with view definition and data
integration capabilities. XQuery[2] developed by W3C as the
XML query language standard lacks these capabilities. It is de-
rived from several previous proposals of XML query languages
(eg, XML-QL[8], YALT[7], Lorel[1] and Quilt[3]), but these
languages lack schema information in the query result, XSL[5]
is also regarded as an XML query language which allows to
define views, but it has a very complicated structure. The limi-
tation of these languages can be summarized as follows:

• The schema information of the XML query result is not ex-
plicitly specified. This makes these languages unsuitable
to define views for further processing.

• These languages do not reuse the already known DTD of
the source document. The user has to build a very complex
XML pattern in the query, even though the result shares
much common schema information with the source docu-
ment.

• These languages use patterns to construct the query result.
This makes updates of XML documents very complicated.
No pattern-based XML query language supports XML up-
dates in a simple fashion. To update a small part of the
document, these query languages have to build the com-
plete pattern which obeys the original schema. Besides,
the user needs to write the complete schema in the query.

XQuery and its ancestors use XPath[6] to navigate the XML
hierarchical structure and use patterns to generate the query
output. The output XML document does not have an explicit
schema in this approach. DTD reference algorithms were pro-
posed but why not reuse the source DTD in the query result?
No schema generation algorithm can be more simple then one
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which specifies the DTD in the query language explicitly. Be-
sides, the DTD for XML documents can be regarded as the view
definition for the data in the document.

To overcome the above limitations, we propose a novel XML
query language: CXQuery. Our goal is to design an easy-to-
learn XML query language which is declarative, has power-
ful XML query meta data query functionalities, and can define
views on XML documents and update XML documents in a
simple fashion. Moreover, it can also query XML-based spatial
information.

To achieve this goal, we derive our language from constraint
query languages, and borrow features from both SQL and sev-
eral XML query languages. We take advantage of the DTD of
XML documents to explicitly specify the schema of the query
result. We borrow the schema definition function of the SE-
LECT clause in SQL, and aggregation operators, such as AVG
and SUM, in the schema definition part of the query language.
We borrow the document() function from XQuery to spec-
ify the XML document to be queried. XPath path expressions
are also used in CXQuery, but only to avoid of name conflicts.
CXQuery is similar to XPathLog[10] in that both of them are
rule-based query languages. In XPathLog, a rule atom is built
upon XPath expressions, whereas in CXQuery, we build our
rule atoms on DTD, which gives a horizontal view of schema
which can be easily cast and fit into the constraint data model.
A source wrapping and declarative integration language is pro-
posed in [4] but it does not provide appropriate updating power
on the XML document. The CXQuery query language makes
the following contributions:

• Strong schema definitions in queries, which allows it to
define XML views.

• More powerful meta data manipulation based on DTD,
which allows users to query and update the meta data,
and to use the meta data to integrate heterogeneous data
sources.

• When combined with a constraint database system, CX-
Query can support spatio-temporal queries on XML docu-
ments.

II. THE CXQUERY XML QUERY LANGUAGE

CXQuery (Constraint XML Query Language) is a declara-
tive, Datalog-style language for querying and updating XML
documents. It employs the syntax and semantics of constraint
query languages[9]. The input of a CXQuery is a set of XML
documents. The output of a CXQuery query is also an XML
document. When CXQuery is used to define views, the query
result is not materialized.

A CXQuery expression contains a rule head and a rule body,
with a “:-” symbol between them. The rule body contains a set
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of predicates, which are separated by semicomas. The semico-
mas stand for the logical operation “AND.”

To simplify the CXQuery expression, we employ a subset
of functionality of XPath to navigate the hierarchical structure
of XML documents and to avoid namespace conflicts. Since
most XML documents exchanged in e-Business have relatively
restricted structures, we only consider those XML documents
that have internal DTD definitions or have external DTD defi-
nition connections.

A. XPath and DTD

XPath is a simple XML query language. We use the XPath
expression to navigate the hierarchical structure of XML docu-
ments. An XPath expression uses the symbol “/” to denote the
root node or the children of the current node. We use the func-
tion document() to denote the root of the XML document.
In the following example, Q1, Q2, Q3 are all valid CXQuery
expressions.

(Query 1) Find the building elements in the campus map in the
document “campus.xml”.

(Q1) document("campus.xml")
Building(name, dept, spatial);

(Q2) document("campus.xml")
//Building(name, dept, spatial);

(Q3) document("campus.xml")
/CampusBuilding
/Building(name, dept, spatial);

When only one XML document is involved, we may use Q1

to simplify the expression. When only one document is in-
volved, Q2 has exactly the same meaning as Q1 has. Q3 is
stronger then Q2 in that it specifies the absolute path from the
root of document.

B. DTDs in CXQuery for XML matching

DTD is a simple schema definition for XML documents. It
employs a revised syntax of Prolog. If we regard the DTD of
a document as a set of predicates, it is actually a view defined
on the whole document. In CXQuery, we use DTD in the rule
body to match the pattern of XML documents and use a DTD-
like rule head to generate the schema of the query result. When
processing the CXQuery query, the DTD attached to the XML
source is extracted during the parsing phrase. It is regarded as
the set of “default” views and transferred to the DTD Matcher.
All predicates in the CXQuery query body are matched by the
DTD matcher during querying. The schema of the query result,
which is expressed as the predicates appear in the CXQuery
head, are merged with the original DTD by DTD Generator.
When the generated schema of the query result matches one in
the original DTD, the query is regarded as an XML update (see
Section III).

Each XML document is modeled as a labeled tree structure,
the leaves in the tree are defined as primitive type data, for ex-
ample, integer numbers or strings, but the data type of node

XML Document

CXQuery Parser

DTD Extrator

CXQuery Processor

DTD Matcher DTD Generator

CXQuery result

Fig. 1. DTD in CXQuery

is more complex. We borrow the notation of DTD and allow
variables in CXQuery to be bound to nodes. That is, CXQuery
variable names that match the node (tag in the document) in the
XML document denote the subtree of the XML document with
this node as the root.

(Query 2 ) Find the building in “campus.xml” which has the
name of “Ferguson Hall”.

document("campus.xml"),
building(name, dept, spatial),
name = "Ferguson Hall".

Query 2 finds all “building” nodes in the “campus.xml” doc-
ument that has the name “Ferguson Hall”. When the function
document(‘‘campus.xml’’) is loaded, the correspond-
ing DTD is also loaded and converted to constraints, which act
as the default view definition of the campus document. The sec-
ond predicate building(name,dept,spatial) has the
same form with the element definition of building element in
the DTD. Since the default DTD is already loaded, the query
evaluator matches this “building” element with that in a prede-
fined DTD. The DTD-like predicates shown in the CXQuery
body is used for matching. Thus we require that they are in the
same form. For example, Figure 2 shows a fraction of the origi-
nal DTD and the “view” defined on this fraction by constraints.

C. DTDs in CXQuery for query result schema definition

One of the major drawbacks of other XML query languages
is that they lack the schema information in the query result.
Without the schema information it is difficult to define views
using those query languages. In each CXQuery, the schema of
the result is explicitly specified in the query head. That is, Pro-
log like predicates before “:-” are used to construct a fragment
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DTD:
<!Element Building (name, dept, spatial)>
<!Element name (#PCDATA)>
<!Element dept (#PCDATA)>
<!Element spatial (X, Y)>
<!Element X (#PCDATA)>
<!Element Y (#PCDATA)>

Constraints:
spatial(X, Y):- X(string),Y(string),
Building(name, dept, spatial):-

name(string), dept(string),
spatial(X, Y).

Fig. 2. Translate DTDs to Constraints

of the DTD. The query processor will merge this DTD with
the original DTD and construct a complete DTD for the output
document.

For example, suppose we already have a “view” that con-
tains the building information of the Computer Science depart-
ment, and we need to find all information related to the building
named “Ferguson Hall”. We may express this query in CX-
Query from scratch, but we may also reuse the “view” as the
query source, if we know that the Computer Science depart-
ment is located in Ferguson Hall. For example, in Query 3 the
source of the second rule is the result of the first rule.

(Query 3) Find all the buildings where the computer science
department is located, and then find the building information of
“Ferguson Hall.”

buildingview(name,dept,spatial):-
document("campus.xml"),
building(name,dept,spatial),
dept/department="Computer Science";

CSBuilding(name,dept,spatial):-
buildingview(name,dept,spatial),
name = "Ferguson hall".

In this example, a new element “CSBuilding” was created
for the query result. DTD Generator will check the variable
bindings and create the new element definition:

<!Element CSBuilding(name,dept,spatial)>

Since name, dept and spatial subelements match those ele-
ments in the original DTD, their element definitions are copied
directly by the DTD Generator. Thus, the DTD of “CSBuild-
ing” is:

When the created element name also matches the element in
the source DTD, we consider that an XML update. We discuss
updating XML documents using CXQuery in Section III.

D. Functions

CXQuery provides a library of built-in functions for use in
general XML queries. We may use SQL aggregation func-

<!Element CSBuilding (name,dept,spatial)>
<!Element name (#PCDATA)>
<!Element dept (#PCDATA)>
<!Element spatial (X, Y)>
<!Element X (#PCDATA)>
<!Element Y (#PCDATA)>

tions (avg, sum, count, max and min) in the CXQuery
queries. We also provide spatial and spatio-temporal opera-
tors, such as area and length, to support queries on XML-based
spatial and spatio-temporal data. The operands of these spatial
functions are the spatial information elements. Since different
XML encodings of spatial information have different structures,
we need a “spatial data wrapper” to aggregate the spatial data
into a spatial object. The proposed functions provide a stan-
dard interface to access differently structured spatio-temporal
information encoded in XML, thus greatly enhance the power
of the query language. For example, Query 4 replaces the spa-
tial element of the building element with an “area” element that
represents the area of the building.

(Query 4) Substitute the spatial subelement of building element
with the area of the building. The new tag name is building area

building(name,dept,
buildingarea:area(spatial)):-

document("campus.xml"),
building(name, dept, spatial).

III. UPDATING XML USING CXQUERY

Few XML query languages can be used as data manipulation
languages to update the original XML document. For example,
in XQuery, one of the design goals is to be able to query XML
when the schema is unavailable. The schema of the query re-
sult thus totally depends on the user constructed pattern. Even
if the schema information is available, the “update” operation
can only be accomplished by constructing a totally new XML
document, where the schema of the new document has to be
constructed in the “RETURN” clause, no matter how complex
it is. In e-Business applications, most XML documents have
a strict structure, that is, having a DTD attached to the XML
document. In CXQuery, we assume that the DTD is internally
or externally connected to the document, and when updating an
XML document, the original DTD can be retrieved from the
source document.

A. Updating XML data

Query 5 below shows how a CXQuery can update the name
of the building “Ferguson Hall” to “Ferguson Building.” This
update is impossible to do in XQuery. Here we introduce the
“:” operator as an assignment operator in CXQuery.

In Query 5 the query head does not specify the new element
name. Hence Query 5 does not construct new elements but only
updates the source document.
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(Query 5) Update the “campus.xml” document, changing the
name of the building “Ferguson Hall” to “Ferguson Building.”

building(name:"Ferguson Building",
dept,spatial):-

document("campus.xml"),
building(name, dept, spatial),
name="Ferguson Hall".

B. Updating XML Metadata

Since schema is explicitly defined in CXQuery queries, CX-
Query can also update the metadata and schema of XML docu-
ments. The following example shows how to use the “:” opera-
tor to change the metadata. This is similar to the “AS” operation
in SQL SELECT clauses.

(Query 6) Change the “name” subelement of the building ele-
ment into buildingname.

building(buildingname:name,
dept,spatial):-

document("campus.xml"),
building(name,dept,spatial).

By default, the variable names in the rule head are bound to
the element or variable shown in the rule body. In this example,
the “name” element in the “Ferguson” node will bind to the
“name” element in the “building” node.

IV. QUERYING SPATIAL XML DOCUMENTS

There are several proposals for encoding spatial information
in XML. The best known is GML[11] (Geographic Mark-up
Language), which is recommended by OpenGIS as the standard
to encode spatial information in XML documents. Compared to
traditional encoding of spatial information, XML encoding of
spatial data has the following features:

• Spatial data is mixed with property data
In traditional spatial database systems, spatial data were
stored in separated fields in relational databases, or stored
in the file system with a pointer link to the file. But XML is
a semi-structured data model, and spatial data can appear
in any element and in any layer of the XML tree.

• Unreadable for users and difficult for direct processing
The XML encoding for spatial data could be very com-
plicated, which makes it often unreadable for users. For
example, a bus route could be encoded in an XML docu-
ment as a collection of a hundred line segments. Clearly,
such an encoding would be impossible to read by users.

Due to these difficulties, to date there is no query language
proposal which supports querying spatial XML documents.
Since both CXQuery and many constraint query languages are
based on Prolog they can be easily combined. Since constraint
query languages can express spatio-temporal queries, the com-
bination leads to a query language for XML documents that
contain spatio-temporal data.

Moreover, combination can be easily implemented on top of
a constraint database system. As mentioned before, CXQuery

itself is a good view definition language. The global view of the
document is defined in CXQuery.

Constraint Database System

Spatial XML Document

Spatial DataProperty Data

Wrapper
Spatial Wrapper

Property Info Constraint

CXQuery

<Building><name>Ferguson Hall</name>
               <dept>Computer Science</dept>

<spatial><box><coord><x>0</x><y>0</y></coord>
  <coord><x>10</x><y>10</y></coord>

</box>
</spatial>

</building>

Spatial Wrapper

Building( name, dept, x, y ) :-
Building( name, dept, spatial),
Constraint( x, y, spatial ).

CXQuery

Fig. 3. Architecture for combining CXQuery and Constraint Databases to
query Spatial XML Documents.

Figure 3 shows the architecture to query spatial XML docu-
ments using a combined CXQuery and Constraint Query Lan-
guage. The Wrapper sits between the spatial XML document
and a constraint database system, which translates the docu-
ment into constraints. This wrapper is developed for every
XML-encoding of a spatial document. Its output is a standard
constraint database representation of the XML data. Therefore,
CXQuery can use a unified spatial operator to query spatial data
and does not need to know the representation details of the spa-
tial data in XML document. In this example, the spatial wrapper
implements the function Constraint(x, y, spatial),
which converts the “spatial” element into a constraint database
representation. This architecture makes possible the integration
of spatial XML documents.

Query 7 shows a spatial query. The first two rules construct
the constraint representation of the spatial data from the XML
documents. The third rule uses a spatial function Contains() to
test the spatial relation of two spatial objects.

(Query 7) Find all buildings located in citycampus and belong-
ing to the Computer Science department.

citycampus(id,constraint):-
document("citycampus.xml"),
citycampus(id, departments, buildings,
BoundedBy),
constraint(x, y, BoundedBy);

Building(name, dept, constraint):-
document("campus.xml"),
Building(name, dept, spatial),
constraint(x, y, spatial);

Building(name, dept, constraint):-
Building(name, constraint),
citycampus(id, constraint),
contains(citycampus/constraint,

Building/constraint),
Building/dept = "Computer Science".
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V. INTEGRATING HETEROGENEOUS XML DOCUMENTS

CXQuery can be used to query through multiple XML docu-
ments and is a very powerful XML integration tool. Suppose in
XML document “citycampus.xml” the buildings are encoded
in the <building> element which has the schema build-
ing(name, dept, spatial). In another XML document “eastcam-
pus.xml” the buildings are encoded in the <campusbuild-
ing> element which has a different schema definition: cam-
pusbuilding(id, department, location). Query 8 shows a so-
lution to integrate these two schemas into one schema build-
ing(name, dept, spatial, location). We use the “:” operator to
handle the difference between the two schemas.

(Query 8) Build an XML document with the schema building(
name, dept, spatial, location) from the “citycampus.xml” and
“eastcampus.xml” documents.

building(name, dept, spatial,
location:NULL):-

document("citycampus.xml"),
building(name, dept, spatial);

building(name:id, dept:department,
spatial:NULL, location):-

document("eastcampus.xml"),
campusbuilding(id, department,
location).

VI. CONCLUSIONS

We presented a novel XML query language, called CXQuery.
This query language takes advantage of DTDs and uses the
DTD-like rules to define the schema of the query result. We
show that this language is powerful for querying, updating and
integrating XML documents, and it also can be combined with
constraint query languages that are also based on Prolog-like
rules. We are currently implementing the architecture in Figure
3 on top of a constraint database system, MLPQ/Presto that was
developed by our research group.
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