
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2000

Exploiting Don't Cares to Enhance Functional Tests Exploiting Don't Cares to Enhance Functional Tests

Mark W. Weiss
University of Nebraska-Lincoln, mweiss@cse.unl.edu

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Shashank K. Mehta
Pune University, skmehta@cse.iitk.ac.in

Kent L. Einspahr
Concordia University, Seward, NE, Kent.Einspahr@cune.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Weiss, Mark W.; Seth, Sharad C.; Mehta, Shashank K.; and Einspahr, Kent L., "Exploiting Don't Cares to
Enhance Functional Tests" (2000). CSE Conference and Workshop Papers. 14.
https://digitalcommons.unl.edu/cseconfwork/14

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/14?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages

EXPLOITING DON’T CARES
TO ENHANCE FUNCTIONAL TESTS

Mark W. Weiss and Sharad C. Seth Shashank K. Mehta

Pune, 411007 India
skm@cs. unipune. ernet. in

Kent L. Einspahr
University of Nebraska-Lincoln Pune University Concordia University
Lincoln, NE 68588-0115 USA Seward, NE 68434 USA
{ mweiss ,set h) Qcse. unl. edu eins@seward. cune.edu

Abstract
I n simulation based design verification, determin-

istic or pseudo-random tests are used to check func-
tional correctness of a design. I n this paper we present
a technique generating tests by specifying the don’t care
inputs in the functional specifications so as to improve
their coverage of both design errors and manufacturing
faults. The don’t cares are chosen to maximize sensi-
tization of signals in the circuit. The tests generated
in this way requzre only a fraction ofpseudo-exhaustive
test patterns to achieve a high multiplicity of fault cov-
erage.

1. Introduction

Design verification techniques range from conven-
tional simulation to formal proofs [l]. In simulation
based methods, tests are applied to an implementation
and the results are checked against the design specifi-
cation to uncover any design errors. As with program
testing, simulation can only reveal the presence of er-
rors but not prove their absence. Formal methods, on
the other hand, attempt to provide such assurance by
mathematical proofs. The proofs may show the equiv-
alence of an implementation and its specification [2],
or verify certain properties that must be satisfied by
any implementation [3]. In between these two extremes
are the several semi-formal methods, such as symbolic
simulation and partial model checking [l], [4].

This paper focuses on simulation based testing, of-
ten used in practice to verify large design entities, such
as microprocessors. The tests (or simulation vectors)
may be produced by the designer to verify the basic
functions, with possible assistance from a program to
cover exceptional conditions (“corner cases”) [5]. Au-
tomatic methods may use random test generation and
produce a very large number of tests that can now
be simulated/emulated on high-speed workstations or
specialized hardware.

Real design errors can be quite complex and hard
to capture accurately in an abstract model. Neverthe-
less, several design-error coverage metrics have been

Paper 20.3
538

proposed to evaluate tests. These include HDL-based
measures to indicate coverage of statements, branches,
paths, and tags by the test [6], the FSM-based mea-
sures showing coverage of states, transitions, and out-
puts; and design-fault models at the gate level [7]. The
coverage metrics also provide opportunities for tar-
geted test generation [8], [9].

Common to all verification tests, independent of
how they are produced, is that each test component
can be viewed as an input/output (or i/o) pair. The in-
put part represents the stimuli to be applied for verifi-
cation; the output part represents the reference against
which the output of the circuit is checked for equality.
As a result, the test is a sequence or collection of test
components. These i/o pairs may have been derived
from a specification model [8], [lo] or may correspond
to the specification itself, e.g. the “cubes” for combi-
national logic.

A test component may contain don’t-care inputs
(which can independently be set to arbitrary values
without affecting the specified output) and don’t-care
outputs whose values are not functionally significant
for the given input. For example, in a finite state ma-
chine a particular input event may force a state tran-
sition independent of the value of other inputs. Sim-
ilarly, a test component for the carry function (of a
full adder) might specify the input = 11X and the out-
put = 1 to indicate that the output is independent of
the third input component. From a functional point
of view, the manner in which the don’t-care input is
set is indeed of no consequence, however, this can be
significant in testing. As illustrated in Figure 1, when
the don’t-care is set to 0 there are two paths sensitized
from inputs to outputs (shown as bold lines) but when
it is set to 1 no paths are sensitized. Therefore, the
input = 110 covers all the faults covered by the two
vectors included in 11X.

In this simple example, the designer (or design tool)
can choose one of four options: (a) arbitrarily fill in the
don’t care and produce one simulation vector, (b) do
a three-value simulation of the implementation for the
given input, (c) expand the don’t care and produce two

ITC INTERNATIONAL TEST CONFERENCE

0-7803-6546-1100 $10.00 0 2000 IEEE

http://cune.edu

1 1

Fig. 1. Utilization of don’t care inputs during testing.

simulation vectors, or (d) do a symbolic simulation.
The last two options are logically equivalent. They
do not scale up well when the number of don’t-cares
is large. Option (b) is computationally efficient but
does not guarantee exact results because of the loss of
information in three-value simulation. In option (a),
on the other hand, an incorrect choice of the don’t-
care value can reduce the ability of the vector to detect
manufacturing faults. It might diminish the coverage
of design faults, as well, since the fault coverage metric
is also used as a viable measure of design fault coverage

The rest of the paper is organized as follows. Gen-
eralizing from the simple example above, a formulation
of the problem addressed in this paper appears in Sec-
tion 2. Here we propose a unified fault model that
can account for design errors and manufacturing faults
within the context of i/o pairs. Section 3 addresses
the test generation issues related to this fault model.
Experimental results on benchmark circuits are given
in Section 4. Section 5 relates our approach to earlier
work in the area of test generation. Section 6 concludes
the paper.

[71-

2. Problem Formulation

2.1 A Unified Fault Model

Test generation for detecting functional faults due
to design errors or manufacturing defects requires a
comprehensive fault model which combines both. Tra-
ditionally, stuck-at faults and bridging faults are con-
sidered a useful and effective representation of man-
ufacturing defects. Similarly, design errors are mod-
eled by representing the designed circuit as a good cir-
cuit (which functions as per the specifications) with
the possibility of a localized error such as wrong-gate-
substitution, missing-gate, extra-input, missing input,
etc., [7].

The two models can be unified by describing the
faulty circuit Q’ as the good circuit Q with a collec-
tion ofpa i rsc = {(sl,Es,),(S2,Esz),...,(Sk,EsI,)),
where each Si is a collection of lines of the circuit 6
and Esi is the corresponding environment condition,
or formally, Q’ = (8, C). The behavior of this circuit is
interpreted as follows:

Whenever the (good) circuit Q satisfies the con-
dition Es on some input, the lines of set S in Q’
have complementary values compared to their re-
spective values in Q.

To understand this model let us consider some ex-
amples. The stuck-at-1 fault at line g can be expressed
by S = {g} and Es = {g = 0). A bridging fault in
which line-a is forced to 1 by line b, which is itself
at 1, is expressed by S = {a} and Es = {ab = 01).
The effect of substitution of an AND gate by an OR
gate at site G can be captured by S = {g} with
Es = {hlhz = 10,hlhz = O l } , where hl and h2 are
the inputs and g is the output of G. Most other design
errors can be captured by this model.

This fault model is useful for testing manufactured
chips because the correct circuit is available. By us-
ing this fault model a test set can be generated and
applied to each chip. On the other hand, in the case
of design verification it is possible that the circuit im-
plementation might be faulty (nonconforming to the
specifications). The design can be verified by treating
the designed circuit as “good” and the specification as
the behavioral description of the LLbad” circuit because
the fault model is reversible. Stated in simpler terms,
if a LLbad” circuit results from LLgood” by substituting
an AND gate for an OR gate, then the “good” circuit
results from the “bad” circuit by substituting an OR
gate for an AND. The reverse role of the good and
the bad circuits is valid because the objective of test-
ing is only to distinguish between the two. A test set
can be generated based on the designed circuit and the
fault model. Then the response of the circuit can be
compared with the specifications.

To test a fault S , two conditions should be satisfied:

(1) At least one of the conditions of Es should be
realized to excite the fault, and

(2) The situation should be created such that the
faulty signal from at least one of the S lines is
propagated to some primary output.

Paper 20.3
539

2.2 Testing Functional Behavior

Consider the 4-input circuit driving a 7-segment
digit display. Its specification has 10 input/output
pairs. Testing the complete functionality of the cir-
cuit requires one to try each of the 10 inputs and
compare the 7-bit output with the specification. Such
a specification leaves no choice to the test-generator
to improve the speed of testing. This is a situation
where all 10 (valid) input patterns have distinct out-
put patterns. Fortunately, in most large circuits the
output patterns are much fewer than the valid input
patterns. This is expressed by forming cubes in the
input space and assigning one output pattern to each
cube. In other words, such specifications have par-
tially specified inputs (having 0, 1, and X) . For exam-
ple, the functional specification of a 4-input priority-
encoder can be expressed by 4 i/o pairs, namely,
1000/00, X100/01, XX10/10, XXX1/11 instead of 15
pairs..

In these cases a test-generator can optimize the test
set by selecting a subset of the vectors of each cube
with the same fault testability as the entire cube. For
example, in the priority-encoder described above, it
may not be necessary to test all eight inputs embedded
in XXXl if say, 1001 and 0011 could test all the faults
that could possibly be tested by the vectors of XXX1.
In this case the eight vectors in a functional test-set
could be replaced by the two vectors (1001 and 0011).

In this paper we assume that the circuit under test
has a small number of i/o pairs specifying its function-

and most inputs in the pairs are partially specified (i.e.,
have X’s). The test-generation process proposed here
takes each i/o pair independently and computes a small
number of fully specified input vectors from the cube
which can detect all or most of the faults that could
be detected by all the vectors of the cube collectively.

In a functional specification where inputs are par-
tially specified the values of the X inputs are not rele-
vant for the output in the good circuit. But these val-
ues do affect the output values in a defective circuit.
It is thus necessary that the unspecified PI values are
set in such a way that in a faulty circuit the output
values differ from those in the good circuit.

For some partially specified input i we can classify
the faults in three classes:

ality compared to the valid inputs (O(2no.-0f--inputs >)

CN: the faults that cannot be propagated by any
setting of X’s,
CA: the faults that are propagated by all settings
of X’s, and
Cp: the faults that are propagated by some but
not all settings of X’s.

1 k
0 d 0

Fig. 2. Illustration of C classes.

For example, in Figure 2 under the input cube
(11x0) C A = {in}, { I C } , { l) , {h} , {d } , {’% I C } , -1 ,
CN = {{m), { j } , { g) , { l ~ m } , (9, d } , .}, and CP =
{{f), {e}, {a) , {b), {a, b), {e , 4,. * .I.

We only need to be concerned with the C p faults
in setting the unspecified PI values. Next, we attempt
to determine the relationship between the faults and
input settings that allow them to be tested.

2.3 Border of the X-Domain

Consider the exact 3-valued simulation of some par-
tially specified input i (see Figure 3). Simulation is
called exact if a line has a binary value if and only if it
is constant for all vectors of i , otherwise it is X. The
values assigned to the X-inputs influence the binary
values at the gates where X-values and binary values
converge at the input and the output is a binary value.
Any signal that does not pass through these gates can-
not be affected by the values assigned to X’s. There-
fore in the faults of class C p some of the faulty signals
must enter these gates. If the X values are chosen so
that they do not allow these signals to pass through
these gates, then the fault cannot be detected.

We formally define a border-gate as the gate which
has a binary output and at least one X input in an
exact 3-valued simulation. For input cube (11x0) in
the circuit of Figure 2 the only border gate is C. A
border gate is enabled if the values of the unspecified
(i.e., X) primary inputs are set so that all the X inputs
of the border-gate are set to the non-dominating value.

2.4 Test Generation Strategy

The difficulty of generating complete tests for such
a general fault model is that considering each set of
lines, S, and each value-assignment set, Es, is com-
putationally unviable. This situation requires judi-
cious approximations. In our approach we consider
the problems of excitation and propagation separately.
Addressing first the propagation issue, we simplify the
problem by restricting S to the singleton set only. The
question that needs to be answered in order to generate
an efficient test set is

Paper 20.3

540

I " I

I I

Fig. 3. 3-valued vs. exact simulation

Given an input cube i, what is the minimum col-
lection of singleton sets, Ci, with the property that
any test set facilitating the propagation of all faults
S E Ci also propagates all faults Sf E C p ?

Once we find Ci, a test set I, is computed to prop-
agate the faults of Ci . This test ensures propagation
of all faults of C p and if ;r, is non-empty then it also
takes care of CA. Faults CN do not have to be consid-
ered because they are not detectable by any vector of
the cube i. If I, turns out to be empty (i.e., when C p
would be empty), then any randomly selected vector
of i is included in it to take care of CA. The final test
is U i I , .

Fortunately it is easy to determine Ci from border-
gate analysis. If a fault S = (1) is in Ci, there exists a
setting of unspecified PIS which enables the propaga-
tion of the fault from 1 to some PO(s), and there also
exists a setting which blocks the propagation. Thus,
there must exist a sensitization path starting from 1
and entering at least one border-gate. The sensitiza-
tion path either (i) passes through no fanout-stem and
enters input line 1' of a border-gate, or (ii) it passes
through a fanout-stem and the first such stem is 1".

In case (i) the fault 1 can be observed only if fault
1' can be observed. In case (ii) the fault 1 can be ob-
served only if the fault 1" can be observed because the
sensitization path did not fork before entering 1". This
fact leads to the conclusion that it is sufficient to con-

sider faults at the fanout-stems and at the dominating
inputs of the border-gates.

Observation For any input-cube i , the singleton faults
Ci that cover all faults of C p of cube i in propagation is
the union of the set of fanout stems in the input-cones
of border-gates and the set of dominating inputs to the
border-gates.

For the example circuit of Figure 2 C(llx0) is

Finally we turn to the fault excitation problem. As
observed earlier, in general, any set of assignments
could trigger the fault at the line under considera-
tion. Thus, we may be left with no choice but to con-
sider all value assignments of non-specified primary in-
puts, leaving no room for test set optimization. Conse-
quently, it is required that each singleton fault be con-
sidered only in a few environmental conditions. The
binary settings of lines are constant for vectors of the
same input-cube. Therefore in our experiments we
have considered each fault of Ci only once for test gen-
eration for each input cube. But if the same fault oc-
curs in Ci and Cj, then the test is generated for it in
both cases. Significant savings can be achieved by con-
sidering only Ci, as the example in Figure 3 illustrates.
Of the eight possible test vectors in the input cube,
two vectors are sufficient to test all singleton faults.

3. Test generation

As an illustration of the strategy just outlined, we
discuss in detail the test generation process for the
single-line (singleton) faults. The circuit and the i/o
pairs are assumed to be available. The process inde-
pendently considers every i/o pair and carries out the
following steps in sequence:

(a) logic simulation of the input cube to justify each
specified output,

(b) identification of border gates by analyzing the
results of the logic simulation,

(c) generation of a list of target singleton faults
corresponding to the collection Ci discussed above,

(d) generation of tests under input constraints to
cover all target faults, and

(e) compaction of the tests generated in the previ-
ous step.

These steps are further elaborated below.

{ { e) , {fh W).

3.1 Logic Simulation

As is well known, the commonly used 3-value sim-
ulation trades information loss for speed (linear-time
complexity); it may set some signal values as X that
should be binary. In an exact 3-value simulation ev-
ery signal that is binary (zero or one) independent of

Paper 20.3
541

the settings of the unspecified primary inputs should
be correctly marked. Exact simulation is NP-complete
since the boolean satisfiability problem can be reduced
to it. However, this theoretical complexity can be en-
capsulated in a line justification procedure that is com-
monly used in automatic test pattern generation [ll].

Let us assume that for a node (line) N in the cir-
cuit, Justify(N, v) determines if there is an input vector
contained in the input cube that would set node N to
the binary value v. For each node N with a X value
after 3-value simulation, if the call to Justify(N, 0) fails
we can immediately change the X value to 1 because
it is not possible to justify a 0 value at node N by any
setting of the unspecified inputs. Otherwise, we make
the call Justify(N, 1). If this fails, the node can be set
to 0, otherwise, it must remain as X. Since the number
of X values is bounded by the circuit size, at most a
linear number of calls to Justify is necessary for the
exact simulation.

This idea is incorporated in the exact logic simu-
lation algorithm shown in Figure 4. After the 3-value
simulation, the algorithm collects all gate output nodes
with X value that are in the cone of the specified out-
puts. These are tested for a constant value as above in
order of their level from input to output. Whenever a
node value changes, deterministic implications of the
change are propagated to other nodes in the circuit and
the list of remaining X nodes is pruned accordingly. In
the final step, the algorithm checks for any discrep-
ancies in the values at a primary output between the
specification and exact simulation. If this happens a
design error is detected independent of the settings of
X values on the input.

Example: The circuit shown in Figure 3 will be
used as a running example. For the input cube shown
in the figure, assume both outputs are specified to be 1.
Figure 3(a) shows the signal values after the (inexact)
3-value simulation upon which the following sorted list
L will be created:

It is possible to justify both 0 and 1 on k. Therefore
this node retains its X value. The same is true of node
1. However, J u s t i f y (m , 0) fails therefore m is assigned
constant 1 and by deterministic implication, lines n, p ,
q, T , s, t , U , and v are also assigned 1. As a result, the
list L is pruned and becomes null, completing the while
loop. The result is shown in Figure 3(b). The primary-
output check in the last step succeeds as the PO values
after exact simulation match the specification, hence
no design errors are revealed at this stage.

Logic-Simulate(C:circuit, B:input cube) {

3-valuesimulate(C,B);

For all the gates in the cone of specified outputs {
Create a list L of gate output nodes with X value
sorted in order of their level from input to output

}

While L is non-empty{

Remove node N at the head of the list L

If -.Justify(N, 0) then {
Assign 1 to N;
Carry out deterministic implications and update L;

1
Else If -Justify(N, 1) then {

Assign 0 to N;
Carry out deterministic implications and update L;

1
1
For each primary output 2 with specified value U {

If -Justify(Z,C) then report design error
1

1

Fig. 4. Algorithm: A high-level description of the logic simula-
tion algorithm.

3.2 Border Gate Identification

Based on the results of simulation, the gates with
constant output and at least one X input are identified
as border gates. By definition, the constant output is
the dominating value for the gate. For the example in
Figure 3(b) three border gates are identified, namely,
the OR gates with output lines m, s, and U.

3.3 Fault List Generation

As discussed in Section 2, it is enough to consider
the faults in border gates and certain fanout stems.
The specific faults are determined as follows:

(a) For a border gate, if there is just one dominat-
ing input, say, p with value U, then we include the fault
S = { p } and Es = { p = v} (i.e., E in stuck-at model
notation). If there is more than one dominating in-
put, we need not include any faults at the border gate
because no singleton fault can be propagated through
the gate. If there are no dominating inputs, we must
have X inputs that are correlated to produce a con-
stant value at the gate output. In this case, we include
the fault S = { p } and Es = E for each X input p .

(b) For each constant fanout stem s (with binary
value v) that is in the input cone of a dominating value
in a border gate, we include the fault S = {s} and
ES =E.

Paper 20.3

542

(a) Line Constrained to 0 (b) Line Constrained to 1

Fig. 5. Structural change to constrain input value.

For the three border gates in the running example,
the following faults will be included: ko, lo , 40, T O , and
uo. In addition, because the constant-valued stem m
is in the input cone of q and T , the fault mo will also
be in the fault list.

3.4 Constrained Test Generation

The test generation must be carried out under in-
put constraints; only the unspecified values in the in-
put cube can be changed during test generation. It
is possible to modify a PODEM-like algorithm that
searches for a solution on a decision tree to allow
branching and backtracking only on the unconstrained
inputs. We accomplish the same goal by running a
standard test generator 1121 on a modified circuit that
constrains the inputs internally (see Figure 5). A
greedy approach is used to cover as many faults as pos-
sible by a single test vector before considering another
vector in the input cube.

For the running example, the fault ko is detected by
the test cube ubcdefg = 110110X which also detects
mo. Further expanding the test cube to 1101100 de-
tects the fault U O . Similarly, the test 1111100 detects
lo and also detects mo and U O . The faults qo and TO on
the fault list are not detectable by any vector in the
original input cube. Therefore only two vectors in the
input cube cover all the faults detectable by all eight
vectors included in the cube. There are 12 such faults:
~ 0 , ~ 0 , ~ 1 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 .

3.5 Test Compaction

Most available ATPG tools provide the ability to
compact the generated test set, e.g., by reverse fault
simulation. The test vectors produced for an i/o pair
may be compacted further by using this facility. In the
running example no further compaction of the gener-
ated test set is possible.

4. Experimental Results

We implemented the test generation described in
the last section and conducted experiments using a
representative sample of 30 industrial PLA circuits
included in the release of the Espresso tool [13]. In
this section, we describe the experimental process and
present the results.

As previously described, our approach requires
both a structural representation and a behavioral rep-
resentation for the circuit under test. Our experiment
begins with the generation of these necessary specifi-
cations. The behavioral specifications were produced
using the Espresso tool to generate the on-set and the
off-set from the original PLA definition. The struc-
tural representations were produced using SIS [13] to
simplify and synthesize the circuits from the original
PLA definition. The synthesis step used the rugged
script. Technology mapping was limited to four-input
simple gates in a BDNET format. Finally, we convert
the BDNET format to ISCAS-89 netlist format for use
as the structural specification.

Table I provides the characteristics of the 30 cir-
cuits and summarizes the test generation results. Fol-
lowing the name of the circuit, the next three columns,
from left to right, show the number of primary in-
puts, the number of primary outputs, and the number
of i/o pairs in the minimized behavioral specification
obtained using Espresso. The column labeled “Avg.
Fully Specified Vectors per 1/0 Pair” gives the aver-
age size of a pseudo-exhaustive test for an i/o pair. The
entries in this column were computed as follows. First,
we determined the relevant inputs of each i/o pair as
those primary inputs which occur in the cones of influ-
ence of the specified outputs and counted the number
of don’t care inputs, say m, among them. Then, 2” is
the length of an exhaustive test for the given i/o pair.
The fifth column, labeled “Avg. Effective DCs per 1/0
Pair” is the logarithm to the base 2 of column 6. The
eighth column, labeled “Total Tests” shows the number
of tests obtained with our algorithm to cover all of the
functionally non-redundant faults. The same number
is shown normalized in column 7 labeled “Avg. Tests
per 1/0 Pair”. This can be compared with the num-
ber in column 6. Finally, the last column shows the
inverse of the fraction of pseudo-exhaustive patterns
used in our test, i.e., avg-fully-spec-vector-per-io/Avg-
tests-per-io.

The average number of tests per i/o cube for all
30 circuits is just 4.41. This can be compared with
the corresponding number, 7.81E + 09, for the fully
specified vectors per i/o pair. We note that even in
cases where the average number of don’t cares per i/o
pair is very large, e.g. the circuits xpurc and ibm, the
number of tests per i/o pair is still quite small.

We observed in Section 2 that because each i/o
pair is considered independently for test generation,
a given line in the circuit is likely to be observed mul-
tiple times with differently specified inputs. This was
verified for the circuit chkn as follows. The circuit was
fault simulated for the 2411 unique tests generated by

Paper 20.3
543

TABLE I
R,ESULTS FOR PLA CIRCUITS.

0.9

PLA
Name
mish
misg
i bm
misj
xparc

x6dn
in3
in6
b3
b4
in4
exep
in7
chkn
vtxl
xldn
x9dn
in5
vg2
t l
t s l O
shift
bcO
in2
t2
a12
alcom
b12
bcd

jbp

- - RandomTesl - Border Gats T a l
-

._

PIS
94
56
48
35
39
35
38
34
33
32
33
32
29
26
29
27
27
27
24
25
21
22
19
21
19
17
16
15
15
16

-

-

-

POS
43
23
17
14
73
57
5

29
23
20
23
20
63
10
7
6
6
7

14
8

23
16
16
11
10
16
46
38
9

38

-

-

1/0 Pairs

158
120
499
55

3226
402
310
34 1
317
62 1
680
603
643
142
370
305
305
315
348
304
210
262
200
688
399
180
141
90
72

1590

Avg. Eff.
DCs per
1/0 Pair

3.52
11.24
37.73
9.20
30.98
13.74
31.01
23.47
20.17
24.56
20.50
24.66
22.48
16.16
19.85
21.83
21.83
21.69
15.61
19.69
7.12
14.58
6.67
13.25
13.73
8.82
7.19
3.30
6.03
12.05

our method; no faults were dropped during simula-
tion so we could count how many times each individual
fault was detected by the tests. Next, for comparison
purposes, random tests of equal length were generated
as follows. For each i/o pair, the don't care inputs
were filled randomly as many times as the number of
tests produced by our method for that i/o pair and
the resulting vectors were accumulated. A duplicate
vector was detected as it was produced and replaced
by another randomly-generated vector. This process
ensured that the random tests were functional and of
equal length for each i/o pair and overall.

The results are shown in Figure 6 for the two kinds
of tests. Along the x-axis is the detectability of a fault
for each test, defined as the number of times the fault
is detected by the test. This number is normalized to
lie between zero and one by dividing it by the common
test length. The y-axis shows F (z) , the fraction of the
faults with detectability greater than or equal to the
value indicated by the x-value. Both curves start at
(0,l). However, in between, they exhibit markedly dif-
ferent behavior, particularly, in the initial parts which
correspond to faults with low detectability. Here, the
tests generated by the border-gate approach are seen
to catch low-detectability faults much more frequently

Avg. Fully
Spec. Vectors
per 1/0 Pair

l.lE+Ol
2.43+03
2.3E+ll
5.93+02
2.1E+09
1.4E+04
2.2E+09
1.2E+07
1.2E+06
2.53+07
1.5E+06
2.63+07
5.83+06
7.33+04
9.53+05
3.73+06
3.7E+06
3.43+06
5.OE+04
8.53+05
1.4E+02
2.53+04
1.OE+02
9.8E+03
1.4E+04
4.53+02
1.5E+02
9.9E+00
6.6E+01
4.23+03

Avg. Tests
per 1/0 Pair

0.92
1.13
3.77
1.15

11.97
5.14
4.66
4.39
4.35
6.0

4.29
6.25

12.69
2.77
6.88
3.12
3.12
3.00
4.87
2.67
3.12
4.10
4.86
7.83
5.25
3.14
1.82
1.42
2.17
5.55

Total
Tests

145
136

1882
63

38609
2065
1446
1497
1380
3763

29116
3767
8157
394

2545
953
953
945

1696
812
656

1074
971

5389
2094
565
257
128
156

8824

-

-

Reduction
l.lE+Ol
2.1E+03
6.1E+10
5.1E+02
1.7E+08
2.73+03
4.73+08
2.73+06
2.73+05
4.1E+06
3.43+05
4.1E+06
4.53+05
2.63+04
1.3E+05
l.lE+06
l.lE+06
l.lE+06
1.OE+04
3.1E+05
4.4E+01
6.OE+03
2.OE+01
1.2E+03
2.63+03
1.4E+02
8.2E+01
6.9E+00
3.1E+01
7.53+02

0.7 ""I

Fig. 6. Detectability of border-gate vs. random tests.

than the random tests.

5. Related Prior Work

The key idea of our paper, setting input don't cares
to maximize path sensitization in the circuit, is closely

Paper 20.3
544

related to earlier papers on automatic test pattern gen-
eration for manufacturing faults.

RAPS (Random Path Sensitization) [14] and
SMART [15] have a similar goal of generating tests that
deliberately sensitize a large number of signal paths
towards the primary outputs (POs) without targeting
specific faults. Unlike this paper, however, they as-
sume no primary input constraints.

The RAPS test generator repeatedly computes one
new test vector by executing the following steps to gen-
erate a test set which is better than a random set,
by analyzing the circuit structure. To generate a test
vector, it iteratively sets one unspecified (X) PO to a
randomly selected binary value and justifies. At this
point, if the circuit still has gate inputs with the X
value at this point, one is randomly selected, set to the
non-controlling value (relative to the gate driven by it)
and justified. Then the next iteration begins if at least
one unspecified PO remains.

SMART is an extension of RAPS. The difference
between RAPS and SMART comes from exploiting
“restart-gates” to extend the critical paths. Consider
the circuit simulation of a partially specified input. A
gate is called a “restart-gate” if it has one controlling
input, its output is critical, and none of its inputs are
critical. This can happen only if some of the inputs
to the gate are unspecified and the output is speci-
fied. Thus, restart-gates are border-gates but the con-
verse is not true. For example, gate C in Figure 2 is a
border-gate but not a restart-gate because its output
is not critical. RAPS takes every gate with unspeci-
fied inputs and attempts to justify the corresponding
non-controlling value on such lines.

SMART, like RAPS, proceeds in an iterative fash-
ion. It selects one of the unspecified POs and sets it
to a randomly selected value (actually it discriminates
between 0 and 1 when information from preprocessing
suggests that one of them has a better chance to detect
faults). Subsequently, it justifies that value. At this
stage it adds a feature which is not present in RAPS.
It takes one restart gate at a time and attempts to
justify the non-controlling value on all the unspecified
inputs of the gate. The success in justification leads to
extension of the critical path to the controlling input
of the gate. After all restart gates are considered the
next iteration is started. The process terminates if no
additional justification is possible.

The approach presented in this paper is similar to
the SMART approach in using border (restart) gates
to help extend sensitized paths. The main difference is
that SMART ignores multi-branch sensitization paths,
which appear more frequently in larger and more com-
plex designs. The multiple branches may pass through

the same gate when gates have more than one con-
trolling input so such cases cannot be ignored. Fur-
ther, treating one restart gate individually independent
of the others cannot handle the sensitized paths with
branches in different restart gates.

Another similarity between PODEM-X [16], FAST,
and our algorithm is “dynamic compaction” which is
referred to in this paper as “constrained test gener-
ation”. The idea behind it is to set the X-bit(s) of
the PI(s) of a test-vector i (which has some unspeci-
fied bits) so that more faults might be detected. Since
only the X bits are changed to binary bits, the new
(more specified) test vector j detects all the faults that
were detected by i. FAST uses the same approach as
SMART and generates j by justifying non-controlling
values on the unspecified inputs of restart gates. On
the other hand, in the present approach we start from
i (input of the i/o pair) and attempt to generate as
few fully specified vectors from i as possible which
can collectively test all faults of C,. These test vec-
tors are generated from i by a test generator which is
restricted from changing the values of the signals with
binary values. Unlike our approach (of finding relevant
faults from border-gate analysis) RAPS and SMART
generate test vectors from the initial input cube by
extending the sensitization paths (generally without
consideration to order and completeness).

Finally, we mention an earlier work with a com-
plementary focus, namely, determining the maximum
areas of desensitization for a given input vector. This
problem is important when fault simulation is done by
injecting single faults in the good circuit. The fast fault
simulator (FFSIM) in PODEM-X uses a technique,
called X-propagate [17] that allows rapid evaluation
of gates which are unobservable. The X-algorithm [18]
does the same using a more sophisticated approach.

6. Conclusion

The fault model and the border-gate approach to
test generation allows a unified perspective on tests to
detect design errors and manufacturing faults. Test
generation is carried’ out independently for each i/o
pair with the goal of covering all the faults in the cho-
sen model that can be detected by any input vector in
the input cube. The number of such vectors depends
on the number of don’t cares in the input cube. As
the results on the benchmark circuits show, this num-
ber can be very large, yet, the same fault coverage is
achievable with only a small subset of these vectors.

As the tests are independently generated for each
i/o pair, each line in the circuit is likely to be observed
multiple times in the context of different input settings.
Recent research shows that the multiple observations

Paper 20.3
545

improve the coverage of non-modeled faults in manu-
facturing testing [19] We have found that typically the
test set size increased by a factor of 3 to 30 over that
generated by ATPG. However, because our tests are
functional they can be applied at a much higher clock
rate.

The multiple observations should also improve the
coverage of design error faults. We intend to verify this
for our test vectors by means of a new simulator [20]
which is able to evaluate coverage of both design error
and manufacturing faults.

Acknowledgments: This work was supported by the
NSF Grant No. CCR-9971167 and the Univer-
sity of Nebraska-Lincoln Center for Communication
and Information Science. We are grateful to Miron
Abramovici for bringing some past related work to our
attention.

References
D. Dill, “Embedded tutorial: What’s between simulation
and formal verification,” in Proceedings of the Design Au-
tomation Conference, June 1998.
H. Hulgaard, P. F. Williams, and H. Reif, “Equivalence
checking of combinational circuits using boolean expression
diagrams,” IEEE ’Pransactions on Computer Aided Design
of Integrated Circuits and Systems, vol. 18, pp. 903-917,
July 1999.
J . Burch, E. Clarke, D. Long, K. McMillan, and D. Dill,
“Symbolic model checking for sequential circuit verifica-
tion,” IEEE Transactions on Computer Aided Design of
Integrated Circuats and Systems, vol. 13, pp. 401-424, April
1994.
C. W. Barrett, D. L. Dill, and J. R. Levitt, “A decision
procedure for bit-vector arithmetic,” in Proceedings Design
Automation Conference, pp. 522-527, 1998.
A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair,
B. Rosen, M. Mullen, J. Yoon, R. Armoni, D. Geist, and
Y. Wolfsthal, “AVPGEN-a test generator for architecture
verification,” IEEE ’Pransactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 3, pp. 188-199, June 1995.
D. Ince, “Software testing,” in Software Engineer& Ref-
erence Book (J. McDermid, ed.), London, England:
Butterworth-Heinemann, 1991.
M. Abadir, J . Ferguson, and T. Kirkland, “Logic design
verification via test generation,” IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems,
vol. 7, pp. 138-148, January 1988.
R. Vemuri and R. Kalyanaraman, “Generation of design
verification tests from behavioral VHDL programs using
path enumeration and constraint programming,” IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 3, pp. 201-214, June 1995.
H. Al-Asaad and J. Hayes, “Design verification via simu-
lation and automatic test pattern generation,” in Proceed-
ings International Conference on Computer-Aided Design,

R. C.-Y. Huang and K.-T. Cheng, “A new extended finite
state machine (EFSM) model and its application to func-
tional vector generation,” Third IEEE International High
Level Design Validation and Test Workshop (HLDVT ’98),
1998.
P. Goel, “An implicit enumeration algorithm to generate

pp. 174-180, 1995.

tests for combinational logic circuits,” IEEE Zhnsactions
on Computers, vol. C-30, pp. 215-222, March 1981.
H. K. Lee and D. S. Ha, “On the generation of test pat-
terns for combinational circuits,” Technical Report 12-93,
Virginia Polytechnic Institute and State University, Depart-
ment of Electrical Engineering, College Station, TX 77840
USA, 1993.
E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli, “SIS: A system for sequential
circuit synthesis,” Memorandum UCB/ERL M92/41, Uni-
versity of California, Berkeley, University of California,
Berkeley, CA 94720 USA, May 1992.
P. Goel, “RAPS test pattern generator,” IBM Technical
Disclosure Bulletin, vol. 21, pp. 2787-2791, December 1978.
M. Abramovici, J . J. Kulikowski, P. R. Menon, and D. T.
Miller, “SMART and FAST: Test generation for VLSI scan-
design circuits,” IEEE Design and Test, pp. 43-54, August

P. Goel and B. C. Rosales, “PODEM-X: An automatic test
generation system for VLSI logic structures,” in Proceedings
18th Design Automation Conference, pp. 260-268, June
1981.
P. Goel, H. Lichaa, T . E. Rosser, T . J. Stroh, and E. Eichel-
berger, “LSSD fault simulation using conjunctive combinac
tional and sequential methods,” in Proceedings IEEE Test
Symposium, pp. 371-376, November 1980.
S. B. Akers and B. Krishnamurthy, “Why is less informa-
tion from logic simulation more useful in fault simulation,”
in Proceedings International Test Conference, pp. 786-800,
1990.
J. Dworak, M. R. Grimaila, S. Lee, L.-C. Wang, and
M. Mercer, “Modeling the probability of defect excitation
for a commercial IC with implications for stuck-at fault-
based ATPG strategies,” in Proceedings International Test
Conference, pp. 1031-1037, 1998.
H. Al-Asaad and J . P. Hayes, “ESIM: A multimode1 design
error and fault simulator for logic circuits,” in Proceedings
of the VLSI Test Symposium, pp. 221-228, 2000.

1986.

Paper 20.3
546

	Exploiting Don't Cares to Enhance Functional Tests
	

	Exploiting don't cares to enhance functional tests - Test Conference, 2000. Proceedings. International

