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Abstract 
I n  simulation based design verification, determin- 

istic or pseudo-random tests are used to check func- 
tional correctness of a design. I n  this paper we present 
a technique generating tests by specifying the don’t care 
inputs in the functional specifications so as to  improve 
their coverage of  both design errors and manufacturing 
faults. The don’t cares are chosen to  maximize sensi- 
tization of signals in the circuit. The tests generated 
in this way requzre only a fraction ofpseudo-exhaustive 
test patterns to  achieve a high multiplicity of fault cov- 
erage. 

1. Introduction 

Design verification techniques range from conven- 
tional simulation to formal proofs [l]. In simulation 
based methods, tests are applied to an implementation 
and the results are checked against the design specifi- 
cation to uncover any design errors. As with program 
testing, simulation can only reveal the presence of er- 
rors but not prove their absence. Formal methods, on 
the other hand, attempt to  provide such assurance by 
mathematical proofs. The proofs may show the equiv- 
alence of an implementation and its specification [2], 
or verify certain properties that must be satisfied by 
any implementation [3]. In between these two extremes 
are the several semi-formal methods, such as symbolic 
simulation and partial model checking [l], [4]. 

This paper focuses on simulation based testing, of- 
ten used in practice to verify large design entities, such 
as microprocessors. The tests (or simulation vectors) 
may be produced by the designer to verify the basic 
functions, with possible assistance from a program to 
cover exceptional conditions (“corner cases”) [5]. Au- 
tomatic methods may use random test generation and 
produce a very large number of tests that can now 
be simulated/emulated on high-speed workstations or 
specialized hardware. 

Real design errors can be quite complex and hard 
to capture accurately in an abstract model. Neverthe- 
less, several design-error coverage metrics have been 
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proposed to evaluate tests. These include HDL-based 
measures to indicate coverage of statements, branches, 
paths, and tags by the test [6], the FSM-based mea- 
sures showing coverage of states, transitions, and out- 
puts; and design-fault models at the gate level [7]. The 
coverage metrics also provide opportunities for tar- 
geted test generation [8], [9]. 

Common to all verification tests, independent of 
how they are produced, is that each test component 
can be viewed as an input/output (or i/o) pair. The in- 
put part represents the stimuli to be applied for verifi- 
cation; the output part represents the reference against 
which the output of the circuit is checked for equality. 
As a result, the test is a sequence or collection of test 
components. These i/o pairs may have been derived 
from a specification model [8], [lo] or may correspond 
to the specification itself, e.g. the “cubes” for combi- 
national logic. 

A test component may contain don’t-care inputs 
(which can independently be set to arbitrary values 
without affecting the specified output) and don’t-care 
outputs whose values are not functionally significant 
for the given input. For example, in a finite state ma- 
chine a particular input event may force a state tran- 
sition independent of the value of other inputs. Sim- 
ilarly, a test component for the carry function (of a 
full adder) might specify the input = 11X and the out- 
put = 1 to indicate that the output is independent of 
the third input component. From a functional point 
of view, the manner in which the don’t-care input is 
set is indeed of no consequence, however, this can be 
significant in testing. As illustrated in Figure 1, when 
the don’t-care is set to 0 there are two paths sensitized 
from inputs to outputs (shown as bold lines) but when 
it is set to 1 no paths are sensitized. Therefore, the 
input = 110 covers all the faults covered by the two 
vectors included in 11X. 

In this simple example, the designer (or design tool) 
can choose one of four options: (a) arbitrarily fill in the 
don’t care and produce one simulation vector, (b) do 
a three-value simulation of the implementation for the 
given input, (c) expand the don’t care and produce two 
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Fig. 1. Utilization of don’t care inputs during testing. 

simulation vectors, or (d) do a symbolic simulation. 
The last two options are logically equivalent. They 
do not scale up well when the number of don’t-cares 
is large. Option (b) is computationally efficient but 
does not guarantee exact results because of the loss of 
information in three-value simulation. In option (a), 
on the other hand, an incorrect choice of the don’t- 
care value can reduce the ability of the vector to detect 
manufacturing faults. It might diminish the coverage 
of design faults, as well, since the fault coverage metric 
is also used as a viable measure of design fault coverage 

The rest of the paper is organized as follows. Gen- 
eralizing from the simple example above, a formulation 
of the problem addressed in this paper appears in Sec- 
tion 2. Here we propose a unified fault model that 
can account for design errors and manufacturing faults 
within the context of i/o pairs. Section 3 addresses 
the test generation issues related to this fault model. 
Experimental results on benchmark circuits are given 
in Section 4. Section 5 relates our approach to earlier 
work in the area of test generation. Section 6 concludes 
the paper. 

[71- 

2. Problem Formulation 

2.1 A Unified Fault Model 

Test generation for detecting functional faults due 
to design errors or manufacturing defects requires a 
comprehensive fault model which combines both. Tra- 
ditionally, stuck-at faults and bridging faults are con- 
sidered a useful and effective representation of man- 
ufacturing defects. Similarly, design errors are mod- 
eled by representing the designed circuit as a good cir- 
cuit (which functions as per the specifications) with 
the possibility of a localized error such as wrong-gate- 
substitution, missing-gate, extra-input, missing input, 
etc., [7]. 

The two models can be unified by describing the 
faulty circuit Q’ as the good circuit Q with a collec- 
tion ofpa i rsc  = {(sl,Es,),(S2,Esz),...,(Sk,EsI,)), 
where each Si is a collection of lines of the circuit 6 
and Esi is the corresponding environment condition, 
or formally, Q’ = (8, C). The behavior of this circuit is 
interpreted as follows: 

Whenever the (good) circuit Q satisfies the con- 
dition Es on some input, the lines of set S in Q’ 
have complementary values compared to their re- 
spective values in Q. 

To understand this model let us consider some ex- 
amples. The stuck-at-1 fault at line g can be expressed 
by S = {g} and Es = {g = 0). A bridging fault in 
which line-a is forced to 1 by line b, which is itself 
at 1, is expressed by S = {a} and Es = {ab = 01). 
The effect of substitution of an AND gate by an OR 
gate at site G can be captured by S = {g} with 
Es = {hlhz = 10,hlhz = O l } ,  where hl and h2 are 
the inputs and g is the output of G. Most other design 
errors can be captured by this model. 

This fault model is useful for testing manufactured 
chips because the correct circuit is available. By us- 
ing this fault model a test set can be generated and 
applied to each chip. On the other hand, in the case 
of design verification it is possible that the circuit im- 
plementation might be faulty (nonconforming to the 
specifications). The design can be verified by treating 
the designed circuit as “good” and the specification as 
the behavioral description of the LLbad” circuit because 
the fault model is reversible. Stated in simpler terms, 
if a LLbad” circuit results from LLgood” by substituting 
an AND gate for an OR gate, then the “good” circuit 
results from the “bad” circuit by substituting an OR 
gate for an AND. The reverse role of the good and 
the bad circuits is valid because the objective of test- 
ing is only to distinguish between the two. A test set 
can be generated based on the designed circuit and the 
fault model. Then the response of the circuit can be 
compared with the specifications. 

To test a fault S ,  two conditions should be satisfied: 

(1) At least one of the conditions of Es should be 
realized to excite the fault, and 

(2) The situation should be created such that the 
faulty signal from at least one of the S lines is 
propagated to some primary output. 
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2.2 Testing Functional Behavior 

Consider the 4-input circuit driving a 7-segment 
digit display. Its specification has 10 input/output 
pairs. Testing the complete functionality of the cir- 
cuit requires one to try each of the 10 inputs and 
compare the 7-bit output with the specification. Such 
a specification leaves no choice to the test-generator 
to improve the speed of testing. This is a situation 
where all 10 (valid) input patterns have distinct out- 
put patterns. Fortunately, in most large circuits the 
output patterns are much fewer than the valid input 
patterns. This is expressed by forming cubes in the 
input space and assigning one output pattern to each 
cube. In other words, such specifications have par- 
tially specified inputs (having 0, 1, and X) .  For exam- 
ple, the functional specification of a 4-input priority- 
encoder can be expressed by 4 i/o pairs, namely, 
1000/00, X100/01, XX10/10, XXX1/11 instead of 15 
pairs.. 

In these cases a test-generator can optimize the test 
set by selecting a subset of the vectors of each cube 
with the same fault testability as the entire cube. For 
example, in the priority-encoder described above, it 
may not be necessary to test all eight inputs embedded 
in XXXl if say, 1001 and 0011 could test all the faults 
that could possibly be tested by the vectors of XXX1. 
In this case the eight vectors in a functional test-set 
could be replaced by the two vectors (1001 and 0011). 

In this paper we assume that the circuit under test 
has a small number of i/o pairs specifying its function- 

and most inputs in the pairs are partially specified (i.e., 
have X’s). The test-generation process proposed here 
takes each i/o pair independently and computes a small 
number of fully specified input vectors from the cube 
which can detect all or most of the faults that could 
be detected by all the vectors of the cube collectively. 

In a functional specification where inputs are par- 
tially specified the values of the X inputs are not rele- 
vant for the output in the good circuit. But these val- 
ues do affect the output values in a defective circuit. 
It is thus necessary that the unspecified PI values are 
set in such a way that in a faulty circuit the output 
values differ from those in the good circuit. 

For some partially specified input i we can classify 
the faults in three classes: 

ality compared to the valid inputs (O(2no.-0f--inputs >) 

CN: the faults that cannot be propagated by any 
setting of X’s, 
CA: the faults that are propagated by all settings 
of X’s, and 
Cp: the faults that are propagated by some but 
not all settings of X’s. 

1 k 
0 d 0 

Fig. 2. Illustration of C classes. 

For example, in Figure 2 under the input cube 
(11x0) C A  = {in}, { I C } ,  { l ) ,  {h} ,  {d } ,  {’% I C } ,  -1 ,  
CN = {{m),  { j } ,  { g ) ,  { l ~ m } ,  (9, d } ,  .}, and CP = 
{{f), {e}, {a) ,  {b), {a, b), {e ,  4,. * .I. 

We only need to be concerned with the C p  faults 
in setting the unspecified PI values. Next, we attempt 
to determine the relationship between the faults and 
input settings that allow them to be tested. 

2.3 Border of the X-Domain 

Consider the exact 3-valued simulation of some par- 
tially specified input i (see Figure 3). Simulation is 
called exact if a line has a binary value if and only if it 
is constant for all vectors of i ,  otherwise it is X. The 
values assigned to the X-inputs influence the binary 
values at the gates where X-values and binary values 
converge at the input and the output is a binary value. 
Any signal that does not pass through these gates can- 
not be affected by the values assigned to X’s. There- 
fore in the faults of class C p  some of the faulty signals 
must enter these gates. If the X values are chosen so 
that they do not allow these signals to pass through 
these gates, then the fault cannot be detected. 

We formally define a border-gate as the gate which 
has a binary output and at least one X input in an 
exact 3-valued simulation. For input cube (11x0) in 
the circuit of Figure 2 the only border gate is C. A 
border gate is enabled if the values of the unspecified 
(i.e., X) primary inputs are set so that all the X inputs 
of the border-gate are set to the non-dominating value. 

2.4 Test Generation Strategy 

The difficulty of generating complete tests for such 
a general fault model is that considering each set of 
lines, S, and each value-assignment set, Es, is com- 
putationally unviable. This situation requires judi- 
cious approximations. In our approach we consider 
the problems of excitation and propagation separately. 
Addressing first the propagation issue, we simplify the 
problem by restricting S to the singleton set only. The 
question that needs to be answered in order to generate 
an efficient test set is 
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Fig. 3. 3-valued vs. exact simulation 

Given an input cube i, what is the minimum col- 
lection of singleton sets, Ci, with the property that 
any test set facilitating the propagation of all faults 
S E Ci also propagates all faults Sf E C p  ? 

Once we find Ci, a test set I, is computed to prop- 
agate the faults of Ci .  This test ensures propagation 
of all faults of C p  and if ;r, is non-empty then it also 
takes care of CA. Faults CN do not have to  be consid- 
ered because they are not detectable by any vector of 
the cube i. If I, turns out to be empty (i.e., when C p  
would be empty), then any randomly selected vector 
of i is included in it to take care of CA. The final test 
is U i I , .  

Fortunately it is easy to determine Ci from border- 
gate analysis. If a fault S = ( 1 )  is in Ci, there exists a 
setting of unspecified PIS which enables the propaga- 
tion of the fault from 1 to some PO(s), and there also 
exists a setting which blocks the propagation. Thus, 
there must exist a sensitization path starting from 1 
and entering at least one border-gate. The sensitiza- 
tion path either (i) passes through no fanout-stem and 
enters input line 1' of a border-gate, or (ii) it passes 
through a fanout-stem and the first such stem is 1". 

In case (i) the fault 1 can be observed only if fault 
1' can be observed. In case (ii) the fault 1 can be ob- 
served only if the fault 1" can be observed because the 
sensitization path did not fork before entering 1". This 
fact leads to the conclusion that it is sufficient to con- 

sider faults at the fanout-stems and at the dominating 
inputs of the border-gates. 

Observation For any input-cube i ,  the singleton faults 
Ci that cover all faults of C p  of cube i in propagation is 
the union of the set of fanout stems in the input-cones 
of border-gates and the set of dominating inputs to the 
border-gates. 

For the example circuit of Figure 2 C(llx0) is 

Finally we turn to the fault excitation problem. As 
observed earlier, in general, any set of assignments 
could trigger the fault at the line under considera- 
tion. Thus, we may be left with no choice but to con- 
sider all value assignments of non-specified primary in- 
puts, leaving no room for test set optimization. Conse- 
quently, it is required that each singleton fault be con- 
sidered only in a few environmental conditions. The 
binary settings of lines are constant for vectors of the 
same input-cube. Therefore in our experiments we 
have considered each fault of Ci only once for test gen- 
eration for each input cube. But if the same fault oc- 
curs in Ci and Cj, then the test is generated for it in 
both cases. Significant savings can be achieved by con- 
sidering only Ci, as the example in Figure 3 illustrates. 
Of the eight possible test vectors in the input cube, 
two vectors are sufficient to test all singleton faults. 

3. Test generation 

As an illustration of the strategy just outlined, we 
discuss in detail the test generation process for the 
single-line (singleton) faults. The circuit and the i/o 
pairs are assumed to be available. The process inde- 
pendently considers every i/o pair and carries out the 
following steps in sequence: 

(a) logic simulation of the input cube to justify each 
specified output, 

(b) identification of border gates by analyzing the 
results of the logic simulation, 

(c) generation of a list of target singleton faults 
corresponding to the collection Ci discussed above, 

(d) generation of tests under input constraints to 
cover all target faults, and 

(e) compaction of the tests generated in the previ- 
ous step. 

These steps are further elaborated below. 

{ { e ) ,  {fh W). 

3.1 Logic Simulation 

As is well known, the commonly used 3-value sim- 
ulation trades information loss for speed (linear-time 
complexity); it may set some signal values as X that 
should be binary. In an exact 3-value simulation ev- 
ery signal that is binary (zero or one) independent of 
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the settings of the unspecified primary inputs should 
be correctly marked. Exact simulation is NP-complete 
since the boolean satisfiability problem can be reduced 
to it. However, this theoretical complexity can be en- 
capsulated in a line justification procedure that is com- 
monly used in automatic test pattern generation [ll]. 

Let us assume that for a node (line) N in the cir- 
cuit, Justify(N, v) determines if there is an input vector 
contained in the input cube that would set node N to 
the binary value v. For each node N with a X value 
after 3-value simulation, if the call to Justify(N, 0) fails 
we can immediately change the X value to 1 because 
it is not possible to justify a 0 value at node N by any 
setting of the unspecified inputs. Otherwise, we make 
the call Justify(N, 1). If this fails, the node can be set 
to 0, otherwise, it must remain as X. Since the number 
of X values is bounded by the circuit size, at most a 
linear number of calls to Justify is necessary for the 
exact simulation. 

This idea is incorporated in the exact logic simu- 
lation algorithm shown in Figure 4. After the 3-value 
simulation, the algorithm collects all gate output nodes 
with X value that are in the cone of the specified out- 
puts. These are tested for a constant value as above in 
order of their level from input to output. Whenever a 
node value changes, deterministic implications of the 
change are propagated to other nodes in the circuit and 
the list of remaining X nodes is pruned accordingly. In 
the final step, the algorithm checks for any discrep- 
ancies in the values at a primary output between the 
specification and exact simulation. If this happens a 
design error is detected independent of the settings of 
X values on the input. 

Example: The circuit shown in Figure 3 will be 
used as a running example. For the input cube shown 
in the figure, assume both outputs are specified to be 1. 
Figure 3(a) shows the signal values after the (inexact) 
3-value simulation upon which the following sorted list 
L will be created: 

It is possible to justify both 0 and 1 on k. Therefore 
this node retains its X value. The same is true of node 
1. However, J u s t i f y ( m ,  0) fails therefore m is assigned 
constant 1 and by deterministic implication, lines n, p ,  
q, T ,  s, t ,  U ,  and v are also assigned 1. As a result, the 
list L is pruned and becomes null, completing the while 
loop. The result is shown in Figure 3(b). The primary- 
output check in the last step succeeds as the PO values 
after exact simulation match the specification, hence 
no design errors are revealed at this stage. 

Logic-Simulate(C:circuit, B:input cube) { 

3-valuesimulate(C,B); 

For all the gates in the cone of specified outputs { 
Create a list L of gate output nodes with X value 
sorted in order of their level from input to output 

} 

While L is non-empty{ 

Remove node N at the head of the list L 

If -.Justify(N, 0) then { 
Assign 1 to N;  
Carry out deterministic implications and update L; 

1 
Else If -Justify(N, 1) then { 

Assign 0 to N; 
Carry out deterministic implications and update L; 

1 
1 
For each primary output 2 with specified value U { 

If -Justify(Z,C) then report design error 
1 

1 

Fig. 4. Algorithm: A high-level description of the logic simula- 
tion algorithm. 

3.2 Border Gate Identification 

Based on the results of simulation, the gates with 
constant output and at least one X input are identified 
as border gates. By definition, the constant output is 
the dominating value for the gate. For the example in 
Figure 3(b) three border gates are identified, namely, 
the OR gates with output lines m, s, and U. 

3.3 Fault List Generation 

As discussed in Section 2, it is enough to consider 
the faults in border gates and certain fanout stems. 
The specific faults are determined as follows: 

(a) For a border gate, if there is just one dominat- 
ing input, say, p with value U, then we include the fault 
S = { p }  and Es = { p  = v} (i.e., E in stuck-at model 
notation). If there is more than one dominating in- 
put, we need not include any faults at the border gate 
because no singleton fault can be propagated through 
the gate. If there are no dominating inputs, we must 
have X inputs that are correlated to produce a con- 
stant value at the gate output. In this case, we include 
the fault S = { p }  and Es = E for each X input p .  

(b) For each constant fanout stem s (with binary 
value v) that is in the input cone of a dominating value 
in a border gate, we include the fault S = {s} and 
ES =E.  
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(a) Line Constrained to 0 (b) Line Constrained to 1 

Fig. 5. Structural change to constrain input value. 

For the three border gates in the running example, 
the following faults will be included: ko, lo ,  40, T O ,  and 
uo. In addition, because the constant-valued stem m 
is in the input cone of q and T ,  the fault mo will also 
be in the fault list. 

3.4 Constrained Test Generation 

The test generation must be carried out under in- 
put constraints; only the unspecified values in the in- 
put cube can be changed during test generation. It 
is possible to modify a PODEM-like algorithm that 
searches for a solution on a decision tree to allow 
branching and backtracking only on the unconstrained 
inputs. We accomplish the same goal by running a 
standard test generator 1121 on a modified circuit that 
constrains the inputs internally (see Figure 5). A 
greedy approach is used to cover as many faults as pos- 
sible by a single test vector before considering another 
vector in the input cube. 

For the running example, the fault ko is detected by 
the test cube ubcdefg = 110110X which also detects 
mo. Further expanding the test cube to 1101100 de- 
tects the fault U O .  Similarly, the test 1111100 detects 
lo and also detects mo and U O .  The faults qo and TO on 
the fault list are not detectable by any vector in the 
original input cube. Therefore only two vectors in the 
input cube cover all the faults detectable by all eight 
vectors included in the cube. There are 12 such faults: 
~ 0 , ~ 0 , ~ 1 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 .  

3.5 Test Compaction 

Most available ATPG tools provide the ability to 
compact the generated test set, e.g., by reverse fault 
simulation. The test vectors produced for an i/o pair 
may be compacted further by using this facility. In the 
running example no further compaction of the gener- 
ated test set is possible. 

4. Experimental Results 

We implemented the test generation described in 
the last section and conducted experiments using a 
representative sample of 30 industrial PLA circuits 
included in the release of the Espresso tool [13]. In 
this section, we describe the experimental process and 
present the results. 

As previously described, our approach requires 
both a structural representation and a behavioral rep- 
resentation for the circuit under test. Our experiment 
begins with the generation of these necessary specifi- 
cations. The behavioral specifications were produced 
using the Espresso tool to  generate the on-set and the 
off-set from the original PLA definition. The struc- 
tural representations were produced using SIS [13] to 
simplify and synthesize the circuits from the original 
PLA definition. The synthesis step used the rugged 
script. Technology mapping was limited to four-input 
simple gates in a BDNET format. Finally, we convert 
the BDNET format to ISCAS-89 netlist format for use 
as the structural specification. 

Table I provides the characteristics of the 30 cir- 
cuits and summarizes the test generation results. Fol- 
lowing the name of the circuit, the next three columns, 
from left to right, show the number of primary in- 
puts, the number of primary outputs, and the number 
of i/o pairs in the minimized behavioral specification 
obtained using Espresso. The column labeled “Avg. 
Fully Specified Vectors per 1/0 Pair” gives the aver- 
age size of a pseudo-exhaustive test for an i/o pair. The 
entries in this column were computed as follows. First, 
we determined the relevant inputs of each i/o pair as 
those primary inputs which occur in the cones of influ- 
ence of the specified outputs and counted the number 
of don’t care inputs, say m, among them. Then, 2” is 
the length of an exhaustive test for the given i/o pair. 
The fifth column, labeled “Avg. Effective DCs per 1/0 
Pair” is the logarithm to the base 2 of column 6. The 
eighth column, labeled “Total Tests” shows the number 
of tests obtained with our algorithm to cover all of the 
functionally non-redundant faults. The same number 
is shown normalized in column 7 labeled “Avg. Tests 
per 1/0 Pair”. This can be compared with the num- 
ber in column 6.  Finally, the last column shows the 
inverse of the fraction of pseudo-exhaustive patterns 
used in our test, i.e., avg-fully-spec-vector-per-io/Avg- 
tests-per-io. 

The average number of tests per i/o cube for all 
30 circuits is just 4.41. This can be compared with 
the corresponding number, 7.81E + 09, for the fully 
specified vectors per i/o pair. We note that even in 
cases where the average number of don’t cares per i/o 
pair is very large, e.g. the circuits xpurc and ibm, the 
number of tests per i/o pair is still quite small. 

We observed in Section 2 that because each i/o 
pair is considered independently for test generation, 
a given line in the circuit is likely to be observed mul- 
tiple times with differently specified inputs. This was 
verified for the circuit chkn as follows. The circuit was 
fault simulated for the 2411 unique tests generated by 

Paper 20.3 
543 



TABLE I 
R,ESULTS FOR PLA CIRCUITS. 

0.9 

PLA 
Name 
mish 
misg 
i bm 
misj 
xparc 

x6dn 
in3 
in6 
b3 
b4 
in4 
exep 
in7 
chkn 
vtxl 
xldn 
x9dn 
in5 
vg2 
t l  
t s l O  
shift 
bcO 
in2 
t2 
a12 
alcom 
b12 
bcd 

jbp 

- - RandomTesl - Border Gats T a l  
- 

._ 

# 
PIS 
94 
56 
48 
35 
39 
35 
38 
34 
33 
32 
33 
32 
29 
26 
29 
27 
27 
27 
24 
25 
21 
22 
19 
21 
19 
17 
16 
15 
15 
16 

- 

- 

- 
# 

POS 
43 
23 
17 
14 
73 
57 
5 

29 
23 
20 
23 
20 
63 
10 
7 
6 
6 
7 

14 
8 

23 
16 
16 
11 
10 
16 
46 
38 
9 

38 

- 

- 

# 
1/0 Pairs 

158 
120 
499 
55 

3226 
402 
310 
34 1 
317 
62 1 
680 
603 
643 
142 
370 
305 
305 
315 
348 
304 
210 
262 
200 
688 
399 
180 
141 
90 
72 

1590 

Avg. Eff. 
DCs per 
1/0 Pair 

3.52 
11.24 
37.73 
9.20 
30.98 
13.74 
31.01 
23.47 
20.17 
24.56 
20.50 
24.66 
22.48 
16.16 
19.85 
21.83 
21.83 
21.69 
15.61 
19.69 
7.12 
14.58 
6.67 
13.25 
13.73 
8.82 
7.19 
3.30 
6.03 
12.05 

our method; no faults were dropped during simula- 
tion so we could count how many times each individual 
fault was detected by the tests. Next, for comparison 
purposes, random tests of equal length were generated 
as follows. For each i/o pair, the don't care inputs 
were filled randomly as many times as the number of 
tests produced by our method for that i/o pair and 
the resulting vectors were accumulated. A duplicate 
vector was detected as it was produced and replaced 
by another randomly-generated vector. This process 
ensured that the random tests were functional and of 
equal length for each i/o pair and overall. 

The results are shown in Figure 6 for the two kinds 
of tests. Along the x-axis is the detectability of a fault 
for each test, defined as the number of times the fault 
is detected by the test. This number is normalized to 
lie between zero and one by dividing it by the common 
test length. The y-axis shows F ( z ) ,  the fraction of the 
faults with detectability greater than or equal to the 
value indicated by the x-value. Both curves start at 
(0,l). However, in between, they exhibit markedly dif- 
ferent behavior, particularly, in the initial parts which 
correspond to faults with low detectability. Here, the 
tests generated by the border-gate approach are seen 
to catch low-detectability faults much more frequently 

Avg. Fully 
Spec. Vectors 
per 1/0 Pair 

l.lE+Ol 
2.43+03 
2.3E+ll 
5.93+02 
2.1E+09 
1.4E+04 
2.2E+09 
1.2E+07 
1.2E+06 
2.53+07 
1.5E+06 
2.63+07 
5.83+06 
7.33+04 
9.53+05 
3.73+06 
3.7E+06 
3.43+06 
5.OE+04 
8.53+05 
1.4E+02 
2.53+04 
1.OE+02 
9.8E+03 
1.4E+04 
4.53+02 
1.5E+02 
9.9E+00 
6.6E+01 
4.23+03 

Avg. Tests 
per 1/0 Pair 

0.92 
1.13 
3.77 
1.15 

11.97 
5.14 
4.66 
4.39 
4.35 
6.0 

4.29 
6.25 

12.69 
2.77 
6.88 
3.12 
3.12 
3.00 
4.87 
2.67 
3.12 
4.10 
4.86 
7.83 
5.25 
3.14 
1.82 
1.42 
2.17 
5.55 

Total 
Tests 

145 
136 

1882 
63 

38609 
2065 
1446 
1497 
1380 
3763 

29116 
3767 
8157 
394 

2545 
953 
953 
945 

1696 
812 
656 

1074 
971 

5389 
2094 
565 
257 
128 
156 

8824 

- 

- 

Reduction 
l.lE+Ol 
2.1E+03 
6.1E+10 
5.1E+02 
1.7E+08 
2.73+03 
4.73+08 
2.73+06 
2.73+05 
4.1E+06 
3.43+05 
4.1E+06 
4.53+05 
2.63+04 
1.3E+05 
l.lE+06 
l.lE+06 
l.lE+06 
1.OE+04 
3.1E+05 
4.4E+01 
6.OE+03 
2.OE+01 
1.2E+03 
2.63+03 
1.4E+02 
8.2E+01 
6.9E+00 
3.1E+01 
7.53+02 

0.7 ""I 

Fig. 6. Detectability of border-gate vs. random tests. 

than the random tests. 

5. Related Prior Work 

The key idea of our paper, setting input don't cares 
to maximize path sensitization in the circuit, is closely 
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related to earlier papers on automatic test pattern gen- 
eration for manufacturing faults. 

RAPS (Random Path Sensitization) [14] and 
SMART [15] have a similar goal of generating tests that 
deliberately sensitize a large number of signal paths 
towards the primary outputs (POs) without targeting 
specific faults. Unlike this paper, however, they as- 
sume no primary input constraints. 

The RAPS test generator repeatedly computes one 
new test vector by executing the following steps to gen- 
erate a test set which is better than a random set, 
by analyzing the circuit structure. To generate a test 
vector, it iteratively sets one unspecified (X) PO to a 
randomly selected binary value and justifies. At this 
point, if the circuit still has gate inputs with the X 
value at this point, one is randomly selected, set to the 
non-controlling value (relative to the gate driven by it) 
and justified. Then the next iteration begins if at least 
one unspecified PO remains. 

SMART is an extension of RAPS. The difference 
between RAPS and SMART comes from exploiting 
“restart-gates” to extend the critical paths. Consider 
the circuit simulation of a partially specified input. A 
gate is called a “restart-gate” if it has one controlling 
input, its output is critical, and none of its inputs are 
critical. This can happen only if some of the inputs 
to the gate are unspecified and the output is speci- 
fied. Thus, restart-gates are border-gates but the con- 
verse is not true. For example, gate C in Figure 2 is a 
border-gate but not a restart-gate because its output 
is not critical. RAPS takes every gate with unspeci- 
fied inputs and attempts to justify the corresponding 
non-controlling value on such lines. 

SMART, like RAPS, proceeds in an iterative fash- 
ion. It selects one of the unspecified POs and sets it 
to a randomly selected value (actually it discriminates 
between 0 and 1 when information from preprocessing 
suggests that one of them has a better chance to detect 
faults). Subsequently, it justifies that value. At this 
stage it adds a feature which is not present in RAPS. 
It takes one restart gate at a time and attempts to 
justify the non-controlling value on all the unspecified 
inputs of the gate. The success in justification leads to 
extension of the critical path to the controlling input 
of the gate. After all restart gates are considered the 
next iteration is started. The process terminates if no 
additional justification is possible. 

The approach presented in this paper is similar to 
the SMART approach in using border (restart) gates 
to help extend sensitized paths. The main difference is 
that SMART ignores multi-branch sensitization paths, 
which appear more frequently in larger and more com- 
plex designs. The multiple branches may pass through 

the same gate when gates have more than one con- 
trolling input so such cases cannot be ignored. Fur- 
ther, treating one restart gate individually independent 
of the others cannot handle the sensitized paths with 
branches in different restart gates. 

Another similarity between PODEM-X [16], FAST, 
and our algorithm is “dynamic compaction” which is 
referred to in this paper as “constrained test gener- 
ation”. The idea behind it is to set the X-bit(s) of 
the PI(s) of a test-vector i (which has some unspeci- 
fied bits) so that more faults might be detected. Since 
only the X bits are changed to binary bits, the new 
(more specified) test vector j detects all the faults that 
were detected by i. FAST uses the same approach as 
SMART and generates j by justifying non-controlling 
values on the unspecified inputs of restart gates. On 
the other hand, in the present approach we start from 
i (input of the i/o pair) and attempt to generate as 
few fully specified vectors from i as possible which 
can collectively test all faults of C,. These test vec- 
tors are generated from i by a test generator which is 
restricted from changing the values of the signals with 
binary values. Unlike our approach (of finding relevant 
faults from border-gate analysis) RAPS and SMART 
generate test vectors from the initial input cube by 
extending the sensitization paths (generally without 
consideration to order and completeness). 

Finally, we mention an earlier work with a com- 
plementary focus, namely, determining the maximum 
areas of desensitization for a given input vector. This 
problem is important when fault simulation is done by 
injecting single faults in the good circuit. The fast fault 
simulator (FFSIM) in PODEM-X uses a technique, 
called X-propagate [17] that allows rapid evaluation 
of gates which are unobservable. The X-algorithm [18] 
does the same using a more sophisticated approach. 

6. Conclusion 

The fault model and the border-gate approach to 
test generation allows a unified perspective on tests to 
detect design errors and manufacturing faults. Test 
generation is carried’ out independently for each i/o 
pair with the goal of covering all the faults in the cho- 
sen model that can be detected by any input vector in 
the input cube. The number of such vectors depends 
on the number of don’t cares in the input cube. As 
the results on the benchmark circuits show, this num- 
ber can be very large, yet, the same fault coverage is 
achievable with only a small subset of these vectors. 

As the tests are independently generated for each 
i/o pair, each line in the circuit is likely to be observed 
multiple times in the context of different input settings. 
Recent research shows that the multiple observations 
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improve the coverage of non-modeled faults in manu- 
facturing testing [19] We have found that typically the 
test set size increased by a factor of 3 to 30 over that 
generated by ATPG. However, because our tests are 
functional they can be applied at a much higher clock 
rate. 

The multiple observations should also improve the 
coverage of design error faults. We intend to verify this 
for our test vectors by means of a new simulator [20] 
which is able to  evaluate coverage of both design error 
and manufacturing faults. 
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