
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2011

Directed Test Suite Augmentation Directed Test Suite Augmentation

Zhihong Xu
University of Nebraska-Lincoln, zxu@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Xu, Zhihong, "Directed Test Suite Augmentation" (2011). CSE Conference and Workshop Papers. 207.
https://digitalcommons.unl.edu/cseconfwork/207

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/188135777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/207?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages

Directed Test Suite Augmentation

Zhihong Xu
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0115, U.S.A.

zxu@cse.unl.edu
http://cse.unl.edu/∼zxu

ABSTRACT
Test suite augmentation techniques are used in regression
testing to identify code elements affected by changes and
to generate test cases to cover those elements. Whereas
methods and techniques to find affected elements have been
extensively researched in regression testing, how to generate
new test cases to cover these elements cost-effectively has
rarely been studied. It is known that generating test cases is
very expensive, so we want to focus on this second step. We
believe that reusing existing test cases will help us achieve
this task. This research intends to provide a framework for
test suite augmentation techniques that will reuse existing
test cases to automatically generate new test cases to cover
as many affected elements as possible cost-effectively.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

Keywords
Regression testing, test suite augmentation, empirical stud-
ies

1. INTRODUCTION
Software engineers use regression testing to validate soft-

ware as it evolves. To do this cost-effectively, they often
begin by running existing test cases. Existing test cases,
however, may not be adequate to validate the code or sys-
tem behaviors that are present in a new version of a system.
Test suite augmentation techniques (e.g., [1, 18, 23]) address
this problem, by identifying where new test cases are needed
and then creating them.

Despite the need for test suite augmentation, most re-
search on regression testing has focused instead on running
existing test cases. There has been research on approaches
for identifying affected elements (code components poten-

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

tially affected by changes) (e.g., [1, 16, 18]), but these ap-
proaches do not then generate test cases, leaving that task
to engineers. There has been research on automatically gen-
erating test cases given pre-supplied coverage goals (e.g., [7,
19]), but this research has not attempted to integrate the
test case generation task with reuse of existing test cases.

In principle, any test case generation technique could be
used to generate test cases for a modified program. We
believe, however, that test case generation techniques that
leverage existing test cases hold the greatest promise where
test suite augmentation is concerned. This is because ex-
isting test cases provide a rich source of data on potential
inputs and code reachability, and existing test cases are nat-
urally available as a starting point in the regression testing
context. Further, recent research on test case generation
has resulted in techniques that rely on dynamic test exe-
cution, and such techniques can naturally leverage existing
test cases.

Given the foregoing discussion, our research has an overall
goal of providing a framework for test suite augmentation
that supports this task cost-effectively for different kinds of
programs. It will represent a set of techniques that will not
only integrate test case generation techniques with existing
test cases, but also consider important factors that affect
the cost-effectiveness of the augmentation process.

It is important to investigate our approach on different
types of programs since program characteristics may impact
how well various techniques work. Therefore a major ele-
ment of our work will be empirical investigation of augmen-
tation techniques on real software systems. We believe the
results will offer useful suggestions for practical use. This
research will also offer incentives for researchers who work
on test case generation techniques to consider reusing test
cases to improve these techniques themselves.

2. BACKGROUND AND RELATED WORK
2.1 Test Suite Augmentation

Let P be a program, let P ′ be a modified version of P , and
let T be a test suite for P . Regression testing is concerned
with validating P ′. To facilitate this, engineers often begin
by reusing T , and a wide variety of approaches have been
developed for rendering such reuse more cost-effective via
regression test selection (RTS) techniques (e.g., [13, 17]) and
test case prioritization techniques (e.g., [8]).

Test suite augmentation techniques, in contrast, are not
concerned with reuse of T . Rather, they are concerned with
the tasks of (1) identifying affected elements (portions of P ′

or its specification for which new test cases are needed), and

Copyright is held by the author/owner(s).
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05

1110

2011 33rd International Conference on Software Engineering (ICSE)
Digital Object Identifier: 10.1145/1985793.1986008

then (2) creating or guiding the creation of test cases that
exercise these elements.

Various algorithms have been proposed for identifying af-
fected elements in software systems following changes. Some
of these [3] operate on levels above the code such as on
models or specifications, but most operate at the level of
code, and in this paper we focus on these. Code level tech-
niques [16] use various analyses, such as slicing on program
dependence graphs, to select existing test cases that should
be re-executed, while also identifying portions of the code
that are related to changes and should be tested. However,
these approaches do not provide methods for generating ac-
tual test cases to cover the identified code.

Some recent papers [1, 14, 18, 15] specifically address test
suite augmentation. Two of these [1, 18] present an ap-
proach that combines dependence analysis and symbolic ex-
ecution to identify chains of data and control dependencies
that, if tested, are likely to exercise the effects of changes. A
potential advantage of this approach is a fine-grained iden-
tification of affected elements; however, the papers present
no specific algorithms for generating test cases. A third pa-
per [14] presents an approach to program differencing using
symbolic execution that can be used to identify affected el-
ements more precisely than [1, 18], and yields constraints
that can be input to a solver to generate test cases for those
requirements. However, this approach is not integrated with
reuse of existing test cases. In [15], dynamic symbolic ex-
ecution (also called concolic testing) is used to generate a
test input to address a single change. To some extent this
approach reuses test cases to generate new ones, but in this
scenario only one change in a program is considered.

2.2 Test Case Generation
While in practice test cases are often generated manu-

ally, there has been a great deal of research on techniques
for automated test case generation. For example, there has
been work on generating test cases from specifications, from
formal models and by random or quasi-random selection of
inputs (e.g., [5, 20]).

In this work we focus on code-based test case generation
techniques, many of which have been investigated in prior
work. Among these, several techniques (e.g., [6, 10]) use
symbolic execution to find the constraints, in terms of input
variables, that must be satisfied in order to execute a target
path, and attempt to solve this system of constraints to
obtain a test case for that path.

While the foregoing test case generation techniques are
static, other techniques make use of dynamic information.
Execution-oriented techniques [11] incorporate dynamic exe-
cution information into the search for inputs, using function
minimization to solve subgoals that contribute toward an in-
tended coverage goal. Goal-oriented techniques [9] also use
function minimization to solve subgoals leading toward an
intended coverage goal; however, they focus on the final goal
rather than on a specific path.

There is another kind of dynamic test generation tech-
niques that uses evolutionary or search-based approaches
(e.g., [2, 7, 12]) such as genetic algorithms, tabu search, and
simulated annealing to generate test cases. Other work [4,
19] combines concrete and symbolic test execution to gener-
ate test inputs. This second approach is known as concolic
testing or dynamic symbolic execution, and has proven useful
for generating test cases for C and Java programs.

Figure 1: Overview of research

3. GOALS AND APPROACHES
The overall goal of this research is to provide a frame-

work for test suite augmentation techniques that supports
the augmentation process cost-effectively. Figure 1 provides
an overview of the research. From the research we will be
able to select the proper factors to use or tune for particular
programs.

3.1 Activities
To achieve this goal, we are performing the following four

activities, which are mapped to the boxes in Figure 1. After
enumerating these activities, we elaborate on how we expect
to complete each activity.

1. Identify factors that could affect the augmentation pro-
cess

2. Evaluate the impacts of all factors on different test
case generation techniques

3. Improve the existing techniques and develop new tech-
niques by considering the impact of different factors

4. Empirically study techniques on real programs

For the first activity, the most important factor is the test
generation techniques. There are many test case generation
techniques that we could consider, but the techniques we will
use are dynamic ones that could leverage exiting test cases,
such as genetic algorithms and concolic testing. We will
review existing literature on test case generation techniques,
and choose appropriate ones to study. This corresponds to
the first box “Test case generation techniques” in Figure 1.
For the other factors, we will study programs to identify
the factors related to the program structure that may affect
the augmentation process, such as the order of the targets
in the program’s flow graph, and the types of changes that
occur during evolution. We also need to study test suites to
identify the factors related to the existing test suites that
may affect the augmentation process. These include factors
such as variance in coverage and diversity. Factors of both
types may impact the cost-effectiveness of the whole process.
This corresponds to other boxes in the “Factors” portion of
Figure 1.

After identifying techniques and factors, we will investi-
gate them empirically. Since different techniques have dif-
ferent attributes, we expect the identified factors to have

1111

different impacts on the techniques, that impact the whole
process. In order to achieve this, we will consider all mean-
ingful and necessary combinations of techniques and factors
and evaluate the combinations on several types of object
programs. In our controlled experiments, we want to choose
some programs with a lot of test cases that can help form
different initial test suites that we can use to study the re-
lated factors. As independent variables we will use combi-
nations of techniques and factors. As dependent variables
we will use measures of efficiency (e.g., execution time) and
effectiveness (e.g., structural coverage or fault detection ef-
fectiveness). The results may not only provide suggestions
for practical use, but also give us some insights toward the
third activity. This corresponds to the “Analyze the impact
of factors on test suite augmentation” box in the “Empirical
Studies” portion of Figure 1.

By looking at the results from Activity 2, we may find that
different techniques have different strengths under particu-
lar conditions. For different programs and different types of
changes, we will be able to find the best way to tune the tech-
niques and apply them on those programs cost-effectively.
Also, we may find ways to combine these techniques to fully
take advantage of their strengths and achieve the best per-
formance. In this sense, we will create some new techniques
including the consideration of the factors. This corresponds
to the “Test case generation techniques” box in “Factor” por-
tion and the cloud of Figure 1.

We will apply these techniques on a selection of non-trivial
programs. This corresponds to the “Validate hypotheses on
real programs” of ”Empirical studies” section of Figure 1.

Finally by looking at the results from our empirical stud-
ies, we will be able to select cost-effective techniques for
different programs for test suite augmentation, which is the
goal of the research.

3.2 Scope
The research just defined will be scoped in a number of

ways to make its completion feasible in a reasonable amount
of time.

We will limit the number of techniques and number of
factors that will be investigated in the first two activities.
Adjustments to these activities may be made as we acquire a
better understanding of adapting, creating, and empirically
evaluating techniques; however, at this time, we expect to
identify a minimum of two techniques in Activity 1. We also
expect that a minimum of three factors will be identified to
be influential on test suite augmentation processes. Since
we have limited number of techniques and factors, there are
six combinations to be evaluated in Activity 2. We also
expect that at least two hybrid techniques will be developed
in Activity 3. We will validate our hypotheses on at least
two non-trivial programs in Activity 4.

4. PRELIMINARY WORK
We have completed preliminary work towards each of the

first two activities listed in Section 3. We briefly discuss that
work here.

4.1 Applicable Test Case Generation
Techniques

We have identified two techniques: genetic algorithms and
concolic testing, which are appropriate for our study pur-
pose, since both are dynamic techniques and also can use

existing test cases to generate more new test cases. Reusing
test cases [24] when using genetic algorithm has been ap-
plied to duplicate the coverage of an existing test suite that
is not for regression testing, so we are the first to consider
reusing test cases in genetic algorithm to improve the cover-
age of the old test suite on the new version of the program.
Concolic testing usually starts with a random test case and
works with only one test case at a time. We are also the first
to consider reusing test cases in concolic testing to improve
the coverage of an existing test suite on the new version of
the program. We have used concolic testing for augmenta-
tion in a simple way [23] and found it was more effective
and more efficient than using concolic testing on the new
program from scratch.

4.2 Factors
We have also identified several factors that could influ-

ence the test suite augmentation process by affecting the
techniques we mentioned above. The first factor is the man-
ner in which existing test cases and newly generated test
cases are reused. Since we begin augmentation with existing
test cases and then we generate some new test cases during
the process, picking the right subset for each technique to
use is important, since having more test cases to use may
improve the effectiveness, but at that same time may cost
more. The second factor is the order in which the targets
are considered. When we work on covering some targets
we may incidentally cover other targets or we may generate
some useful test cases for use on later targets. In both cases,
the right order can help improve the performance. The third
factor is the characteristics of the initial test suites. If the
initial test suites have higher coverage on the new version
of the program, we will require less effort to augment them.
Also different sizes and diversity of the initial test suites
will bring the test generation techniques different power in
augmentation and then affect the cost-effectiveness.

4.3 Evaluation
To evaluate the impact of the factors identified above on

the test case generation techniques and the differences be-
tween the two test case generation techniques in the test
suite augmentation context, we conducted two empirical
studies. In the first study, we used a genetic algorithm
and examined only one factor, on a single subject [21]. In
this study, we found that different methods of reusing test
cases resulted in different coverage and cost, which meant
the test reuse approach had impact on the cost-effectiveness
of test suite augmentation when we use genetic algorithm.
To complete our study, we conducted a more thorough study
considering two techniques and the factors mentioned above
together [22]. In the second study, we used two test reuse
approaches: old, which is only using the test cases in the
existing test suite, and old plus new, which is using not only
the test cases in the existing test suite but also newly gen-
erated test cases from working on previous targets, and two
different orders: depth first ordering, which tries to consider
a target only after its predecessors have been considered,
and random order. We evaluate their impact on the two
different techniques mentioned above.

The two factors we considered had different impacts on
the two test generation techniques. The test reuse approach
had more impact on concolic testing. For both techniques,
old plus new cost more, but improved the effectiveness of

1112

only concolic testing. Order of targets had more impact on
the genetic algorithm. The order had no impact on effective-
ness for either technique since we aimed to cover all targets
anyway, but it improved the efficiency of the genetic algo-
rithm. If these results generalize, we would suggest that in
practice we should use depth first ordering and old test cases
when we use a genetic algorithm for augmentation while we
should use random order and old plus new test cases when
we use concolic testing. From our study, there are impli-
cations for researchers. Empiricists need to specify target
order and test reuse approach. Additionally, research into
other orders and approaches may be useful.

5. EXPECTED CONTRIBUTIONS AND
RESEARCH PLAN

Through the activities described in Section 3, this research
is expected to make the following contributions:

1. Bring the notion of test reuse into test suite augmen-
tation for regression testing.

2. Identify several factors which could impact the cost-
effectiveness of the augmentation process.

3. Give researchers new insights into test suite augmen-
tation.

4. Develop a framework for test suite augmentation tech-
niques to enable them to work effectively and effi-
ciently.

In the future, we are going to complete the activities listed
in Section 3.1. First, we are going to experiment on addi-
tional larger applications to check if the results we have now
are generalizable. Second, we will also study the other fac-
tors more closely, such as types of programs. Third, we are
going to improve the existing techniques by considering the
factors using the results from empirical studies. Fourth, we
will investigate various programs to determine the strengths
and weaknesses of techniques and find ways to combine them
to build up some hybrid techniques. Fifth, we will apply
these techniques on some real programs to see how they
work. Finally, a framework for test case generation tech-
niques will be provided to help engineers choose techniques
appropriate for different programs.

6. REFERENCES
[1] T. Apiwattanapong, R. Santelices, P. K. Chittimalli,

A. Orso, and M. J. Harrold. Matrix:
Maintenance-oriented testing requirements identifier
and examiner. In Test.: Acad. Ind. Conf. Pract. Res.
Techn., pages 137–146, Aug. 2006.

[2] A. Baresel, D. Binkley, M. Harman, and B. Korel.
Evolutionary testing in the presence of loop-assigned
flags: a testability transformation approach. In Proc.
Int’l. Symp. Softw. Test. Anal., July 2004.

[3] S. Bohner and R. Arnold. Software Change Impact
Analysis. IEEE Computer Society Press, Los
Alamitos, CA, 1996.

[4] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. Exe: Automatically generating
inputs of death. In Proc. Conf. Comp. Comm. Sec.,
pages 322–335, Oct 2006.

[5] T. Y. Chen and R. Merkel. Quasi-random testing.
IEEE Trans. Rel., 56(3):562–568, 2007.

[6] L. Clarke. A system to generate test data and
symbolically execute programs. IEEE Trans. Softw.
Eng., 2(3):215–222, Sept. 1976.

[7] E. Dı́az, J. Tuya, R. Blanco, and J. Javier Dolado. A
tabu search algorithm for structural software testing.
Comp. Op. Res., 35(10):3052–3072, 2008.

[8] S. Elbaum, A. Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical studies.
IEEE Trans. Softw. Eng., 28(2):159–182, 2002.

[9] R. Ferguson and B. Korel. The chaining approach for
software test data generation. ACM Trans. Softw.
Eng. Meth., 5(1):63–86, Jan. 1996.

[10] A. Gotlieb, B. Botella, and M. Reuher. Automatic test
data generation using constraint solving techniques. In
Proc. Int’l. Symp. Softw. Test. Anal., Mar. 1998.

[11] B. Korel. Automated software test data generation.
IEEE Trans. Softw. Eng., 16(8):870–897, Aug. 1990.

[12] C. Michael, G. McGraw, and M. Shatz. Generating
software test data by evolution. IEEE Trans. Softw.
Eng., 27(12):1085–1110, Dec. 2001.

[13] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In Proc. Int’l. Symp.
Found. Softw. Eng., Nov. 2004.

[14] S. Person, M. B. Dwyer, S. Elbaum, and C. S.
Păsăreanu. Differential symbolic execution. In Proc.
Int’l. Symp. Found. Softw. Eng., Nov. 2008.

[15] D. Qi, A. Roychoudhury, and Z. Liang. Test
generation to expose changes in evolving programs. In
Proc. Int’l Conf. on Auto. Soft. Eng., 2010.

[16] G. Rothermel and M. J. Harrold. Selecting tests and
identifying test coverage requirements for modified
software. In Proc. Int’l Symp. Softw. Test. Anal., 1994.

[17] G. Rothermel and M. J. Harrold. A safe, efficient
regression test selection technique. ACM Trans. Softw.
Eng. Meth., 6(2):173–210, Apr. 1997.

[18] R. Santelices, P. K. Chittimalli, T. Apiwattanapong,
A. Orso, and M. J. Harrold. Test-suite augmentation
for evolving software. In Proc. Int’l Conf. Auto. Softw.
Eng., Sept. 2008.

[19] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic
unit testing engine for C. In Proc. Int’l Symp. Found.
Softw. Eng., pages 263–272, Sept. 2005.

[20] W. Visser, C. Pasareanu, and S. Khurshid. Test input
generation with Java Pathfinder. In Proc. Int’l Symp.
Softw. Test. Anal., pages 97–107, July 2004.

[21] Z. Xu, M. Cohen, and G. Rothermel. Factors affecting
the use of genetic algorithms in test suite
augmentation. In Gen. Evol. Comp. Conf, July 2010.

[22] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and
M. Cohen. Directed test suite augmentation:
Techniques and tradeoffs. In Proc. Int’s Symp.
Found.of Softw. Eng., Nov. 2010.

[23] Z. Xu and G. Rothermel. Directed test suite
augmentation. In Proc. Asia-Pacific Softw. Eng.
Conf., Dec. 2009.

[24] S. Yoo and M. Harman. Pareto efficient
multi-objective test case selection. In Proc. Int’l.
Conf. Softw. Test. Anal., pages 140–150, July 2007.

1113

	Directed Test Suite Augmentation
	

	Directed test suite augmentation

