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Yunbo Wang Mehmet C. Vuran Steve Goddard
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Email: yunbowang@gmail.com, {mcvuran, goddard}@cse.unl.edu

Abstract—Future sensing applications call for a thorough evalu-
ation of network performance trade-offs so that desired guarantees
can be provided for the realization of real-time wireless sensor
networks (WSNs). Recent studies provide insight into the perfor-
mance metrics in terms of first-order statistics, e.g., the expected
delay. However, WSNs are characterized by the stochastic nature
of the wireless channel and the queuing processes, which result
in non-deterministic delay, throughput, and network lifetime. For
the design of WSNs with predictable performance, probabilistic
analysis of these performance metrics and their intrinsic trade-offs
is essential. Moreover, providing stochastic guarantees is crucial
since each deployment may result in a different realization.

In this paper, the trade-offs between delay, throughput, and
lifetime are quantified through a stochastic network design ap-
proach. To this end, two novel probabilistic network design
measures, quantile and quantile interval, are defined to capture
the dependability and predictability of the performance metrics,
respectively. Extensive evaluations are conducted to explore the
performance trade-offs in real-time WSNs.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been utilized in

many applications as both a connectivity infrastructure and

a distributed data generation network due to their ubiquitous

and flexible nature. Increasingly, a large number of WSN

applications are investigated with various real-time performance

requirements for different network services specific to low-

cost hardware and unpredictable environmental conditions [1].

These requirements necessitate a comprehensive analysis of the

real-time performance guarantees provided by the network.

In this paper, we explore and quantify the probabilistic

performance trade-offs in the design of real-time WSNs with an

anycast protocol. More specifically, we consider the trade-offs

between end-to-end communication delay, the network lifetime,

and throughput of the network. To quantify the dependability
of a probabilistic real-time network, a quantile-based measure

is defined, which defines the end-to-end delay or the network

lifetime that can be achieved with at least probability p.

Moreover, to quantify the predictability of a network, a quantile
interval-based measure is defined, which captures the difference

in end-to-end delay or network lifetime between two quantiles

p1 and p2. We aim to answer questions such as: how does

the maximum network lifetime change if we want to improve

the predictability of the end-to-end delay? If we require such

a network to operate for longer than 6 months with at least
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a probability of 0.8, what would be the minimum network

density to satisfy these requirements? What are the tradeoffs

between stochastic requirements of network lifetime and end-

to-end delay? To the best of our knowledge, this work is the first

to quantify the probabilistic performance trade-offs in WSNs.

The remainder of this paper is organized as follows: In

Sec. II, the models used to derive the stochastic end-to-end

delay and network lifetime for an anycast protocol is briefly

described, and related work is discussed. Then, in Sec. III, the

problem definition is provided and the evaluation methodology

is described. The evaluation results of the probabilistic analysis

models and our major findings are presented in Sec. IV. Finally,

the paper is concluded in Sec. V.

II. BACKGROUND AND RELATED WORK

Compared to first-order performance statistics, the proba-

bilistic distribution of a performance metric provides tools that

can be leveraged to design networks with desired performance

guarantees. In the following, we revisit the probabilistic dis-

tribution models that will be utilized in the remainder of the

paper, and then related work in this area is discussed.

A. Probabilistic Distribution Models

Consider a network where nodes are deployed randomly

in a 2-D circular plane of radius R, according to a Poisson

point process. Each node senses the physical events, generates

traffic with rate λlc, and then forwards the generated packets

to a sink, located at the center of the plane, through multi-hop

communications. Assume each node has a battery capacity, C.

In our previous work [17, 20], models are developed to analyze

the probability distribution of the end-to-end communication

delay and the network lifetime in such networks. These models

utilize a Discrete-Time Markov queueing model in node-level

analysis and fluid models in network-level analysis.

Consider that each node is identified according to its location

x, and its performance is affected by three design parameters:

the traffic generation rate, λlc, the network density, ρ, and the

duty cycle, ξ. The anycast communication technique, which

has been adopted in terrestrial, airborne, and underwater WSNs

[2, 6, 12, 15], is considered for its efficiency in both delay and

energy consumption. Moreover, a log-normal fading channel

model is employed [23]. Due to space limitations, this section

provides only a brief summary and overview of the models

developed in [17, 20].
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Fig. 1: (a) The layered structure of Markov chain for {Xn}
and (b) its absorbing version {Yn}.

1) Discrete-Time Markov Process based Node-level Models:
The node-level performance is modeled based on a Discrete-

Time Markov Process (DTMP), in which time is divided into

units of length Tu. Accordingly, the probability distributions

of the single-hop delay between a pair of nodes x and x′, the

single-node energy consumption for node x during t, and the

lifetime for node x are obtained.

In the DTMP-based analysis, each node is modeled according

to a first-come-first-serve queuing system, which is character-

ized by a Quasi-Birth-Death (QBD) process [10], as explained

in [20]. The discrete-time Markov chain (DTMC) used to

represent the QBD process, denoted as {Xn}, has a layered

structure, as shown in Fig. 1(a). Each layer m ∈ {0, . . . ,M}
contains the part of the chain where there are m packets in the

queue and each state represents the activity that is conducted

by the node during each time unit of Tu. First, the transition

probability matrix, QX , of the entire Markov chain {Xn} is

found. Then, the equilibrium state probability vector, π, for

{Xn} is calculated by solving πQX = π. The detailed Markov

chain construction and solution are described in [20].

The pdf and the cdf of the energy consumption during T (in

integer multiples of Tu) are [17, 19]

fEcp(T )(e) = πh(T̂ )(e)1, FEcp(T )(e) =
∫ e

0
fEcp(T )(ε)dε, (1)

respectively, where h(T̂ )(e) is given by (15) in [19], and 1
is the appropriately dimensioned column vector containing

all 1’s. It is also shown that when T is large, the total

energy consumption for communication and data processing

during T asymptotically approaches the Normal distribution

[17]. Moreover, the energy consumption during a given time

period, T , is expressed as the sum of three independent random

variables: energy consumption for sensing, communication and

processing, and an empirically determined zero-mean random

variable that captures the randomness in energy consumption

due to topology. Accordingly, the pdf of the total energy

consumption of a node at x is obtained by (2) in [19], and

the mean and variance of the asymptotic Normal distribution

are given by (22) and (23) in [19].

To derive the single-hop delay distribution, another DTMC,

{Yn}, which is an absorbing variant of {Xn}, is used. The pmf
of the single-hop delay for successful and failed communica-

tion, measured in number of time units, tsh, are given as

f s
tsh

(k) = αY P
k−1
Y tsY , f f

tsh
(k) = αY P

k−1
Y tfY , (2)

respectively, where αY , tsY , tsY , and αY are obtained according

to (14)-(16) in [20].

2) End-to-End Delay and Network Lifetime Distributions:
The network lifetime is defined as the duration before the

battery depletion of the first node. Based on the single-node

energy consumption analysis, the network lifetime is obtained

according to [17, 19].

With each hop modeled as a Geom/PH/1/M queue, the entire

network is considered as a queueing network. Based on the

single hop delay distribution for each pair of nodes, the end-

to-end delay is obtained using an iterative procedure [20]. These

models provide the cdf functions that are required for stochastic

network design.

B. Related Work

The trade-off between various performance metrics in WSNs

has been investigated previously. Applications involving mul-

tiple performance metrics are investigated in [3, 4, 14, 16,

21]. Specifically, the energy consumption and delay tradeoff

problems are studied in [3, 4, 14, 21]. Trade-offs between

connectivity, lifetime, and application-specific properties such

as spatial density of sensing points are investigated in [5].

These studies share the same goal of exploring trade-offs in

WSNs. However, only deterministic measures are considered

and stochastic characteristics of the performance metrics are

not captured.

Recent studies are focused on the probabilistic analysis of the

delay [7, 8, 11], throughput [9, 22] and lifetime [13]. While they

provide statistical information for the performance metrics of

concern, interrelationship among different performance metrics

are unexplored so far.

In our previous studies [17, 18, 20], the probability distri-

bution of the end-to-end delay, the network lifetime, and the

event detection delay are analyzed. While these studies lay the

ground for the analysis in this paper, the tradeoffs among the

performance metrics are left uninvestigated.

III. PROBLEM DEFINITION AND METHODOLOGY

We consider a network characterized by three design pa-

rameters: the network density ρ, the locally generated traffic

rate λlc, and the duty cycle ξ. The probabilistic performance

metrics include the end-to-end delay from a node at the edge

of the network to the sink, ED = te2e(R), and the network

lifetime, NL.
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A. Quantile-based Design Measures

Knowledge of the probabilistic distribution of performance

metrics provides extensive capabilities to network designers. To

leverage these stochastic models, stochastic design measures

are also necessary. To this end, we define two quantile-based

design measures.

Consider a particular probabilistic performance metric g(d),
which can be either the end-to-end delay ED or the network

lifetime NL, and is a function of a set of design parameters

d = {ρ, λlc, ξ}. We define the following design measures:

Definition 1: Network Dependability: The p-quantile of a

probabilistic performance metric g(d), denoted by g (p)(d), is

defined as the value of g(d) achieved with at least a probability

of p.

Definition 2: Network Predictability: The (p1, p2)-
quantile interval of a probabilistic performance metric

g , denoted by g (p1,p2)(d), (p1 ≤ p2), is defined as

the difference between g (p1)(d) and g (p2)(d), i.e.,

g (p1,p2)(d) = g (p2)(d)− g (p1)(d), (p1 ≤ p2).

The p-quantile is the value of the performance metric with

a probability guarantee, which can be denoted as the de-
pendability of the network. The (p1, p2)-quantile interval is

used to describe how the probabilistic performance metric is

“concentrated”, which can be denoted as the predictability
of the network. For example, consider the (0.1, 0.9)-quantile

interval of delay. A small interval suggests that for the majority

of the packets (packets except the fastest 10% and the slowest

10%), the delay is concentrated in a small region between the

0.1-quantile and the 0.9-quantile. Thus, the delay performance

of the network is easier to predict.

The p-quantile and (p1, p2)-quantile interval are directly

obtained from the cdf s of corresponding performance metrics.

Given a probabilistic metric g(d), and its cdf Gg(d)(g), the

p-quantile and (p1, p2)-quantile interval are given by

g (p)(d) = G−1
g(d)(p), (3)

g (p1,p2)(d) = G−1
g(d)(p2)−G−1

g(d)(p1), (4)

respectively, where Gg−1(d)(g) is the inverse cdf. Obtain-

ing the closed-from inverse function for Gg(d)(g) in prac-

tice may be infeasible. In our evaluations, a series of tuples

(g1, p1), (g2, p2), ... are obtained from the cdf Gg(d)(g) based

on models described in Section II-A. Then, G−1
g(d)(p) is obtained

using spline interpolation.

B. Network Design Problem Formulation

Using the p-quantile and (p1, p2)-quantile interval measures,

network design problem can be defined based on the type of

objective function. More specifically, we consider two types of

problems, where the objective function is a quantile measure

or a quantile interval measure. Accordingly, the network design

problem can be formulated as follows.

1) Quantile Objective Optimization: In this type of opti-

mization problem, the objective function is the p-quantile of one

of the probabilistic metrics, where p is an application-specific

probability threshold:

min
d

ED(ped)(d) OR max
d

NL(pnl)(d) , (5)

given:

ED(ped) ≤ EDq; NL(pnl) ≥ NLq, (6)

ED(ped1,ped2) ≤ EDv; NL(pnl1,pnl2) ≤ NLv, (7)

TP ≥ TPq; di1 ≤ di ≤ di2, (di ∈ d), (8)

where the probabilistic and deterministic constraints are given

in (6)-(8), TP is the deterministic throughput, and (di1, di2) is

the range for the design parameter di.
2) Quantile Interval Objective Optimization: In the second

type of optimization problem, the objective function is the

(p1, p2)-quantile interval of one of the probabilistic metric,

where p1 and p2 are the application-specific probability thresh-

olds:

min
d

ED(ped1,ped2)(d) OR min
d

NL(pnl1,pnl2)(d) , (9)

given: constraints in (6) - (8).

C. Methodology

The solution to the above optimization problems is non-

trivial because the performance measures are not convex func-

tions and they cannot be converted to convex functions easily.

For example, it can observed that the the 0.8-quantile of the

network lifetime is non-convex with respect to the network

density. The non-convexity of the solution space precludes the

straight-forward use of standard optimization techniques, such

as ILP. As our goal here is to study the stochastic performance

tradeoffs in the design of WSNs, we use the following heuristic-

based technique to solve the optimization problem and leave

closed-form solutions to future work.

For an optimization problem defined by (5) or (9), we utilize

a random initial search point methodology, where Nsearch

local-optimum searches are conducted. In each of the multiple

searches, the initial search point is determined by sequentially

choosing random points within the parameter space, until one

point falls within the feasible region. Starting from this point, a

derivative-based local optimum search is conducted. Then, the

global optimum is approximated by the best result in all the

Nsearch optimum results found by each of the local searches.

In the case when one or more of the local searches cannot

converge due to non-convexity, these search procedures are

terminated.

There are multiple benefits to utilizing this multiple-local-

search technique. First, the technique does not require any form

of prior knowledge about the topology and protocol. Second,

the technique can be easily implemented taking advantage of

multiple CPU cores or computers, since each of the local

searches is totally independent of each other, thus can be

executed in parallel. Finally, when Nsearch is large, the optimum

found by this technique is asymptotically the global optimum,

as the optimal solution eventually coincides with the local

optimum related to one of the random initial points. It is easy

to adjust the value of Nsearch, such that a trade-off can be

made between the accuracy of result and the computation time
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efficiency. We also point out that the exact solution to the

stochastic optimization problem is still an open issue and is

out of the scope of this paper.

IV. RESULTS

In this section, we first investigate the performance metrics;

delay, throughput, and lifetime, as a function of the design

parameters; traffic rate, network density, and duty cycle in

Section IV-A. Then, in Section IV-B, we provide our main

results for four key network design problems in WSNs through

the optimization methodology described in Section III. The

trade-offs between performance metrics are quantified.

The evaluations consider a network with a radius of R =
30m. The ranges of the design parameters in this study are as

follows. The network density varies from ρ = 0.004 to 0.1
nodes/m2; the traffic generation rate for each node ranges from

λlc = 0.0004 to 0.016 pkt/s; the duty cycle operation period is

10s, with a duty cycle ranging from 0.25 to 1. The time unit

is chosen as 0.25s.

The data packet size is lp = 50 bytes, whereas the beacon

message and the CTS response message have the same size of

lm = 22 bytes. The beacon transmission timeout is Tm = 10
s. The channel related parameters (refer to [23] for detailed

explanations) are listed as follows: the transmission power is

set to −15 dBm for all the nodes. The threshold radius rth is

set to 10 m, within which all nodes only transmit packets to

the sink. The SNR threshold is set to ψth = 10 dB. Parameters

for the channel are: Pn = −105 dBm, PL(D0) = 52.1 dB,

D0 = 1 m, η = 3.3, and σs = 5.5. This network setting results

in multi hop paths of 3 - 10 hops.

A. Performance Metrics and Design Parameters

In the following, the analytical results of the relationship

between performance metrics and design parameters are pre-

sented based on the models developed in [17, 20]. Our goal

here is to investigate the characteristics of performance metrics

within the parameter space and identify key trends. To the best

of our knowledge, these performance metrics have not been

investigated in a common network setting before.

In Figs. 2(a), and 2(b), the 0.9-delay is shown as a function

of the traffic rate and network density, respectively1. As shown

in Fig. 2(a), the 0.9-delay increases with traffic rate, since

higher traffic rate causes higher queueing delay. Moreover, a

lower network density causes the delay to increase because

less nodes are active when each node starts to transmit. Thus,

the waiting time is increased. For a very low network density

(ρ = 0.04), it can be observed that the network cannot support

a guaranteed 0.9-delay for traffic rates higher than 0.012 pkts/s.

This is because less than 90% of the packets are delivered to the

sink from the edge nodes. It is also shown that the 0.9-delay is

generally a non-convex function of the traffic rate, motivating

the need for the heuristic approach described in Section III.

1In the remaining part of this paper, when there is no ambiguity, we use
p-delay and (p1, p2)-delay to represent the p-quantile and (p1, p2)-quantile
interval of the end-to-end delay, and p-lifetime and (p1, p2)-lifetime for
lifetime related measures.

Similarly, in Fig. 2(b), it is observed that when the network

density, ρ, is less than 0.04 nodes/m2, the 0.9-delay does not

exist. This graph clearly shows the feasible region for a real-

time WSNs and can be used as a guideline to determine network

density.

For probabilistic network lifetime analysis, the relationship

between the 0.9-lifetime and network density is shown in Fig.

2(c). The 0.9-lifetime has a peak when the density is around

0.15 − 0.3 nodes/m2, depending on the duty cycle. This is

because when density is low, there is a higher chance that nodes

are isolated from each other, and will spend more energy on

continuously transmitting beacon messages. On the other hand,

when the network density is higher, the total traffic forwarded

to the sink is increased, thus the nodes close to the sink deplete

their energy faster. The developed heuristic solution can be used

to find the optimal density, as will be discussed in Section IV-B.

Next, we analyze the quantile values of delay. In Fig. 3(a),

the p-delay for p = [0.5, 0.7, 0.9] are shown as a function of

the traffic rate. The three curves show the achievable end-to-end

delay with these probabilities. In this evaluation, the network

density is ρ = 0.08 node/m2, and the duty cycle is ξ = 0.2.

As a comparison, the average delay is also shown in the figure,

which is calculated as

t̄e2e(R) =

∫∞
0

t · fe2e(R, t)dt
∫∞
0

fe2e(R, t)dt
, (10)

where fe2e(R, t) is the pdf of the end-to-end delay from the

edge of network to the sink.

In Fig. 3(a), the average delay has a similar trend w.r.t. the

traffic rate as the 0.5- and 0.7-delay. However, as the traffic rate

increases, the average delay grows slower than the quantile-

based delay measures. As the traffic rate is increased, a larger

portion of the packets is lost. As an example, for traffic rates

higher than 0.006 pkt/s, more than 10% of the packets are

lost. The average delay is calculated only for those packets

that are eventually delivered. Therefore, the average delay does

not contain the information of lost packets. Consequently, in

high-rate and loss-tolerant applications, the average delay may

lead to inaccurate design decisions.

B. Performance Trade-offs in Real-time WSNs

In this section, we first present the effectiveness of the

heuristic optimization methodology. Then, we leverage this

methodology to solve four main optimization problems to

explore and quantify trade-offs in WSNs. We show the rela-

tionships between the optimal parameters and the performance

requirements.

1) Evaluation of the Methodology: The solution to the

probabilistic optimization problems is implemented using MAT-

LAB. Each search procedure is conducted using the interior

point method. In the case where local searches cannot con-

verge, a limit on the number of iterations, MAX ITER, is

enforced. Accordingly, the search procedure is parametrized

by the maximum iterations MAX ITER and the number

of searches Nsearch. For comparison, we utilize a discretized

brute force search, where the objective function and constraint

2015 International Conference on Computing, Networking and Communications, Wireless Ad Hoc and Sensor Networks
Symposium

934



5

0 0.005 0.01 0.015
0

5

10

15

20

25

30

Traffic rate λ (pkt/s)

0.
9−

de
la

y 
(s

)

 

 

ρ=0.04 nodes/m2

ρ=0.06 nodes/m2

ρ=0.08 nodes/m2

ρ=0.10 nodes/m2

(a) 0.9-delay vs. traffic rate. Duty cycle is 0.2.

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

Network density ρ (nodes/m2)

0.
9−

de
la

y 
(s

)

 

 

ξ=0.025
ξ=0.1
ξ=0.2
ξ=0.5

(b) 0.9-delay vs. network density. Traffic rate is
0.008 pkt/s.

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

40

Network density ρ (nodes/m2)

0.
9−

lif
et

im
e 

(d
ay

)

 

 

ξ=0.025
ξ=0.1
ξ=0.2
ξ=0.5

(c) 0.9-lifetime vs. network density. Traffic rate is
0.008 pkt/s.

Fig. 2: Evaluation of performance metrics (delay, lifetime, and throughput) as a function of network design parameters (traffic

rate, duty cycle, and network density).

0 0.005 0.01 0.015
0

1

2

3

4

5

6

7

8

9

Traffic rate λ (pkt/s)

p−
de

la
y 

(s
)

 

 

p=0.5
p=0.7
p=0.9
Avg

(a) p-delay vs. traffic rate. Average delay is also
shown.

10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MAX_ITER

D
iff

er
en

ce
 to

 m
in

im
al

 d
el

ay
 (

s)

 

 

N
search

=1

N
search

=2

N
search

=3

N
search

=4

Brute Force Search

(b) Minimum delay

10 15 20 25
0

1

2

3

4

x 10
−4

MAX_ITER

D
iff

er
en

ce
 to

 o
pt

im
al

 tr
af

fic
 r

at
e 

(p
kt

/s
)

 

 

N
search

=1

N
search

=2

N
search

=3

N
search

=4
Brute Force Search

Grid Size

(c) Optimal Traffic Rate

Fig. 3: (a) p-delay and (b)-(c) The difference between the benchmark solution and the solution in each setup. Solution of the
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functions are evaluated at grid points in the entire design

parameter space. The ranges and increments of the three design

parameters are selected as follows. The traffic rate, λlc, varies

from 0.0004 pkt/s to 0.016 pkt/s with an increment of 0.0004
pkt/s; the duty cycle, ξ, 0.025-1 with 0.025 increments; and the

network density, ρ, 0.004-0.1 nodes/m2 with 0.004 nodes/m2

increments.

The evaluation of the objective and constraint function values

at each point takes approximately 15− 30s and the total calcu-

lation time for all the 40, 000 points is approximately 7 − 14
days. This delay prohibits much finer grid sizes and hence,

limits the accuracy of the brute force search. In comparison,

with the search methodology described in Section III, with 4
local searches and a maximum iteration of 25, the time needed

is less than 2 hours.

Accuracy of the Multiple Local Search: We evaluate the

multiple local search methodology for a delay minimization

problem, where the same problem is solved with several choices

of the number of searches, Nsearch, and maximum iteration al-

lowed in each search, MAX ITER. The results are compared

to the discretized brute force search solution.

For evaluations, since a global optimum solution does not

exist, we use the optimal solution found across all choices

as the benchmark. The error of each choice (of Nsearch and

MAX ITER) is then represented as the difference in the

resulting objective function or the optimum parameter from the

benchmark. It remains an open problem to find the exact global

optimal solution to the probabilistic optimization problems in

this paper. The results, however, show that the majority of the

resulting solutions converge to the same value.

In Fig. 3(b), the optimization error for the following opti-

mization problem is shown: Minimize the 0.9-delay such that

the throughput received at the sink is higher than 200 bps and

the 0.8-lifetime is longer than 30 days. For each combination

of Nsearch and MAX ITER, 200 optimization procedures

are conducted. Each procedure contains Nsearch local searches.

Each of the 200 solutions is ordered based on its minimum

delay value and the 0.9-quantile of the error is shown in Fig.

3(b). In other words, 90% of the solutions for each setup has

an error equal to or smaller than the value shown in the y-axis.

The entire experiment contains 2, 000 local searches, out of

which the best solution (error: 0, absolute value: 2.29 s) is

obtained as the benchmark. For comparison, the brute force

search result for all 40, 000 points in the parameter space is

also shown (error: 0.0575 s, absolute value: 2.35 s). In all

cases except when Nsearch = 1 and MAX ITER ≤ 15, the

multiple local search solution consistently yields better results

than the brute force search. This is illustrated in Fig. 3(c), where

the error in optimum traffic rate is shown. As can be seen, the

error of the brute force search is less than the grid size (also

shown), which suggests that the multiple iterative search finds

the optimal solution in most cases.
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Fig. 4: Trade-offs between optimum probabilistic end-to-end delay, probabilistic network lifetime, and the throughput.
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Fig. 5: Optimal network density for 4(c).

2) Probabilistic Performance Metric Tradeoffs: Next, the

results of four optimization problems are presented based on

the multiple local search approach discussed in Section III.

Quantile-based Delay Minimization: We first consider a

stochastic version of a common problem in the design of

WSNs: Minimize the quantile-based delay subject to through-

put and lifetime requirements. More specifically, the minimum

0.8-delay is found with varying throughput and 0.8-lifetime

requirements. In Fig. 4(a), the minimum achievable 0.8-delay

is shown subject to a throughput requirement, which ranges

from 40 bps to 1280 bps, and 0.8-lifetime requirement, which

ranges from 15 days to 35 days. It can be observed that

generally the minimum achievable 0.8-delay increases with

higher throughput requirement and longer lifetime requirement.

The well-known tradeoff between delay and throughput can

be clearly quantified for WSNs. Moreover, independent of the

lifetime and throughput requirements, delay is lower bounded,

which is dominated by the network topology (i.e., density and

duty cycle).

Quantile-based Lifetime Maximization: Maximizing network

lifetime is essential for the proliferation of WSNs. Moreover,

providing stochastic lifetime guarantees is crucial since each

deployment may result in a different realization. To this end,

our goal is to maximize the 0.8-lifetime subject to throughput

and 0.9-delay requirements. The results for the achievable max-

imum 0.8-lifetime is shown in Fig. 4(b). It can be observed that

an increase in the throughput requirement decreases network

lifetime with diminishing effects. Moreover, for relatively high-

throughput applications (TP > 1.2kbps), a slight relaxation of

the lifetime requirement can significantly improve the delay

performance. For example, for a high throughput requirement

of 1.6kbps, an 8% (24%) relaxation of the lifetime requirement

improves the 0.9-delay by 60% from 15s to 6s (by 80% to 3s).

On the other hand, for a low throughput requirement of 200
bps, the same improvement require a relaxation of 29% (60%)

in the lifetime requirement.

Quantile Interval Constraints: In most real-time applications,

predictable delay performance is more important than mini-

mizing delay as the task model can be approximated by a

deterministic one. Consequently, it is important to constrain

the quantile interval measure of delay in these cases. Thus, we

consider a network lifetime maximization problem, where the

0.8-lifetime is maximized subject to a throughput requirement,

which ranges from 32 to 48 bps, the (0.1, 0.9)-delay require-

ment, which ranges from 6s to 9s and a 0.9-delay requirement

of 15s.

The maximum achievable 0.8-lifetime is shown in Fig. 4(c).

The 0.8-lifetime decreases when a lower (tighter) (0.1, 0.9)-
delay or a higher throughput is required. On the other hand, to

prolong lifetime, either delay predictability or throughput has

to be sacrificed. An important finding from the figure is the

0.8-lifetime is dominantly determined by the (0.1, 0.9)-delay

requirement when the quantile interval is less than 6s. When the

quantile interval is higher than 7s, the 0.8-lifetime is dominantly

determined by the throughput requirement.

The optimal design parameters for the third scenario are also

examined. In Fig. 5, the optimal network density is shown as a

function of the (0.1, 0.9)-delay requirement, and the throughput

requirement, corresponding to the maximum 0.8-lifetime. The

right part of the figure ((0.1, 0.9)-delay > 7 s) shows that when

the (0.1, 0.9)-delay requirement is relatively high (relaxed),

the optimal network density is mainly determined by the

throughput requirement and is independent of the (0.1, 0.9)-
delay requirement. As shown in Fig. 4(c), in this region, the

lifetime cannot be significantly increased. In the middle of

the Fig. 5 (5.5 s < (0.1, 0.9)-delay < 7 s), the optimum

network density increases when the (0.1, 0.9)-delay require-

ment is tightened, regardless of the throughput requirement.

Therefore, the (0.1, 0.9)-delay requirement is the dominant

requirement is this region. Finally, in the left part of the figure,
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Fig. 6: Minimum network density as a function of throughput

requirement and 0.9-delay requirement.

the density cannot be further increased, because 0.1 node/m2

is the highest density in our parameter space, representing a

upper limit on the deployment cost of the network. Therefore,

the design parameter range is the dominant factor and the

maximum achievable (0.8)-lifetime is significantly reduced in

this region (Fig. 4(c)).

Network Cost Minimization: In the last scenario, we consider

a network density minimization, i.e., network cost minimiza-

tion, problem subject to a 0.9-delay requirement, which ranges

from 3s to 15s, a throughput requirement, which ranges from

160bps to 1280bps, a 0.8-lifetime requirement of 15 days.

The optimal density as a function of throughput requirement

is shown in Fig. 6. It can be observed that a lower (relaxed)

throughput requirement (160bps) results in the lowest density.

An increase in the throughput requirement to 640bps, leads

to an increase in the optimum traffic rate without affecting

the optimum density. A further increase in the throughput

requirement also requires a higher density. Accordingly, when

the throughput requirement is higher than 640 bps, the op-

timal density is dominantly determined by the throughput

requirement (the solution resides on the throughput requirement

boundary), but when the throughput requirement is lower, the

optimal density is dominantly determined by the end-to-end

delay requirement (the optimal solutions reside on the 0.9-delay

requirement boundary).

The impact of delay requirement on network design can be

observed in Fig. 6. As the 0.9-delay requirement is relaxed from

3s to 15s, a lower network density can be allowed while still

guaranteeing the throughput requirement. For example, for a

throughput requirement of 640 bps, when 0.9-delay requirement

is decreased from 15s to 6s, the optimum density is increased

by only 6%. On the other hand, a further improvement of the

0.9-delay requirement to 3s requires a 40% higher network

density. These results highlight important trade-offs for efficient

network design.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the trade-offs of probabilistic performances

metrics for real-time WSNs are explored and quantified. The

trade-offs are investigated by formulating probabilistic opti-

mization problems and the solutions are found using a heuristic-

based technique. Two probabilistic performance measures are

developed to characterize the dependability and predictability

of the performances.
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