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ABSTRACT - We propose a novel design for testability 
method that enhances the controllabiUty of storage ele- 
ments by use of additional clock lines Our scheme is 
applicable to synchronous circuits but is otherwise tran- 
sparent to the designer. The associated area and speed 
penalties are minimal compared to scan based methods, 
however, a sequential ATPG system is necessary for test 
generation. The basic idea Is to use independent clock 
lines to control disjoint groups of flip-flops. No cyclic path 
are permitted among the flip-flops of the same group. 
During testing, a selected group can be made to hold its 
state by disabling its clock lines In the normal mode, all 
clock lines carry the same system clock signal. With the 
appropriate partitioning of flip-flops, the length of the vec- 
tor sequence produced by the test generator for a fault is 
drastically reduced. An n-stage binary counter is used for 
experimental verification of reduction in test length by the 
proposed technique. 

1. INTRODUCTION 

The search for a good design for testability (DFT) 
scheme may be viewed as finding a set of rules that impose 
minimal constrain on the creative freedom of the designer. 
For example, an asynchronous design can be made more 
manageable by insisting that all feedback cycles be broken by 
the insertion of clocked flip-flops (FF’s). This rule has a pro- 
found effect in simplifying the behavior of the circuit. To 
analyze an asynchronous circuit. one must, in effect, consider 
a finer timing (the ”gate clock); for synchronous circuits, it is 
sufficient to consider only the coarse timing (the circuit clock). 
Conversion to synchronous designs, however, is not enough to 
solve the testability problem. Synchronous circuits may still 
have very long test sequences, in some cases, too long to rule 
out gate-level automatic test pattern generation (ATPG) [l]. 
In general, there is evidence to suggest that the complexity of 
sequential ATPG is determined essentially by the lengths of 
test sequences required for individual faults [2]. The main 
purpose of the DFT scheme suggested in this paper is to 
reduce the required test lengths, thereby simplifying test 
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generation. 

Previous proposals on selective controllability [3] are 
based on scan type of design. In fact, they are quite similar to 
the currently popular boundary scan idea [4]. The method 
presented in this paper only requires non-scan flip-flops. 

2. CLOCK CONTROL FOR TESTABILITY 

We will illuseate a new multiclock DIT scheme for 
the simplest case of two clocks shown in Fig. 1. In the stan- 
dard (Huffman) model, a circuit is partitioned into its combi- 
national logic block and storage elements. In our model the 
latter is further divided into two groups. The first group of 
flip-flops (FF’s) is clocked by and the second group of 
FF’s is clocked by q2. The two clocks are derived from the 
system clock (I$) by the simple selection logic shown in the 
figure. The clock select signals, S1 and S2, determine the 
mode in which the circuit would operate at any given time. 
The four possible modes of operation can be selected as 
shown in Table 1. In the normal mode the system clock con- 
trols all FF’s as in a singleclock synchronous circuit. The 
two test modes, clock-1 and clock-2, are symmetrical. When 
clock-1 test mode is on, the FF’s in the first group me allowed 
to change their states according to the values determined by 
the logic; the FF’s in the second group have their clocks dis- 
abled and they must hold their current states independent of 
the values on their data inputs. The situation is reversed in the 
clock-2 test mode. In the hold mode all the clocks are dis- 
abled and the circuit state cannot change. 

Table 1 - Two-clock operating modes 1 
~ 

s1 s 2  I Mode I 

In terms of the finite state machine theory, the grouping 
of FF’s in Fig. 1 decomposes the original state machine into 
two components, M1 and M2, as shown in Fig. 2. Each 
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Fig. 1: The twoclock DFT model. 

component machine can communicate its state information to 
the other component machine but only one component 
machine can change its state in a test mode. Since the state 
S 2  of M2 is held fixed in the clock-1 mode, we can regard the 
states of M1 as defining a partition of the states of the original 
machine. Each block of the partition is defied by a constant 
value of S2. Similarly, the states of M2 & f i e  another parti- 
tion of the states of the original machine. Each block of states 
in a partition defies a submachine, that is, if the test mode 
was held unchanged, all transitions between states are confiied 
to the states of the currently defied partition block. By 
switching test modes, however, it is possible to navigate to 
other states of the original machine. 

Fig. 2: Machine decomposition with two clocks. 

Any DFT scheme introduces a certain area overhead 
and possibly a speed penalty. However, these are insignificant 
for our scheme as can be readily seen from Fig. 1. The area 
overhead has three components: clock select logic, clock dis- 
tribution, and the two select inputs. The clock select logic is 
minimal. The clock distribution overhead comes from added 
constraints in routing the two clocks: the original clock distri- 
bution tree must be replaced by two subtrees determined by 

the grouping of FF’s. The routing overhead here could be 
“ed by a placement procedure that may take account of 
the specific FF grouping. It is obvious from the figure that 
the scheme may not entail any time penalties. 

Criterha for Partitioning FF’s. With reference to Fig. 
2, the goal of partitioning should be that any desired circuit 
state (sl ,  s2) could be reached with minimum effort while 
using only the structural knowledge of the circuit. This is rea- 
sonable since most curzent ATF’G algorithms operate only on 
such information about a circuit. Before proceeding further 
with our discussion, we introduce a directed graph representa- 
tion of a circuit and background information on definite 
machines. 

. .  . 

A directed graph representation of a synchronous 
sequential circuit was introduced in [2]. A FF (or state vari- 
able) i in the circuit is represented by a vertex v i  in the graph. 
A directed edge from vertex vi to vertex vi implies a combi- 
national path from FF i to FF j in the circuit. Only the 
memory elements and dependencies between memory elements 
are explicitly represented in thii graph. If the circuit has FF’s 
other than the D-type, we would convert them to equivalent 
implementation in terms of D-FF’s before constructing the 

A sequential machine M is called a definite machine of 
order p if p is the least integer, so that the present state of M 
can be determined uniquely from the knowledge of the last p 
input to M [5] .  A definite machine of order p is often called 
a p-definite machine. Since the knowledge of any p past 
inputs is always sufficient to completely specify the present 
state of a p-definite machine, any such machine can always 
be realized as a cascade connection of p delay elements to 
store the last p input values and a combinational circuit that 
generates the specified output. Conversely, any circuit with n 
FF’s, whose graph contains no cycles, will be p-definite with 
pSn. From the defiition, a p-definite circuit can always be 
initialized by a sequence of length less than or equal to p. 

A partitioning of the FF’s into multiple groups can be 
shown by node labels 1, 2, etc., in the graph representation. 
From the testability viewpoint. we claim that a good criterion 
for node labeling is that it should break as many directed 
cycles in the graph as possible, where, a cycle is considered 
broken if not all the nodes in the cycle are identically labeled. 
If all cycles can be broken, each component machine, con- 
trolled by its own independent clock (e.g. M1 and M2 in Fig. 
2), can be run as a definite machine in a test mode. 

graph. 

Not all cycles can be broken, however, with a fixed 
number of clocks. For example, a common implementation of 
an n-stage synchronous binary counter involves only self-loops 
that cannot be broken by any number of clocks. Each stage of 
the counter is affected by the combined state of all the previ- 
ous stages and the highest order stage requires O(2”) inputs to 
control its value. The goal of the multi-clock DFT in thii case 
would be to contain the combinatorial explosion of state space 
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by breaking long chains of identically clocked FF's. Let us 
assume that under the primary criterion, the available clocks 
have been used to break BS many cycles of length two or more 
as possible. We condense the resulting directed graph by 
identifying its strongly connected components (the nodes in 
each such component must be identically labeled) and collaps- 
ing them into singleton nodes. If a strongly connected com- 
ponent had k nodes, we associate a weight 2' to its 
corresponding collapsed node. All other nodes represent tran- 
sparent FF's (unit delays) and are assigned a weight of 1. A 
secondary criterion for flipflop partitioning may now be stated 
as follows: minimize the weighted sum of any chain of identi- 
cally labeled nodes in the graph. Thus, for the counter circuit, 
this criterion would require successive stages to be clocked 
differently. We illustrate the twoclock DFI' scheme by 
means of two examples. 

Example I :  Consider the state machine described by 
Table 2. It has a Synchronizing sequence of length 4, namely, 
0.1,l.O. Miczo [l] uses this example to emphasize that the 
existence of a synchronizing sequence is not a sufficient con- 
dition for automatic test pattem generation; a proper state 
assignment (if one exists at all) is equally necessary [6]. In 
particular, for the above machine, he shows that the assign- 
ment of Table 3 is particularly bad. With this assignment, a 
gate-level test generation algorithm using three signal values 
(0, 1, and X), will not be able to initialize the above machine 
into a known state. 

Table 2 - State table for Example 1 
0 1 

s2 

s3 

SO 
s 2  

Table 3 - An improper state assignment 

Y z  Y1 
SO 
S1 
s2 

s3 

0 1 
1 0 
1 1 
0 0 

An implementation of the machine with the given state 
assignment is shown in Fig. 3 along with the corresponding 
graph. The graph contains self-loops on each node as well as 
a cycle of length 2 between the two nodes. We break the 
larger cycle by assigning Q 1  to FF-1 and 4i2 to FF-2. Now, 
the behavior of the circuit in the two modes can be deduced 
from the two state tables shown in Fig. 4. The corresponding 
synchronization tree appears in Fig. 5. In the tree, the edges 
are labeled as xi where x is the input value and i denotes the 
test mode (clock I$') used. There are two synchronizing 
sequences of length 4 O2,l2,ll,O2 and 11,12,11,02. Both 

lead the machine to the final state So. Further, the first three 
inputs in either case defme a partial synchronizing sequence 
that uniquely sets Y, to 1. No similar or shorter sequence 
exists in the normal mode to permit partial synchronization. 

Exumpfe 2: Consider an n-stage synchronous counter 
circuit with a reset to the all-zero state. Let y o ,  yl, ..., yn-l 
represent the counter bits from the lowest to the highest order. 
The minimum number of clock cycles to toggle yi. starting 
from the reset state is obviously 2'. This means that the test 
length for the fault line y i  s-a-0 will be exponential in i. The 
following lemma shows that this length can be considerably 
reduced by the two-clock scheme. 

Lemma I :  An upper bound on the test length for the 
fault y i  s-a-0 in a synchronous counter with two clocks is 

'+1 
L ( i )  = 2 - 1, i f i  is even, 

i-1 - 
and L ( i )  = 3(2 ) - 1, if i is odd. 

Y1 

Circuit graph 

Fig. 3: Example 1 circuit and its graph. 

Proof: Partition the FF's in the counter stages into two 

the first group be clocked by $, and the second group by Q 2 .  

Let C ( j )  represent the minimum number of clock cycles (of 
q 1  or Q 2 )  needed to toggle y j  for j = 0, 1, ..., n-1. We know 
that C ( 0 )  is 1 since only one 9, cycle (with the data input 1) 
will toggle the least significant bit. Similarly, C(l) is 2; in this 
case we need to apply followed by Qz while holding the 
data input high. In general, we can write the following recur- 
sive relation between C( j )  and C (  j -  1 ): 

group: {YO,Y~, ... .yair ... I and (y1.y3, ... ,~2i+lr ... 1. Let 

p$J 
C ( j )  = C(j-1) + 2 (1) 

where, is the highest integer that is less than or equal to x. 
This is because just before yj-l toggles all preceding stages 
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State Encoding: 

state 

y2 y1 
I I 

Mode State Table 

SO 

Q2 Mode State Table 
0 1 

Fig. 4: Test mode state tables for Example 1 circuit. 

must be all-one. After it toggles. all preceding stages that are 
even-distance away from the (j-1)-stage change to 0 while 
those that are odd-distance away remain at 1. There are 

exactly p = 191 stages of the fmt kind and these are all 

clocked identically, say, by clock Q k  where k is either 1 or 2. 
By running 2’- 1 cyclcs of Q k  while holding the data input 
high, we can tum all 0 stages to 1 (they would be incremented 
like a k-bit counter). Further, all stages that stored 1 origi- 
nally, remain unchanged as their clocking is disabled. One 
more clock cycle after this will toggle yj. This justifies the 
recurrence in Eq. (1) from which the bound in the lemma fol- 
lows immediately. 

3. TEST GENERATION WITH TWO CLOCKS 
In a synchronous clocked circuit, the primary input (PI) 

signals and flip-flops (FF’s) normally change once during a 
period of the clock. The combinational logic of the circuit 
receives its inputs from PI and FF’s and it feeds into the pri- 
mary outputs and FF’s. In the interval between the instances 
when FF’s change their state, the circuit can be analyzed like 
combinational logic. Since all FF’s change only once in the 
clock period, it is only when the time advances to the next 

Fig. 5: Test mode synchronizing tree for Example 1. 

clock period, that the FF must be updated. For test genera- 
tion, the combinational logic can be duplicated for each clock 
period. Each duplicated block contains its PI and PO and FF 
signals flow between the blocks. With this model, it is possi- 
ble to generate tests using a combinational test generation 
algorithm [7]. 

For generating tests with two clocks, we expand the 
combinational logic in two dimensions. This is shown in Fig. 
6. Clock-1 periods are shown along the x-direction and 
Clock-2 periods are along the negative ydirection. Each 
block is a copy of the combinational logic. The block i , j  is 
the circuit in the i -th period of Clock-1 and j - t h  period of 
Clock-2. Each block contains PI and Po that are not shown 
in Fig. 6. 

All communication between the blocks is through two 
buses named Y, and Y2. The Y1 bus carries the signals of 
Clock-1 FF. These signals are shown exiting to the right and 
entering from the left. A block writes on the Y, bus on its 
right only if Clock-1 is activated. The writing, however, 
changes the state of the bus only for the future time. The 
state of the bus is applied to every block it feeds. The opera- 
tion of Y, buses, that run from left to right and cany the states 
of the Clock-2 FF, is similar. 

For test generation, the target fault is introduced in all 
modules. We begin at the fault site in the block 0’0. Only 
one clock is activated at a time in the test mode. A test may 
consist of several contiguous Clock-1 periods, followed by 
several Clock-2 periods, then again Clock-1, and so on. All 
state variables, entering from the top and left, are in the 
unknown (X) state in the beginning. Line justification follows 
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-1 0 1 2 Clock-1 
I )  

Y, bus 

Fig. 6: Two-clock test generation model. 

the normal backtrace to the PI of this block or to the Y,, Y2 
inputs. In the latter case, assuming a Clock-1 mode, the test 
generator will move to the block -1.0 to justify the states of 
Y, FF’s. Once these states are justified. the fault effect is pro- 
pagated toward PO. If necessary, blocks 1,0 and 2.0 will be 
used. However, Clock-1 mode may end leaving the fault 
effect in a Y, FF or with some Y, FF requiring initialization. 
At this point, the test generator will switch to Clock-2 mode. 
Again, if this mode produces no test, Clock-1 mode follows. 

Since the circuit has a d e j i i e  memory depth with 
respect to any of the two clocks, operating one clock at a time 
restricts the length of each mode. In general, the two modes 
can alternate any number of times. Thus a test follows a 
manhattun path in the array of Fig. 6. The normal operation 
of the circuit, with both simultaneous clocks, follows the diag- 
onal. 

4. RELATED GRAPH PROBLEMS 

The graph theoretic notations used in this section can be 
found in any standard text [8]. The FF-partitioning problem in 
the multi-clock DFT is closely related to a coloring problem in 
directed graphs. We assume that n clocks are available for 
breaking the cycles in a circuit graph f?ee of self-loops. The 
goal is then to “ize n consistent with the objective of 
breaking aN the cycles. Let G = ( V , E )  be a directed graph 
without loops and multiple edges. An edge < a . b > ~ E  is 
assumed to be incident from a and to b, that is. directed from 
a to b. By Qn we denote the complete directed graph on n 
vertices with all n(n - 1 ) edges. 

Definition: A vertex coloring of G is proper if there is 

no monochromatic directed cycle in G. 

The problem of clock minimization manslates into find- 
ing a minimum proper coloring of a given directed graph G. 
If G is acyclic then one color suffices. Otherwise, two or 
more colors are necessary. The worst case occurs for com- 
plete directed graphs. It is easily seen that Q m  requires n 
colors for a proper coloring. The problem of finding minimum 
proper vertex coloring as defined here is similar, though not 
identical, to the standard vertex coloring problem that is 
known to be NP-complete. We conjecture that this problem is 
also NP-complete. To the best of our knowledge, no results 
have been reported in the graph theory literature on proper 
coloring as defied above. In Fig. 7 we show three digraphs 
requiring one, two and four colors, respectively. Here, we fol- 
low the convention that vertices of graphs are identified by 
capital letters and colors by integers. The color assigned to a 
vertex is shown within parentheses next to its name. 

A ( l ~  

A(l)w 

D(2) E(1) 
(a) A directed acyclic graph (b) A directed graph with 3 cycles 

(3) 

D(4) 
(c) A complete directed graph Q4 

Fig. 7: Three examples of proper coloring. 

Observation: It may be observed that a directed cycle 
requires at least two colors for a proper coloring and in any 
two-coloring of a three cycle, two vertices must be assigned 
the same color. 

The smallest digraph that requires 3 colors is Q 3 .  If 
directed two cycles are not allowed, the smallest digraph that 
is not 2-colorable is of order seven. This is a consequence of 
the following theorem. 

Theorem: Let G be a digraph of order six or less, such 
that G contains no directed two-cycles. Then G is 2-colorable. 
A proof appears elsewhere [9]. 

5. IMPLEMENTATION AND PRELIMINARY RESULTS 

We have implemented a graph-labeling algorithm [9] 
that assigns two labels (clocks) according to the criteria stated 
in Section 2 and are in the early stages of implementing a test  

generator based on the multi-dimensional time-frame 
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expansion discussed in Section 3. In order to prove the vali- 
dity of the basic approach, however, we used an available 
sequential test generator, Contest [lo], even though it does not 
use the time-hme expansion method for test generation. 
Contest is a concurrent fault-simulation based test generator 
that fmds a test sequence through cost reduction by single-bit 
changes in vectors. The reader is referred to the original 
paper for details [lo]. In order to do twoclock test generation 
using Contest, we added an extra primary input and a small 
amount of logic to select the clock-1 or clock-2 modes for test 
generation. The extra primary input is added as the last PI so 
that Contest would try all other input changes in the current 
mode before trying to switch the test mode. Normal mode test 
generation was carried out by omitting the extra PI and the 
associated logic. The results for the binary synchronous 
counter are summarized in Table 4. 

Table 4 - Two-Clock vs. Normal-Mode Test Lengths 
for a-bit Counters 

n Normal Mode Two-Clock L(n-I) from Lemma 1 
1 1 1 1 
2 2 2 2 
3 4 3 3 
4 8 5 5 
5 16 7 7 
6 32 12 11 
7 _ _  16 15 

As seen in the table, Contest could not complete test 
generation beyond the 6-stage counter for the normal mode 
and beyond the 7-stage counter for the 2-clock mode. Further, 
the normal mode test length grows exponentially with the 
number of stages while the 2clock mode test length is very 
close to the values predicted by Lemma 1. We have also run 
Contest in a similar fashion on eight 1989 ISCAS benchmark 
circuits: s208, s298, s344, s386, s444, s526, ~526% and s1488. 
It was found that, with one exception (~344). the 2clock mode 
produces higher fault coverage with fewer vectors. In most 
cases, the two-clock mode required only half as many vectors 
for a comparable fault coverage and the run time of the test 
generator was also reduced to half or lower. These improve- 
ments are remarkable since they were obtained without any 
test-mode related guidance to the test generator. Contest 
treated the primary inputs defining the mode of the circuit just 
l i e  other primary inputs. We expect even better results with 
the time-frame expansion type of test generator that is now 
being developed. 

6. CONCLUSION 

We have presented a simple method of modifying 
finite-state machines for improved testability. The multi-clock 
method is more economical than the methods like scan. In an 
ideal case, each clock controls a definite machine. Our work 
on the two-clock sequential circuit test generator is currently 

in progress. When two clocks do not break all cycles, our 
algorithm minimizes cycles. A generalization of this algo- 
rithm will allow more than two clocks to break all cycles. A 
tradeoff between the number of clocks and the number of 
remaining cycles is then possible. For a fixed number of 
clocks, the remaining cycles can also be eliminated by using 
partial scan [2,11]. Our method, that provides additional con- 
trollability for sequential circuits, may also be used to comple- 
ment purely observability enhancing techniques, such as 
CrossCheck [12]. We hope the ideas in the paper will lead to 
further research and applications. 
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