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Abstract

Fatty acid methyl esters (FAMEs) were used to `®ngerprint' soil microbial communities that evolved during 25 years of

wheat-fallow cropping following native mixed prairie sod at Sidney, Nebraska, USA. Total ester-linked FAMEs (EL-FAMEs)
and phospholipid-linked FAMEs (PL-FAMEs) were compared for their ability to discriminate between plots remaining in sod
and those cropped to wheat or left fallow under no-till, sub-till or plow management. Cropped plots were higher in microbial

biomass than their fallowed counterparts, and did not di�er signi®cantly with tillage for the 0±15 cm depth. Under fallow,
microbial biomass was greatest in no-till and least in plow. Both cluster and discriminant analysis of PL- and EL-FAMEs
clearly separated the remaining native sod plots from the existing wheat-fallow plots. This separation was particularly

pronounced for the EL-FAMEs and was largely driven by high amounts in sod of a single FAME, C16:1(cis11), which has been
cited as a biomarker for arbuscular mycorrhizal (AM) fungi. Within wheat-fallow, C16:1(cis11) declined signi®cantly from no-till
to plow, which supports the origin of C16:1(cis11) from extraradical mycelium and spores of AM fungi known to be sensitive to
soil disturbance. Although discriminant analysis of PL- and EL-FAMEs di�erentiated wheat and fallow systems by tillage,

discrimination among tillage treatments was expressed most strongly during fallow. FAME pro®les from fallow plow were most
dissimilar from cropped soils which suggests a relationship between tillage management and the long-term resiliency of the
microbial community developed under the wheat crop. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Microbial community composition; Tillage; PL-FAMEs; EL-FAMEs; Mycorrhizae

1. Introduction

Dryland cropping of winter wheat in a two year ro-
tation with fallow accounts for 42% of the total 1.3
million dryland cropped hectares in the Panhandle and
southwest regions of western Nebraska (Nebraska
Agricultural Statistics Service, 1996). In this system,
soil water accumulated during fallow is used to sup-
port growth of the succeeding wheat crop. E�orts to

increase soil water storage during fallow and reduce
soil loss through erosion include adoption of no-tillage
(no-till) and reduced tillage (sub-till) practices.
Research conducted from 1969 to 1995 on two exper-
imental sites near Sidney, Nebraska, comparing the
e�ects of moldboard plow, sub-till and no-till fallow
systems on winter wheat production, found no signi®-
cant yield bene®t with no-till despite increased soil
water storage in the soil pro®le at time of planting
(Lyon et al., 1998). Heavy infestation with downy
brome (Bromus tectorum L.) of no-till and sub-till
plots since 1983 has undoubtedly contributed to
decreased yields in no-till, despite the additional water
stored in the soil pro®le (Lyon et al., 1998). Adequate

Soil Biology & Biochemistry 32 (2000) 1419±1430

0038-0717/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0038-0717(00 )00060 -2

www.elsevier.com/locate/soilbio

* Corresponding author. Tel.: +1-402-472-0770; fax: +1-402-472-

7904.

E-mail address: rdrijber1@unl.edu (R.A. Drijber).



weed control through tillage has led to limited adop-
tion of no-till winter wheat-fallow systems in the Cen-
tral Great Plains.

Although the economic sustainability of no-till win-
ter wheat-fallow in the Central Great Plains is in ques-
tion, no-till preserves the soil resource better than
either plow or sub-till management. Several studies
have detailed the physical, chemical and biological
changes in the soil pro®le at the above research sites to
understand fully the limitations to winter wheat yields
in wheat-fallow systems. Adoption of no-till has redis-
tributed soil carbon and microbial biomass towards
the soil surface (Doran, 1987), increased potentially
mineralizable N, while initially reducing soil NO3±N
levels (Broder et al., 1984), increased potential enzyme
activities, such as dehydrogenase and phosphatase
(Doran and Linn, 1994), reduced emissions of green-
house gases (Kessavalou et al., 1998) and lowered sur-
face soil bulk density (Mielke and Wilhelm, 1998).
These changes are re¯ected in declining ratios of
selected culturable populations between no-till and plo-
wed soils with soil depth (Doran, 1980).

Concern over global warming has prompted
research on carbon sequestration in agroecosystems
and the importance of tillage intensity to soil structure
and soil organic matter dynamics (Beare et al., 1994;
Cambardella and Elliott, 1992; Huggins et al., 1998;
Paustian et al., 1995; Peterson et al., 1998). Cultivation
of native prairie in the Central Great Plains leads to a
rapid decline in soil carbon, particularly surface soil
carbon (Doran et al., 1998; Follett et al., 1997). At
Sidney, losses of soil carbon with cultivation have been
attributed to erosion (O'Halloran et al., 1987), reduced
C inputs during fallow (Doran et al., 1998) and loss of
particulate organic matter associated with macroaggre-
gates (Cambardella and Elliott, 1993).

To date, biological changes brought about by culti-
vation of native prairie and wheat-fallow cropping at
the long-term tillage site near Sidney, NE include
losses in total biomass (Doran et al., 1998), reduced
fungal to bacterial biomass (Frey et al., 1999) and
shifts in selected culturable populations (Broder et al.,
1984). Although the above studies provide evidence for
gross microbial responses to soil management, details
are lacking on speci®c responses of the in situ mi-
crobial community, beyond which it is known for cul-
turable organisms. With newer biochemical (lipids)
and molecular (DNA/RNA) tools we are now better
equipped to identify microbial community responses to
soil management. In this study, we used fatty acid
methyl esters (FAMEs) to `®ngerprint' microbial com-
munities that have evolved during 25 years of wheat-
fallow cropping following native mixed prairie sod.
Total ester-linked FAMEs (EL-FAMEs) and phospho-
lipid-linked FAMEs (PL-FAMEs) were compared for
their ability to discriminate among plots remaining in

sod and those cropped to wheat or left fallow under
no-till, sub-till or plow management.

2. Materials and methods

Soil was collected on August 31, 1995, four weeks
after wheat harvest, from research plots established in
1969 on native mixed prairie sod and seeded to wheat
in 1970. The soil, a Duroc loam (®ne-silty, mixed,
mesic Pachic Haplustoll), is located at the High Plains
Agricultural Research Laboratory at Sidney, Nebraska
(41814 ' N, 103800 'W; 1311 m above sea level). Six soil
cores (15 � 1.9 cm, diameter) were composited from
each plot (45.5 � 8.5 m) organized into two blocks:
one seeded to winter wheat (W), the other left fallow
(F) each year. Each block of 12 plots contained three
replicate plots of three tillage treatments: plow (P),
sub-till (ST) and no-till (NT); and a control `sod' plot
(native mixed prairie grasses). Twenty-four composite
soil samples were collected from the site. Sampled
plots have never received inorganic fertilizer nitrogen.
For the plow treatments, a moldboard plow was used
to till the soil to a depth of 10±15 cm in the spring,
followed by three to ®ve operations with a ®eld culti-
vator, disk or rotary rodweeder. Sub-till operations
were performed with 0.9 m or 1.5 m sweeps at a depth
of 10±15 cm, two to four times a year followed by one
or two passes with the rotary rodweeder. Seeding was
the only operation in NT that caused soil disruption
and herbicides were used to control weeds. Sod was
burned in 1980 and 1994 to encourage growth of
warm-season grasses. Further management history is
detailed elsewhere (Fenster and Peterson, 1979; Lyon
et al., 1998).

After sampling, soil was transported in a cooler to
the laboratory and stored at 58C for less than 24 h,
before being passed through a 2 mm sieve to remove
visible organic residues. After thoroughly mixing, sub-
samples were taken for water content and for immedi-
ate extraction of lipids. Bulk density at the time of
sampling was estimated from the mass of oven-dry soil
collected from the six cores.

2.1. Lipid extraction and fractionation

A modi®ed Bligh and Dyer procedure as described
in Drijber and McGill (1994) extracted lipids from 10
g soil. The lipid extracts were stored at ÿ228C. All sol-
vents were of high purity, glass distilled and ®ltered
(Sigma, HPLC grade). Chloroform was stabilized with
amylenes.

Microbial biomass was determined as extractable
lipid phosphorus. Phosphate released through perchlo-
ric acid digestion was determined by the method of
Bartlett as described by Kates (1986). Microbial com-
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munity structure was determined from PL-FAMEs
and EL-FAMEs. Phospholipids were separated from
the lipid extracts by column chromatography with
silica gel as the adsorbent. A 500 ml aliquot of lipid
extract was evaporated under N2 and redissolved in a
small volume of chloroform then applied to the top of
a 10 � 30 mm chromatography column containing 1.5
g of silica gel (Davisil, 100±200 mesh, Aldrich) in
chloroform. Neutral lipids and glycolipids were eluted
from the silica gel with 10 ml chloroform and 10 ml
acetone, respectively. Polar lipids (mainly phospholi-
pids) were then eluted with 10 ml methanol into a 15
ml Pyrex test tube with a Te¯on-lined screw cap.
Methanol was evaporated under N2 at 378C.

The phospholipids were hydrolyzed and the resulting
fatty acids methylated by mild alkaline hydrolysis
(White et al., 1979). This procedure does not methylate
free fatty acids, only ester-linked fatty acids (Grogan
and Cronan, 1997; Kates, 1986). The resulting PL-
FAMEs were partitioned into hexane, the solvent
removed under N2 and the PL-FAMEs redissolved
into 100 ml hexane:chloroform (4:1 v/v) containing the
internal standard methyl-nonadecanoate. EL-FAMEs
were released through direct saponi®cation of the lipid
extract without prior separation into neutral, glyco-
and phospholipid classes and processed as above.

2.2. Quanti®cation and identi®cation of FAMEs

EL-FAMEs and PL-FAMEs were separated by
capillary gas chromatography on a Hewlett Packard
5890 Series II gas chromatograph in split mode (20:1)
housing a cross-linked polydimethylsiloxane capillary
column (30 m, 0.25 mm I.D., 0.1 mm ®lm thickness,
HP-1 Hewlett Packard). Helium was used as the car-
rier gas. The oven temperature was held at 1008C for 1
min then increased at 2.58C minÿ1 to 2258C. The injec-
tor and ¯ame ionization detector temperatures were
2508C and 2808C, respectively. An internal standard,
methyl-nonadecanoate (0.4 mg C19:0/ml) was added to
the FAME extract to ensure reproducibility in the
amount of lipid entering the capillary column. Identi®-
cation of the FAMEs was by comparison of retention
time and equivalent chain length with known stan-
dards (Bacterial Acid Methyl Esters CP Mix, Supelco
USA) and con®rmed by gas chromatography mass
spectrometry (GC±MS). Unsaturated and substituted
FAMEs were identi®ed by GC±MS as dimethyldisul-
®de (Nichols et al., 1986a) and dimethyloxazoline de-
rivatives (Yu et al., 1989).

2.3. FAME nomenclature

Fatty acids were designated as the total number of
carbon atoms followed by a colon, the number of
double bonds followed by the position of the double

bond from the carboxyl end of the molecule and its cis
or trans con®guration in brackets. For example,
18:2(cis 9,12) denotes linoleic acid, which is an 18 car-
bon chain with two double bonds at the number nine
and 12 carbon atoms, with cis con®gurations. The pre-
®xes a and i indicate antieso and iso branching, re-
spectively, br indicates an unknown branch position,
10 Me indicates a methyl branch on the 10th carbon
atom from the carboxyl end of the molecule, and cy
(9,10) refers to cyclopropane ring between the 9th and
10th carbon atom.

2.4. Data analysis

Measured soil properties were analyzed by analysis
of variance and then ranked using Tukey's HSD test
(Statistica, 1995). Individual FAMEs were reported as
ratios of peak area to methyl-hexadecanoate (C16:0).
FAME ratios less than 0.02 and FAMEs occurring in
fewer than ®ve samples with no apparent treatment
pattern were omitted from the data set. FAMEs with
retention times less than C14:0 and greater than C20:0,
which were few in number, were also deleted from the
data set. Stepwise and canonical discriminant analysis
(SAS, 1989) and cluster analysis (Statistica, 1995) were
performed on the remaining 29 FAME ratios listed in
Fig. 1.

3. Results

3.1. Soil conditions at time of sampling

At the time of sampling, all ®elds were well below
the 60 percent water-®lled pore space (%WFPS)
required for optimum aerobic biological activity
(Table 1). The sod plots were especially dry and di�-
cult to penetrate with the soil corer. Conversely, the
plow plots were loose, and so, bulk density may have
been underestimated. Additional water conservation
by no-till during fallow was not evident at this time as
indicated by the low %WFPS of surface soil. The
plow and sub-till cropped soils were also lower in
%WFPS compared to the fallowed plots, which is not
surprising for post harvest. The sod pots were extre-
mely dry and contained less than half the pore water
found in the cropped or fallowed plots. Despite high
penetration resistance, the sod plots had the lowest
bulk density (Table 1). Bulk densities among the
cropped soils did not di�er signi®cantly. Reconsolida-
tion of the plow and sub-till plots was evident in the
fallow year.

3.2. Microbial biomass and FAMEs

Microbial biomass, measured as extractable lipid P,
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Fig. 1. Mean and standard deviations of ratios of FAME peak area to peak area of C16:0, averaged across tillage treatments. PL-FAMEs =

phospholipid-linked FAMEs; EL-FAMEs = ester-linked FAMEs. Sod �n � 6), Wheat �n � 9), Fallow �n � 9 for EL-FAMEs; n � 8 for PL-

FAMEs).

Table 1

Soil characteristics of the 0±15 cm depth at time of sampling on August 31, 1995

Tillage and crop cycle Bulk density (Mg/m3) WFPSa (%) Biomass as lipid-phosphorus (kg P haÿ1) Biomass after conversionb (kg C haÿ1)

Cropped

Plow 1.21c b 36 b 2.08 a 606 a

Sub-till 1.21 b 38 bc 2.54 ab 739 ab

No-till 1.19 b 44 c 2.58 ab 749 ab

Sod 0.93 a 16 a 2.72 b 792 b

Fallow

Plow 1.40 c 47 b 1.53 a 446 a

Sub-till 1.40 c 44 b 1.69 ab 491 ab

No-till 1.24 b 41 b 2.11 bc 614 bc

Sod 1.05 a 16 a 2.60 c 755 c

a WFPS = water-®lled pore space, cm3 H2O/cm3 pores.
b Conversion factors: 50 mmol P/g dry cells = 1.55 mg P/g dry cells (White et al., 1979); 0.45 g C/g dry cells (Paul and Clark, 1989).
c Treatment means �n � 3� within crop cycle followed by the same letter do not di�er signi®cantly at P < 0:05 by Tukey's HSD Test.

R.A. Drijber et al. / Soil Biology & Biochemistry 32 (2000) 1419±14301422



was highest in the sod plots, while recently cropped
soils were higher in microbial biomass than their fal-
lowed counterparts (Table 1). Means of 29 FAME
ratios, averaged across tillage treatments, are rep-
resented in Fig. 1. Traditionally, FAME data are ana-
lyzed as mol% of total FAMEs (BaÊ aÊ th et al., 1995;
FrostegaÊ rd et al., 1993; Petersen and Klug, 1994;
Petersen et al., 1997; Reichardt et al., 1997; Wander et
al., 1995; Zogg et al., 1997). Alternatively, FAMEs can
be normalized to C16:0, often the most abundant
FAME in the sample, which correlates well with total
biomass (Zelles et al., 1992). We chose the latter
method to avoid having a change in the amount of a
single FAME a�ecting the ratios of other FAMEs in
the pro®le. PL-FAMEs were dominated by C16:0 as
indicated by ratios of FAME peak area relative to
C16:0 all being less than one. Other abundant PL-
FAMEs with ratios > 0.3 included several monounsa-
turated [C18:1(cis11), C18:1(cis9), C16:1(cis9),
C16:1(cis11)] and branched [iC15:0, iC16:0, aC15:0,

10Me C17:0] FAMEs. Also prevalent were
cy19:0(11,12) and C18:2(cis 9,12). These FAMEs were
also abundant in the EL-FAMEs of the wheat and fal-
low plots; albeit with di�ering mean ratios. EL-
FAMEs of the sod plots were dominated by
C16:1(cis11), which was derived largely from the
acetone eluate during silica gel fractionation (data not
shown).

To compare di�erences in FAME pro®les between
PL-FAMEs, and EL-FAMEs as well as among crop-
ping cycles and tillage treatments the data were ana-
lyzed by cluster analysis (Fig. 2). Unweighted pair-
group averaging of 29 FAME ratios grouped the soils
into three main clusters: PL-FAME pro®les, EL-
FAME pro®les and EL-FAME pro®les from sod
plots. Distance between clusters was calculated as the
average euclidean distance between all pairs of
FAMEs in two di�erent clusters. Within the PL-
FAMES, the sod plots clustered separately from the
wheat-fallow plots. The wheat plots formed one cluster

Fig. 2. Cluster analysis of 29 FAMEs by unweighted pair-group average of euclidean distance (Statistica, 1995). PL-FAMEs = phospholipid-

linked FAMEs; EL-FAMEs = ester-linked FAMEs. FP = fallow, plow; FST = fallow, sub-till; FNT = fallow, no-till; WP = wheat, plow;

WST = wheat, sub-till; WNT = wheat, no-till.
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with the inclusion of one fallow no-till (FNT).
Although patterns were evident for the fallow plots
based on tillage, signi®cant chaining was evident mak-
ing interpretation less clear. Cluster patterns among
the tillage-crop cycles were more distinct for the EL-
FAMEs. FAME pro®les after wheat in no-till (WNT)
formed a distant (0.5) and unique cluster, as did fallow
plow (FP) [with the inclusion of one fallow sub-till
(FST)]. Within the remaining cluster, FNT was tightly
clustered and distant from the remaining FST, wheat
sub-till (WST) and wheat plow (WP) plots.

To uncover speci®c FAMEs responsible for treat-
ment discrimination we used discriminant analysis
(Proc Stepdisc; SAS, 1989) with the stepwise selection
method to enter or remove FAMEs from the model.
The discriminant model was then evaluated using a
canonical discriminant analysis (Proc Candisc; SAS,
1989). To explore the better relationships among treat-
ments and to detect signi®cant separation, a matrix of
squared distances between treatment means adjusted
for their covariances (i.e. Mahalanobis distances) and
the associated probability of signi®cance was exam-
ined. The number of dimensions needed to distinguish
among the treatments was identi®ed by the number of
signi®cant canonical discriminant functions. Each
function is a linear combination of FAME variables.
The ®rst function has the most power to discriminate
among the treatments. The correlations between the
function and the FAMEs help to identify the FAMEs
which are most responsible for treatment discrimi-
nation. A discriminant score is computed for each of
the 24 plots for each signi®cant discriminant functions.
Graphs of the discriminant scores show how the treat-
ments cluster. Graphs of the correlations show how
the FAME variables cluster on the discriminant func-
tions.

Stepwise discriminant analysis was performed on 29
PL-FAME ratios from 23 samples, one FP sample
being lost during sample analysis. Eleven PL-FAMEs
were identi®ed by the analysis as being signi®cant for
the discrimination model. The p-values for the Maha-
lanobis distances (Table 2) show signi®cant separation
between all treatment means except WP and WST.

The canonical discriminant analysis identi®ed four
signi®cant discriminant functions �p < 0:01). The dis-
criminant functions associated with the ®rst and sec-
ond eigenvalues, DA1 and DA2, accounted for 78.9%
and 18.0% of the variance for a total explained var-
iance of 96.9%. Discriminant scores for DA1 and
DA2 are plotted in Fig. 3a, while correlations of indi-
vidual FAMEs with the ®rst and second discriminant
functions are plotted in Fig. 3b.

Two discriminant functions containing 11 variables
were adequate to separate all seven treatments, with
the exception of WP and WST. On DA1, sod plots
were signi®cantly distant from cropped soils
�p < 0:0001). PL-FAME ratios positively correlated
with DA1 included C18:1(cis13), C18:1(cis9), unknown
FAME (Unk1), C16:1(cis11), C17:1(cis9) and 10 Me
C19:0, which were enriched in sod compared to wheat-
fallow. Large negative correlations were found for
cyC17:0 and C16:1(cis9). The second discriminant
function, DA 2, mainly separated FP from the remain-
ing cropped soils �p < 0:01� due to smaller ratios of
aC15:0 and C16:1(cis9) and the absence of C15:0 from
these samples.

Stepwise discriminant analysis was performed on 29
EL-FAME ratios from 24 samples. Thirteen EL-
FAMEs were identi®ed by the analysis as being signi®-
cant for the discrimination model. The p-values for the
Mahalanobis distances (Table 3) show signi®cant sep-
aration between treatment means for sod and cropped

Table 2

Pairwise squared Mahalanobis distances for PL-FAMEs between treatments

Treatment WP WST WNT FP FST FNT SOD

Squared Mahalanobis distance/(probability>Mahalanobis distance)

WPa 0 43 282 2674 350 219 2894

(1.0000) (0.1724) (0.0019) (0.0001) (0.001) (0.0038) (0.0001)

WST 43 0 399 2761 493 240 2372

(0.1724) (1.0000) (0.0007) (0.0001) (0.0004) (0.003) (0.0001)

WNT 282 399 0 2063 90 119 4152

(0.0019) (0.0007) (1.0000) (0.0001) (0.0364) (0.0189) (0.0001)

FP 2674 2761 2063 0 2372 2225 6577

(0.0001) (0.0001) (0.0001) (1.0000) (0.0001) (0.0001) (0.0001)

FST 350 493 90 2372 0 270 4636

(0.001) (0.0004) (0.0364) (0.0001) (1.0000) (0.0022) (0.0001)

FNT 219 240 119 2225 270 0 3039

(0.0038) (0.003) (0.0189) (0.0001) (0.0022) (1.0000) (0.0001)

SOD 2894 2372 4152 6577 4636 3039 0

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (1.0000)

a WP = wheat, plow; WST = wheat, sub-till; WNT = wheat, no-till; FP = fallow, plow; FST = fallow, sub-till; FNT = fallow, no-till.
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Fig. 3. Discriminant scores of treatments for (a) and correlations of

PL-FAMEs with (b) the ®rst two signi®cant discriminant functions,

DA1 and DA2. FP = fallow, plow; FST = fallow, sub-till; FNT =

fallow, no-till; WP = wheat, plow; WST = wheat, sub-till; WNT =

wheat, no-till. Note: one FP sample lost during sample handling.

Table 3

Pairwise squared Mahalanobis distances for EL-FAMEs between treatments

Treatment WP WST WNT FP FST FNT SOD

Squared Mahalanobis distance/(Probability>Mahalanobis distance)

WPa 0 99 256 775 205 381 3264

(1.0000) (0.0952) (0.0132) (0.0010) (0.0215) (0.0053) (0.0001)

WST 99 0 69 602 101 229 2429

(0.0952) (1.0000) (0.1805) (0.0018) (0.0914) (0.0169) (0.0001)

WNT 256 69 0 628 159 261 2170

(0.0132) (0.1805) (1.0000) (0.0016) (0.0369) (0.0127) (0.0001)

FP 775 602 628 0 844 338 2594

(0.0010) (0.0018) (0.0016) (1.0000) (0.0008) (0.0070) (0.0001)

FST 205 101 159 844 0 342 2545

(0.0215) (0.0914) (0.0369) (0.0008) (1.0000) (0.0068) (0.0001)

FNT 381 229 261 338 342 0 2043

(0.0053) (0.0169) (0.0127) (0.0070) (0.0068) (1.0000) (0.0001)

SOD 3264 2429 2170 2594 2545 2043 0

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (1.0000)

a WP = wheat, plow; WST = wheat, sub-till; WNT = wheat, no-till; FP = fallow, plow; FST = fallow, sub-till; FNT = fallow, no-till.

Fig. 4. Discriminant scores of treatments for (a) and correlations

EL-FAMEs with (b) the ®rst two signi®cant discriminant functions,

DA1 and DA2. FP = fallow, plow; FST = fallow, sub-till; FNT =

fallow, no-till; WP = wheat, plow; WST = wheat, sub-till; WNT =

wheat, no-till.
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soils �p < 0:0001). All cropped soils were signi®cantly
di�erent �p < 0:05� from each other except for WST,
which was not di�erent from WP, WNT or FST.

The canonical discriminant analysis identi®ed ®ve
signi®cant discriminant functions �p < 0:01). The dis-
criminant functions associated with the ®rst and sec-
ond eigenvalues, DA1 and DA2, accounted for 82.3%
and 12.5% of the variance for a total explained var-
iance of 94.8%. Discriminant scores for DA1 and
DA2 are plotted in Fig. 4a, while correlations of indi-
vidual FAMEs with the ®rst and second discriminant
functions are plotted in Fig. 4b.

Two discriminant functions containing 13 variables
were adequate to separate all treatments with the
exception of WST, which was not di�erent from WP,
WNT or FST. Once again, on DA1, sod plots were
distant from cropped soils with WP receiving the low-
est score. EL-FAME ratios positively correlated with
DA1 included C16:1(cis11) and C20:4(5,8,11,14). Large
negative correlations were found for isobranched
(iC15:0, iC16:0, iC17:0), 10-methyl branched (10 Me
C17:0, 10 Me C18:0), C16:1(cis9) and cyC17:0(9,10)
FAMEs. DA2 was most instrumental in discriminating
among the tillage treatments during fallow with
iC17:0, C17:1(cis9) and an unknown FAME (Unk1)
being most important. FP plots received the lowest
scores indicating higher ratios for iC17:0 and
C17:1(cis9) and the absence of Unk1.

The relationship of selected PL- and EL-FAMEs to
crop and tillage management is presented in Table 4.

4. Discussion

Cultivation of native sod followed by 25 years of
wheat-fallow cropping has produced quantitative
changes in the amounts and distribution of soil mi-

crobial biomass. These changes where observed within
the ®rst 10 years of the study as reported by Doran
(1987). Microbial biomass, measured as extractable
lipid phosphorus, followed previous trends established
for this ®eld site by chloroform fumigation incubation
(Doran et al., 1998). Cropped plots were higher in mi-
crobial biomass than their fallowed counterparts, and
did not di�er signi®cantly with tillage for the 0±15 cm
depth. Under fallow, microbial biomass was greatest in
no-till and least in plow. Microbial biomass in sod was
not signi®cantly greater than that of no-till. Despite
similar rankings for kg microbial biomass C haÿ1

among treatments, biomass by chloroform fumigation
was two to three times greater that that calculated
from lipid phosphorus. This may re¯ect di�erent
sampling times (spring vs. fall), but more likely re¯ects
fundamental di�erences between the methods: chloro-
form fumigation is based on a physiological response,
while lipid phosphorus relies heavily on extraction e�-
ciency. Both methods are calibrated against other
measures of biomass, such as microscopic counts, sub-
strate-induced respiration (SIR) and adenosine tripho-
sphate (ATP) for calculation of mass conversion
factors. Conversion factors reported in the literature
for agricultural soils where biomass was determined by
ATP or SIR ranged from 49 to 419 nmol phospholi-
pid-P mgÿ1 biomass C (Hill et al., 1993).

4.1. Sod discrimination

Not only does the amount of microbial biomass
developed under wheat-fallow cropping di�er from
that of native sod, but also the composition of that
biomass has changed considerably based on analysis of
FAME pro®les. Both cluster and discriminant analyses
of PL- and EL-FAMEs clearly separated native sod
plots from wheat-fallow plots. Within the EL-FAMEs

Table 4

Select mean FAME ratios in PL-FAMEs and EL-FAMEs extracted from soils in native sod or cropped to wheat or in fallow under di�ering til-

lage management

Tillage & crop cycle C16:1(cis11)/C16:0 C18:2 (cis 9,12)/C16:0 cyC19:0(11,12)/C18:1(cis11)

PL-FAMEs EL-FAMEs PL-FAMEs EL-FAMEs PL-FAMEs

Cropped

Plow 0.341a a 0.271 a 0.362 a 0.543 a 0.586 ab

Sub-till 0.345 a 0.430 b 0.333 a 0.520 a 0.517 a

No-till 0.342 a 0.763 c 0.348 a 0.472 a 0.580 ab

Sod 0.384 b 3.49 d 0.468 a 0.500 a 0.723 bc

Fallow

Plow 0.292 a 0.272 a 0.218 a 0.433 a 0.836 c

Sub-till 0.273 a 0.351 ab 0.358 ab 0.524 ab 0.673 b

No-till 0.309 ab 0.391 b 0.451 ab 0.628 b 0.643 ab

Sod 0.362 b 3.51 c 0.487 b 0.616 b 0.712 bc

a Treatment means �n � 3; n � 2 for fallow plow PL-FAMEs) within crop cycle followed by the same letter do not di�er signi®cantly at

P < 0:05 by Tukey's HSD Test.
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this separation was largely driven by high amounts in
the sod plots of a single FAME, C16:1(cis11), originat-
ing from the acetone elulate during silica gel fraction-
ation (data not shown). Silica gel fractionation
separates lipids into three basic classes based on po-
larity: neutral lipids, glycolipids and phospholipids
(Kates, 1986). Thus, C16:1(cis11) of the EL-FAMEs is
probably ester-linked to a glycolipid or another com-
plex lipid, which elutes from silica gel with acetone.
The prevalence of eukaryotic organisms in undisturbed
systems is supported by higher ratios of
C20:4(5,8,11,14) in sod compared to cultivated sys-
tems.

4.2. Wheat-fallow discrimination

In the Central Great Plains, fallow management is
used to increase soil water storage for the succeeding
crop although, even under the best conditions, fallow
water storage e�ciencies rarely exceed 35% (Farahani
et al., 1998; Fenster and Peterson, 1979; Peterson et
al., 1996). Leaving cropland fallow, however, has sev-
eral negative consequences for sustainable crop pro-
duction, carbon sequestration and preservation of soil
quality (Bowman et al., 1999; Farahani et al., 1998;
Peterson et al., 1996, 1998; Wienhold and Halvorson,
1998).

The ability of FAMEs to discriminate among tillage
treatments was expressed most strongly during fallow.
During the wheat cycle the soil microbial community
would be dominated by those organisms responding to
inputs from the wheat leading to closely grouped
FAME pro®les irrespective of tillage. During fallow,
the physicochemical environment that is largely dic-
tated by tillage management would control residue de-
composition rates and microbial succession patterns.
PL-FAMEs sensitive to tillage during fallow included
C15:0, aC15:0 and C16:1(cis9) which decreased under
plow. Tillage discrimination based on EL-FAMEs was
evident for C16:1(cis11) during both cropping cycles,
while C18:2(cis 9,12) declined with increasing tillage
intensity during fallow (Table 4). The eukaryotic bio-
marker C20:4(5,8,11,14) was below detection in EL-
FAMEs during fallow.

Formation of cyclopropane fatty acids from their
monoenoic precursors within the plasma membrane of
bacteria is associated with cell stasis (Grogan and Cro-
nan, 1997) and/or stress (Grogan and Cronan, 1997;
Kieft et al., 1994, 1997; Petersen and Klug, 1994).
Within PL-FAMEs, mean ratios of cyC19:0(11,12) to
its monenoic precursor C18:1(cis11) were greatest in
FP and sod and least after wheat harvest indicating a
greater proportion of the bacterial biomass in FP and
sod was in stasis (Table 4; Grogan and Cronan, 1997).
Although %WFPS was not optimum in any of the

plots at sampling, bioavailability of carbon would
have been most restricted in FP.

The relationship of crop and tillage management to
fungal biomass is unclear from analysis of the fungal
biomarker C18:2(cis9,12) (Table 4). C18:2(cis9,12) is
closely correlated with fungal biomass in soils as
measured by the fungal sterol ergosterol (FrostegaÊ rd
and BaÊ aÊ th, 1996), and 13C incorporation into soil
phospholipids (Arao, 1999). There was no signi®cant
di�erence in the relative abundance of this FAME in
the phospholipid fraction of cropped or fallowed soils
nor in sod. At this same site, Frey et al. (1999)
reported signi®cant declines in fungal biomass (calcu-
lated from fungal hyphal lengths) with tillage in the 0±
5 cm depth. Although the proportion of total biomass
represented by fungal structures containing intact
phospholipid membranes does not likely di�er among
the cropping systems at the time the soils were
sampled, remnant hyphae devoid of cytoplasm accu-
mulated under NT and contributed to greater aggre-
gate stability (Cambardella and Elliott, 1993; Frey et
al., 1999). Declines with tillage were observed for
C18:2(cis9,12) in the EL-FAMEs during fallow sup-
porting the existence of other eukaryotic lipid contain-
ing structures sensitive to tillage.

4.3. Signi®cance of C16:1(cis11)

Recent studies have noted the sensitivity of
C16:1(cis11) within the PL-FAMEs of forest soils to
metal contamination (BaÊ aÊ th et al., 1992) and pH
(FrostegaÊ rd et al., 1993). This FAME has also been
cited as a biomarker for arbuscular mycorrhizal (AM)
fungi in soils and colonized roots (Olsson et al., 1995).
Within Glomus species, this marker is present in two
lipid classes: neutral lipids, important as storage forms
(spores and vesicles) and phospholipids, from fungal
hyphae (Olsson et al., 1995; Sancholle and DalpeÂ ,
1993). This FAME has also been found in the glyco-
lipid fraction of AM fungi (Jabaji-Hare et al., 1984).

The probable origin of C16:1(cis11) from AM fungi
is supported by its prevalence in less disturbed systems,
i.e. sod and WNT plots, with lowest amounts in WP
and FP systems (Table 4). The majority of the AM
fungal biomass in soil is located outside the roots as
extraradical mycelium and spores (Olsson et al., 1997).
Tillage is known to decrease hyphal lengths of all
fungi, including AM fungi, in soils (Beare, 1997; Kabir
et al., 1999; Miller et al., 1995; O'Halloran et al., 1986;
Wardle, 1995). Furthermore, a sustained input of car-
bon seems to be required for preservation of AM
fungi in soils, as the relative abundance C16:1(cis11)
within the EL-FAMEs declined signi®cantly during
fallow. In contrast, only modest declines in
C16:1(cis11) from PL-FAMEs were observed during
fallow, and tillage was not a factor. This supports the
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data of Olsson et al. (1995) where, upon soil storage,
signi®cant declines were observed in C16:1(cis11) from
the neutral lipid fraction, while declines in the phos-
pholipid fraction were minimal. Thus, removal of the
plant forces the fungus to rely on its stored carbon
resources or these resources become fodder for the
soil's heterotrophic community. Additional studies are
underway to verify the importance of AM fungi to this
system.

A second group of organisms known to contain
C16:1(cis11) in signi®cant amounts are members of the
Cytophaga±Flexibacter group (Nichols et al., 1986b).
Walker (1969) was the ®rst to demonstrate
C16:1(cis11) as the dominant fatty acid in phosphati-
dyl ethanolamine extracted from Cytophaga hutchinso-
nii, a cellulose degrading microorganism. In Walker's
study, C16:1(cis11) was not recovered from the glyco-
lytic fraction; hence, cellulolytic cytophagas are prob-
ably not the primary source of C16:1(cis11) in the EL-
FAMEs of this study.

4.4. Treatment discrimination by PL-FAMEs and EL-
FAMEs

Currently, PL-FAMEs are preferred for determining
microbial community structure of soils based on the
assumption that these lipids are found only in living
cells, turnover rapidly upon cell death and are not
components of storage lipids (White et al., 1979). In
this study, however, useful information was gained
from EL-FAMEs regarding microbial community
structure and physiological status. The prevalence of
mycorrhizal fungi in sod and its sensitivity to tillage
under wheat-fallow cropping was only apparent from
C16:1(cis11) in EL-FAMEs. A decline in the fungal
biomarker C18:2(cis 9,12) of EL-FAMEs with tillage
during fallow supports previous work based on fungal
hyphal lengths (Frey et al., 1999), although fungal bio-
mass with intact cytoplasm was similar among the sys-
tems. The move towards direct extraction and
saponi®cation of EL-FAMEs from soils without the
use of chloroform or silica gel chromatography has
surfaced in part due to its simplicity and application
to a large number of samples (Cavigelli et al., 1995).

In this study, we have demonstrated treatment dis-
crimination by both PL-FAMEs and EL-FAMEs that
were in large part complimentary. Reliance only on
EL-FAMEs may lead to a loss of information about
parent lipid and cellular location, as well as the poten-
tial for inclusion of storage lipids. Therefore, prelimi-
nary screening of soil samples using EL-FAMEs
followed by more detailed lipid analyses may be
necessary to more fully understand the ecology of a
system.
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