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Abstract

Small RNA sequencing is the most widely used tool for microRNA (miRNA) discovery, and shows great potential for the
efficient study of miRNA cross-species transport, i.e., by detecting the presence of exogenous miRNA sequences in the host
species. Because of the increased appreciation of dietary miRNAs and their far-reaching implication in human health,
research interests are currently growing with regard to exogenous miRNAs bioavailability, mechanisms of cross-species
transport and miRNA function in cellular biological processes. In this article, we present microRNA Discovery (miRDis), a
new small RNA sequencing data analysis pipeline for both endogenous and exogenous miRNA detection. Specifically, we
developed and deployed a Web service that supports the annotation and expression profiling data of known host miRNAs
and the detection of novel miRNAs, other noncoding RNAs, and the exogenous miRNAs from dietary species. As a proof-
of-concept, we analyzed a set of human plasma sequencing data from a milk-feeding study where 225 human miRNAs
were detected in the plasma samples and 44 show elevated expression after milk intake. By examining the bovine-specific
sequences, data indicate that three bovine miRNAs (bta-miR-378, -181* and -150) are present in human plasma possibly be-
cause of the dietary uptake. Further evaluation based on different sets of public data demonstrates that miRDis outperforms
other state-of-the-art tools in both detection and quantification of miRNA from either animal or plant sources. The miRDis
Web server is available at: http://sbbi.unl.edu/miRDis/index.php.
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Introduction

MicroRNAs (miRNAs) are a class of functionally important non-
coding RNAs that play an important role in posttranscription
regulation via destabilizing messenger RNAs (mRNAs) or pre-
venting their translation [1, 2]. They have been long considered
synthesized endogenously until recent studies reported that
animal can acquire exogenous miRNA through dietary intake

[3]. Specially, exogenous miRNA sequences from plant (e.g. rice
and honeysuckle) and animal (cow milk and egg) have been de-
tected in the sera and tissues of animals and human [3–6], and
the biogenesis and function of such exogenous miRNAs are evi-
dently health related [7–10]. With increasingly soared research
enthusiasm on dietary intervention, miRNA functional
study has spread out from intracellular posttranscription to
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extracellular signaling, with particular focus on the implication
in human health [11], whereas the first key step remains to be
the reliable detection of exogenous miRNA transport using
next-generation sequencing (NGS). Investigators have detected
numerous dietary, nonhuman miRNAs in 6.8 billion sequenced
short sequences (reads) from 528 human samples [12] and iden-
tified 50 plant-borne miRNAs in human plasma [13] by using
small noncoding RNA sequencing. However, the challenges of
exogenous miRNA discovery in terms of fast multi-genome read
alignment (mapping), cross-species sequence comparison and
particularly the differentiation of exogenous sequences that
share subtle (or no) difference with their homologs in host spe-
cies have posed widespread concerns on existing analysis.

During the past decade, numerous tools have been de-
veloped for miRNA sequencing data analysis including
miRDeep2 [14], CAP-miRSeq [15], DSAP [16], DARIO [17], omiRas
[18], sRNAbench [19], ShortStack [20], miRDeep-P [21] and miR-
PREFeR [22], where the latter two are specifically designed for
plant miRNA. These existing tools focus on miRNA expression
profiling and novel endogenous miRNA discovery and a few
offer downstream analysis on differential expression, miRNA
targets and pathway enrichment [16, 18, 23]. Most tools have at
least one of such problems as high false discovery rate (FDR),
long running time or nonintuitive to use. For example, because
of the common concern that multi-genome comparison nor-
mally requires significant long computing time, Web-based
tools such as DARIO [17], sRNAbench [23] and Chimira [24] limit
the user submission by one sample per job and/or file upload
size <500 MB or 1.6 GB, while the well-designed stand-alone
packages, e.g. CAP-miRSeq [15], require mandatory configur-
ation on local clusters or cloud to process multiple jobs in paral-
lel, which might be challenging for Wet-laboratory users. More
importantly, none of them are designed specifically for exogen-
ous miRNA detection. It thus becomes highly desirable to have
a user-friendly Web-based tool for both endogenous and ex-
ogenous miRNA analysis based on sequencing data.

Empowered by NGS analysis, a common procedure to dis-
cover endogenous miRNAs in a certain species and quantify
their expression is to map all sequencing reads to the known
miRNA sequences archived in the public databases such as
miRBase [25], Refseq [26] and Rfam [27] and then annotate them
based on sequence similarity. Intuitively, we could do the same
for exogenous miRNA analysis, which however will encounter
inherent challenges. First, there are certain discrepancies be-
tween sequences of miRBase annotation and actual expressed
miRNAs because of single-nucleotide polymorphisms (SNPs)
and small insertions and deletions [28–31], which make the de-
tection of miRNA isoforms and exogenous miRNAs challenging.
Second, the possible novel miRNAs in the host could also be the
confounders of exogenous sequences when they are similar. For
instance, the existing rule in miRdeep2 [14] that determines a
novel miRNA based on the putative expression of both 50 and 30

mature miRNAs may lead to conflicts when screening for ex-
ogenous candidates.

In this study, we designed an analytical platform to tackle
the aforementioned challenges through the following strat-
egies: (i) the whole NGS reads will be first divided into two pools
of endogenous and exogenous reads, respectively, according to
their mapping status to the genomes of the host and other diet-
ary species with SNPs being considered. (ii) The capacity of the
entire sequence analysis pipeline will be significantly advanced
by compressing the identical reads from different samples into
a sequence tag with complete index of source sample and cor-
responding read count. In this way, the consensus sequences of

the mapped regions are annotated using all reads across mul-
tiple samples instead reads from a single sample to ensure a
higher recall rate. (iii) Repeat-deprived reads may represent
miRNAs coming from repetitive sequences such as transposable
elements [32, 33] and will be mapped to multiple genome re-
gions. In this study, we will keep all mapped regions that hold a
possible stable stem-loop RNA structure or include unique
mapped reads. This pipeline also integrates multiple analytical
functions such as sequence alignment (BLAST), precursor struc-
ture prediction (RNAfold [34]) and RNA homology search (infer-
nal [35] based on the covariance model (CM) in Rfam [27], where
the latest version supports 100-fold faster comparison). To
annotate each mapped region, we will use the whole-genome
annotation coupled with precursor structure prediction, as
opposed to using merely known mature miRNA sequence.
Based on all these considerations, we developed a Web service,
microRNA discovery (miRDis) based on deep sequencing data to
accomplish the proposed pipeline.

Materials and methods
Read preprocess and mapping

First, the sequencing data quality control (QC) tool, FASTQC [36],
was integrated into the pipeline to generate QC report. To elim-
inate the low-quality reads and adaptors, Cutadapt [37] was
included by using the user input 30-adapter sequence or the
auto-detected adapter by a wrapper program we developed.
Overrepresented sequences (e.g. abundant miRNAs (miR-486-
5p) in human blood, 1–48% [38]) are specially treated to avoid
bias in adapter detection.

UniqRead sets
The same reads from different samples were collapsed into a
uniqRead set and stored in FASTA format with a tag symbol. For
example, in ‘>seq_366_len_22_x21871;1:21857;2:8;3:3;4:3’, ‘seq_
366’ is the unique ID of the uniqRead set; ‘len_22’ indicates the
read length; ‘x21871’ indicates the total count of the reads; and
the rest lists the counts in every individual sample. By consider-
ing all samples simultaneously, such design is expected to re-
duce computational load and render higher confidence on the
detected reads.

Mapping
The genome annotation on 13 types of animal and plant is
downloaded from the Ensemble database [39]. All unique col-
lapsed reads are mapped to the genomes of the host or dietary
species by bowtie [40], and the mapped regions are identified
using BEDtools [41]. For reads that have more than one mapped
region, we assign them to the loci that have more unique reads
or more stable secondary structure inferred by RNAfold (Figure
1A). The BED file covers information about all mapped reads
and the depth in every single position.

Annotation of the genome mapped regions

After mapping, the consensus sequence from each mapped re-
gion is extracted through the following analysis: all peaks [sin-
gle positions with the highest depth (no less than 5) within a
consecutive mapped region] are examined. The region that is
extended from each peak toward both sides and ends where the
depth is >3-fold lower than the peak becomes an expressed re-
gion (Figure 1B). The consensus sequence retrieved from such
expressed region will remain for further annotation to be
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categorized into known mature miRNA (either endogenous or
exogenous), novel miRNA and other noncoding RNA (rules
listed in Table 1).

Known miRNAs
First, the expressed regions that are in accordance with the ma-
ture miRNAs annotation on genome coordinate and sequence
similar are considered known miRNAs. To evaluate the confi-
dence, we define a new term, mature information (I mature), based
on the sequence alignment between the annotated mature se-
quence and the expressed sequence as follows:

Imature ¼
Identity � 100

length ðsequence of the expressed regionÞ :

An expressed region with mature information I ¼ 100 indi-
cates a perfectly matched mature miRNA, while a lower I (<100
and �85) may indicate isomiRs that have one sequence vari-
ation or one extended base compared with its mature sequence.
The miR-precursor type refers to the sequences that are identi-
cal to part of a known precursor but not reported as mature se-
quence in the databases. In addition, we also used the
consensus sequence from each mapped region and their flank-
ing sequence to identify new miRNA precursors through struc-
ture prediction using RNAfold [34] and structure similarity
comparison using infernal based on Rfam CM [27, 35].

An exogenous miRNA sequence can be determined based on
the following scenarios: (1) if the expressed region along with their
flanking sequence show a better match with known miRNA se-
quence in a dietary species compared with the host (e.g. the ex-
tended sequence on either side matched to dietary genome but
not human, although the expressed region may be identical in
both genomes, or the similarity is higher in dietary species versus
human), (2) the expressed region is corresponding to a known
miRNA of the dietary species but unrelated to any host sequence
(e.g. a cow milk-specific miRNA that human does not have).

Novel miRNAs and noncoding RNAs
In Table 1, novel miRNA represents the regions that are either
annotated as predicted miRNAs in Ensemble [42] or homologs
to known miRNAs based on comparison with Rfam sequences
and structures using CM model (e-value < 1E-5) [35]) and with
mature sequences (I mature) >40. Similarly, this pipeline also dif-
ferentiates other types of noncoding RNA, such as small nucle-
olar RNAs (snoRNAs), ribosomal RNAs (rRNAs) and transfer
RNAs (tRNAs), based on the Ensemble genome annotation and
similarity with Rfam structure.

Differential expression analysis

Last, for each detected miRNA, we quantified the expression
based on its read counts normalized within each sample using

Figure 1. The schematic illustrations of the (A) assignment of the multi-mapping reads to a single mapped locus according to the read composition and/or RNA

structure prediction, and (B) detection of the mapped regions after mapping.

Table 1. Rules applied to annotate the expressed regions as known mature miRNA, novel miRNA and other noncoding RNA, based on the
sequence comparison and database annotation

Categories Type Sequence similarity Database annotation

Imature Iprecursor Rfam (e-value) MirBase Ensemble

Known Mature miRNA ¼100 – – Known mature –
IsoMiRs �85 and <100 – – Known mature –
MiR-precursor <85 >50 – Known precursor –

Novel Novel-miRNA1 – – <1E-5 – Predicted miRNA
Novel-miRNA2 >40 – <1E-5 – Not annotated

Others Other ncRNA1 – – – – Noncoding RNA
Other ncRNA2 – – <1E-5 – Not annotated
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Reads Per Kilobase of transcript per Million mapped reads and
across samples using trimmed mean of M values [43]. The dif-
ferential analysis is performed using EdgeR [44], which outputs
visualized results on the expression heatmap, multidimen-
sional scaling, P-value and FDR distribution.

Illustration of miRDis using testing sets

The MCF7 breast cancer cell line data (GEO Accession number:
GSE31069) has been used to validate the miRNA detection, where
four sets of miRNA sequencing library from cytoplasmic fraction
and all cell content, before and after Dicer knockdown, respect-
ively, are processed by Illumina Genome Analyzer II [14]. Given
that Dicer is an important regulator for miRNA biogenesis, the
knockout group is supposed to express less endogenous miRNAs.
Here, we compared the performances between our method and
existing state-of-the-art tools (Cap-mirseq [15], omiRas [18] and
Chimira [24]) on miRNA detection and expression quantification.
For the same purpose, we also collected another three sets of
sequencing data (Supplementary Table S1) as independent valid-
ation on miRNAs from human milk cell (GSE71098), bovine milk
exosome (GSE55144) and plant (maize) (GSM1178886-7),
respectively.

To illustrate exogenous sequence detection, we use a miRNA
sequencing data (SRA ID PRJNA307561) collected from a human
milk-feeding study [45]. The miRNA samples were extracted from
the blood of five healthy individuals at 0, 3, 6 and 9 h after they
consumed 1 L bovine milk. The pooled samples are sequenced
using Illumnia-HiSeq2000 at the BGI (Hong Kong, China).

Development of the Web server

The interface of the Web service was developed using smarty/
PHP framework while the analytical modules were developed
using JavaScript and Ajax, and the data were visualized using
JavaScript packages including Datatables and CanvasXexpress.
The server is currently hosted in an in-house computer cluster
(24 cores and 164G memory) administrated using SGE. To speed
up the computation, we parallel all major steps, from uploading
and multi-sample processing. Users can access miRDis at http://
sbbi.unl.edu/miRDis/index.php.

Results

The schematic flowchart in Figure 2 showcases the implemen-
tation workflow and the functionality of this pipeline. Four
main components include read processing, read mapping, an-
notation and differential expression analysis.

Input

MiRDis requires input files as small noncoding RNA sequencing
(RNA-seq) read FASTQ data in *.zip or *.gz format. Once upload-
ing all samples, users can input basic parameters or use the de-
fault setting on 30-adapter, minimal and maximal read length
and minimum quality in each base. Currently, five host species
(human, chimpanzee, dog, rat and mouse) and eight common
dietary species including cow, pig, chicken, tomato, maize, soy-
bean, rice and grape are available for the exogenous miRNA
analysis. Every job holds a unique job ID (e.g. 20160817135554r);
once it is finished, the result can be accessed in miRDis within 2
weeks. An e-mail address is required to receive the job notifica-
tion from the system.

Output

MiRDis outputs four types of results including summary, identi-
fied candidates (lists of annotated known miRNAs, novel
miRNAs, other noncoding miRNAs and exogenous miRNAs), an-
notation (details of each entry) and differential analysis, re-
spectively. For example, Figure 3A shows the result summary
from the MCF7 cell line data analysis, where we can see 1212
known miRNA regions (including fragmented regions from the
same miRNA), 303 novel miRNAs and 2834 other noncoding
miRNAs have been detected. Figure 3B shows the pie charts of
read count distribution across all categories, which displays the
expression of total miRNA is significantly reduced after Dicer
knockout in each group. These pie charts are available for each
sample on the summary page.

On the detailed result page (Figure 4A), candidates identified
in each category (known, novel, other noncoding and exogen-
ous) are organized by Javascript Datatables, along with the basic
information such as mapped region coordinate, sequence simi-
larity and counts in each sample. A further annotation page for
each entry shows the details about sequence, structure and
genome coordinate, as well as the alignment after mapping.
Differential expression analysis is available for any customized
group comparisons (Figure 4B).

Case analysis for performance validation

The performance of MiRDis was first evaluated based on the
discovery made on the four sets of MCF7 cell line data includ-
ing 1000 known mature miRNA, 184 known precursors, 303
novel miRNAs and 2834 other noncoding RNAs as summar-
ized in Figure 3A. First, given dicer as an important regulator
for miRNA biogenesis, the knockout group is supposed to
have reduced expression of miRNAs. Noncoding RNAs
(snoRNAs, rRNAs, tRNAs and non-hairpin transcripts) are
mostly dicer-independent. Through the expression compari-
son between control group (SRR326279 and SRR326280) and

Figure 2. The pipeline workflow for endogenous and exogenous miRNA discov-

ery based on small RNA sequencing analysis.
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Dicer knockout group (SRR326281 and SRR326282), 559
mapped regions are differentially expressed, which involve
174 known miRNAs and 16 predicted novel miRNAs that are
downregulated and 369 noncoding RNAs that are mostly
upregulated (Supplementary Table S2).

When compared with other methods such as CAP-miRSeq
[15], omiRas [18] and Chimira [24] based on the same analysis,
e.g. on sample SRR326279 versus SRR326281, miRDis identified
more miRNAs that are suppressed by Dicer silencing, i.e. 676 of
879 compared with 354–477 reported in other methods. We con-
sider this result is better aligned with our understanding of
Dicer’s role in miRNA biogenesis and shows high sensitivity of
miRDis. Similar result holds on the novel miRNA prediction by
each tool, e.g. 60.8% in miRDis versus 55.3% in other methods.
Note that there is a discrepancy between the detected other
noncoding RNAs detected by our tools and others (omiRas), i.e.
544 versus 502. The explanation is that miRDis covers all anno-
tated noncoding RNAs from the Ensemble [42] and Rfam [46],
such as tRNA, mitochondrial tRNA, rRNA, small conditional
RNA, small nuclear RNA, snoRNA, misc_RNA and long

noncoding RNA, while omiRas only focused on the Dicer-
independent noncoding RNAs such as PIWI-interacting RNA
and snoRNA.

Validation on the other three data sets also shows that
miRDis outperforms other methods in terms of the known
and novel miRNA detection and computing efficiency
(Supplementary Table s1, http://sbbi.unl.edu/miRDis/supp/s1.
docx). For instances, in human break milk data, most of other
tools detected too many or too few miRNAs (e.g. 737–920 or 35
in average among 20 samples), while miRDis and CAP-miRSeq
detected �500 sequences, which is reasonably close to the cur-
rent report of �300 miRNAs confirmed in breast milk cell
through microarray and polymerase chain reaction [47, 48]. It is
notable that miRDis maintained a high detection rate (70.9–100.
0%) while controls the FDR within 11.2% (in contrast to 55.9–74.2
% of other tools). Considering sequencing analysis can render
more power in terms of novel sequence detection, this FDR may
even be overestimated. Similar observation holds in the bovine
milk exosome data where other tools tend to introduce high
false positive prediction (>58.2%) compared with the

Figure 3. Examples of (A) the summary page (from the data analysis on normal and Dicer knockdown MCF7 cells with job ID: 20160817135750r). (B) Pie charts that show

the proportional abundance among known miRNA, coding mRNA, novel miRNA and other noncoding RNA.
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benchmark [49], i.e. 179–307 versus 79. In this regard, miRDis
can render up to 92.4% sensitivity by not including any false dis-
covery. As miRDis also offers analysis of plant miRNA in the
dietary species, we compared the performance with the tools
using public maize sequencing data and found miRDis derived
the highest performance (sensitivity ¼ 79.0–92.4%) compared
with other tools (sensitivity ¼ 38.4–43.0%).

Regarding the running time, miRDis is among the fastest
tools and particularly efficient for uploading (Supplementary
Table S1, http://sbbi.unl.edu/miRDis/supp/s1.docx). Via the
parallel setting, the current pipeline can handle 40 small RNA-
seq data (each includes 50 million reads) and search against
nine selected genomes at the same time and finish the job in
12 h.

Case result for exogenous sequence detection

Based on the milk feeding data set, where 67 279 237 reads were
mapped to the human genome, we have detected 225 known
mature miRNAs, 4 known precursors, 44 novel miRNAs and 839
noncoding RNAs. Among them, 44 miRNAs show elevated
abundance after milk feeding (Figure 5).

As introduced in Methods section, all the reads were also
mapped to the bovine genome, where we found 68 bovine
miRNA candidates that either have specific sequences com-
pared with their human homologs or show elevated expression
after milk feeding, although the sequences may be identical.
Although the detailed list is provided in Supplementary
Table S3, we categorized them into the following four groups
(with illustration in Table 3):

(I) miRNAs have specific sequence in bovine compared with
human

In this category, mature miRNAs such as miR-181a and miR-
655 show slightly different sequences in human and bovine
genomes (Table 3_i). According to the read mapping result, both
bovine and human miRNAs (bta-miR-181a-2 and has-miR-181a-
2) are expressed in the plasma samples (Figure 6A and B). The
blue reads in each alignment are those having better align-
ments in bovine versus human, which supports the expression
of exogenous miRNAs.

(II) miRNAs show different sequences in the extended region
of bovine and human homologs (Table 2_ii)

Different from Group 1, miRNAs in this category show al-
most identical mature sequence in bovine and human; how-
ever, the differentiation between two different sources can rely
on the difference in the extended sequences for each mapped
region. For example, hsa-miR-378a-3p and bta-miR-378 share
the same annotated mature sequence (ACTGGACTTGGAGTCA
GAAGGC) but show different sequences in the extend regions, -
(TGG) in bovine and -(CT) in human (Table 3 and Figure 5C and
D). This group is less conclusive regarding exogenous sequence
detection as the remained adaptor or other factors may cause
the additions of the nucleotides in extended.

(III) miRNAs that are specific in bovine and has no annota-
tion in human

There are two cases that bovine has specific mature se-
quence, while human does not have (bta-miR-2898 and -miR-
1839). In Table 3, the exogenous potential of bta-miR-2898 is
2.33, which means over 33% mapped reads have better mapped
in bovine genome. Bta-miR-1839 (bovine 14:1883889-1883907)
shows lower potential score as 2, as a similar sequence region

Figure 4. Output illustration on the MCF7 data, including (A) the results on identified candidates in each category, the annotation page for each entry that covers the

known sequence and structure from external databases and the alignment details, (B) the differential expression analysis on user defined group comparison.
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Figure 5. Heatmap shows the altered expression of 58 miRNAs (44 upregulated) in human plasma after milk feeding at 3, 6 and 9 h (with the job ID: 20160817135554r).

The expression is scaled within [-2, 2].

Figure 6. Read alignments in both bovine and human miRNA regions (A and B) miR181a and (C and D) miR-378. Reads in black represent those have better alignments

in human versus bovine, while reads in blue represent the contrary.
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in human (human 15:82756012-82756031) is annotated as other
noncoding RNA (SCARNA15: RF00426) according to infernal pre-
diction with e-value ¼ 1.3E-21. However, both cases show
decreased abundance after milk intake, which makes them less
compelling as exogenous miRNA candidates.

(IV) miRNAs that have identical sequences in human and
bovine but show elevated expression after milk feeding

In total, 42 miRNAs are included in this group (Supplementary
Table S3). We consider entries in this category the least conclusive
toward exogenous sequence identification. The differentiation of
identical sequences from human and bovine requires novel labora-
tory protocols.

According to both sequence and expression evidence, we pro-
posed that three bovine miRNAs (including bta-mir-181a-2, -miR-
378 and -miR-150) are possible exogenous miRNAs, plus two add-
itional (bta-miR-143 and -miR-486) weaker cases. It is also inter-
esting to find in literatures that miR-378 regulates fatty acid and
cholesterol metabolism pathways by targeting lipid metabolism
genes related to milk fat metabolism in bovine primary mam-
mary epithelial cells [50, 51]. Similarly, bta-miR-181a regulates
the biosynthesis of bovine milk fat by targeting ACSL1 [52], while
miR-150 inhibits the synthesis of the transcription factor c-Myb
to regulate B-cell differentiation [53]. It is hypothetical that they
may play similar roles in human system.

Discussion

In this work, we present miRDis, a Web-based small RNA sequenc-
ing analytical pipeline that displays the following key features (i)
systematic annotation of known miRNAs and other noncoding
RNAs based on read mapped regions, (ii) prediction of novel
miRNAs and noncoding RNAs through assigning ambiguous reads
to unique genome region with well-predicted RNA structure, (iii)
detection of candidate exogenous miRNAs transported from diet-
ary species and (iv) support of the comparative differential expres-
sion analysis. Through a simple graphical interface, users can use
the full analysis of this one-stop tool for miRNA sequencing data
analysis through minimal parameter settings. The tabular and
graphical output contains detailed reports on the read alignment,
annotation and other related statistics.

MiRDis has been tested on small noncoding RNA sequencing
data from human milk-feeding study, where we detected a few
candidate exogenous miRNAs in human plasma based on both
sequence and expression evidence. Through the data visualiza-
tion, users can examine the detailed alignment associated with
both exogenous and endogenous cases. To validate the expres-
sion quantification, we used the Dicer silencing data set as
benchmark to compare miRDis with other existing tools. In gen-
eral, miRDis can identify more miRNAs than others tools

Table 2. Performance of miRDis compared with Cap-mirSeq, omiRAS and chimera

Types miRDis CAP-miRSeq omiRAS Chimira

Version v1.0 v1.1 12/2013 V1.0
Aligner Bowtie Bowtie Bowtie BLASTN
Reference genome hg19 hg19 hg19 hg19
Computation time for single data set (219–387 MB) 2 h 5 h 3 h 1 h
Downregulated/mature miRNAs 676/879 (76.9%) 354/769 (46.0%) 362/692 (52.3%) 477/913 (52.2%)
Downregulate/novel miRNAs 185/303 (60.8%) 183/353 (51.8%) 145/262 (55.3%) –
Differentially expressed noncoding RNAs 397/544 (72.9%) – 403/502 (80.3%) –

Note. The common settings include the extraction of mapped region with more than five supporting reads and two mismatches for mapping.

Table 3. Different categories of miRNAs that show exogenous potential at different level based on the sequence and expression evidence
(Group 5 is listed in Supplementary Table S3)

Categories Mapped regions
in bovine

Annotation type Sequences (bovine versus human) Exogenous
potential

Altered
expression
Log2FC

I 11:95709486–95709507 Known precursor bta-miR-181* ACCACCGACCGTTGACTGTAC has-
miR-181a-3p ACCATCGACCGTTGACTGTACC

0.98 3.39

12:19596253–19596275 Known mature bta-miR-16a TAGCAGCACGTAAATATTGGTG hsa-
miR-16b-5p TAGCAGCACGTAAATATTGGCG

0.8 –

21:67587374–67587396 Known mature bta-miR-655 ATAATACATGGTTAACCTCTCT hsa-
miR-655-3p ATAATACATGGTTAACCTCTTT

0.66 –

II 4:10715304–10715327 isoMiR-mature bta-miR-378 ACTGGACTTGGAGTCAGAAGGC(TGG)
hsa-miR-378a-3p
ACTGGACTTGGAGTCAGAAGGC(CT)

0.79 0.72

18:56407899-56407922 Known mature bta-miR-150 TCTCCCAACCCTTGTACCAGTGT(GT)
has-miR-150 TCTCCCAACCCTTGTACCAGTG(CT)

0.1 2.35

7:62809358–62809378 Known mature bta-miR-143 TGAGATGAAGCACTGTAGCTCG hsa-
miR-143 TGAGATGAAGCACTGTAGCTC(A)

0.00039 1.12

27:36261887–36261910 isoMiR-mature bta-miR-486 TCCTGTACTGAGCTGCCCCGAG(GC)
hsa-miR-486(mir-486-2)
TCCTGUACTGAGCTGCCCCGAG(CU)

2.71E-06 1.5

III 8:74354026–74354044 Known mature bta-miR-2898 TGGTGGAGATGCCGGGGA hsa NA 2.33 �0.7
14:1883889–1883907 Known mature bta-miR-1839 AAGGTAGATAGAACAGGTCTTGTT

hsa NA
2 �0.84
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because of the integrated annotation from both miRBase and
Ensemble database. Both known and predicted miRNAs shows
consistently lower expression with Dicer knockdown treatment,
while other noncoding miRNAs such as snoRNAs, rRNAs, tRNAs
and non-hairpin transcripts are independent on Dicer regula-
tion. Other existing methods can be applied for functional ana-
lysis of the identified miRNAs, either experimentally or
computationally [54–56].

Note that the capacity of this pipeline will be significantly
advanced by compressing reads with the same sequence from
different samples into a unique sequence set. In this way,
miRDis annotates consensus sequence of the mapped regions
using all reads across multiple samples instead of from a single
sample to ensure a higher recall rate while users can easily re-
trieve every sample count by information imbedded in the read
tags. It significantly increases the performance in terms of com-
putation time on mapping and memory consumption. Based on
a new test on large-scale cancer miRNA-seq data from The
Cancer Genome Atlas, the current pipeline can handle 40 small
RNA-seq data (each includes 40 million reads) and search
against nine selected genomes (one host and eight dietary spe-
cies) at the same time and finish the job in 12 h.

Conclusions

In summary, we proposed the first pipeline for small noncoding
RNA sequencing data analysis that enables the automated de-
tection in host samples the presence of both endogenous
miRNA and exogenous miRNA from dietary species. In addition,
the improvement in performance of our system over state-
of-the-art methods lies in the high sensitivity of miRNA detec-
tion and expression quantification, and the differentiation of
the isomiRs and non-host miRNAs. We also overcome the chal-
lenges of scaling this system for processing large set of miRNA-
seq data through parallel computation. With increased research
efforts in miRNA biology, we believe miRDis provides an effi-
cient and friendly tool for making promising discoveries in
miRNA cross-species transport.

Key Points

• Compelling evidence shows that animals can acquire
exogenous miRNA from diet; however, the mechanism
of cross-species transport miRNA has yet to be fully
explored.

• It is now possible to identify in host species the ex-
ogenous miRNA sequences using computational ana-
lysis of small noncoding RNA sequencing data.

• Computational methods for the miRNA sequencing
analysis have been recently developed, and none has
focused on the automatic detection of the exogenous
sequences yet.

• We have developed a new system for the comprehen-
sive discovery of miRNA of all kinds based on the
sequencing data analysis, which represents the first
automated tool for exogenous miRNA detection.

• We used several public benchmark noncoding miRNA
data sets and an in-house data from a human feeding
study to compare the performance of the state-of-the
art methods for miRNA detection and provide the
results.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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