
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

8-31-2008

NMFLUX: Improving Degradation Behavior of Server Applications NMFLUX: Improving Degradation Behavior of Server Applications

through Dynamic Nursery Resizing through Dynamic Nursery Resizing

Witawas Srisaan
University of Nebraska-Lincoln, witty@cse.unl.edu

Cheng Huan Jia
University of Nebraska-Lincoln, cjia@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Srisaan, Witawas and Huan Jia, Cheng, "NMFLUX: Improving Degradation Behavior of Server Applications
through Dynamic Nursery Resizing" (2008). CSE Technical reports. 93.
https://digitalcommons.unl.edu/csetechreports/93

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/188135591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/93?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages

NMFLUX: Improving Degradation Behavior of Server
Applications through Dynamic Nursery Resizing

Witawas Srisa-an and ChengHuan Jia
Department of Computer Science & Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115

{witty,cjia}@cse.unl.edu

ABSTRACT
Currently, most generational collectors are tuned to either deliver
peak performance when the heap is plentiful, but yield unaccept-
able performance when the heap is tight or maintain good degrada-
tion behavior when the heap is tight, but deliver sub-optimal per-
formance when the heap is plentiful. In this paper, we present NM-
FLUX (continuously varyingthe Nursery/Matureratio), a frame-
work that switches between using a fixed-nursery generational col-
lector and a variable-nursery collector to achieve the bestof both
worlds; i.e. our framework delivers optimal performance under
normal workload, and graceful performance degradation under heavy
workload. We use this framework to create two generational garbage
collectors and evaluate their performances in both desktopand server
settings. The experimental results show that our proposed collec-
tors can significantly improve the throughput degradation behavior
of large servers while maintaining similar peak performance to the
optimally configured fixed-ratio collector.

1. INTRODUCTION
Garbage collection (GC) is a process to automatically reclaim

dynamically allocated memory. It has been adopted as a language
feature in many modern object-oriented languages including Java,
C#, and Visual Basic .NET. With garbage collection, programmers
are relieved from the burden of explicitly managing memory,a task
that has proved to be tedious and error prone. As of now, the most
adopted GC strategy is generational garbage collection.

Generational GC is based on the hypothesis that “most objects
die young”, and thus, concentrates its collection effort inthenurs-
ery, a memory area used for object creation [24]. Because the nurs-
ery is usually configured to be much smaller than the mature space
(an area to host surviving objects from the nursery), generational
collectors often yield shorter GC pauses than most other GC strate-
gies. The two common ways to set the size of the nursery are to
use fixed nursery/mature ratio throughout execution (e.g. HotSpot
generational collector [5]) or varying the nursery size based on the
amount available memory after each collection (e.g. the Appel gen-
erational collector [1] in Jikes RVM [9]).

In applications that demand a large volume of dynamic mem-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ory, it is attractive to use languages with garbage collection as the
development platform. One example of such memory intensiveap-
plications is application servers. An application server is a soft-
ware system that delivers “applications to client computers”. It
also handles most business logics and data accesses for the ap-
plications it manages1. The leading technology used to develop
application servers is Java Platform Enterprise Edition orJEE (for-
merly known as J2EE) from Sun Microsystems. Many commercial
and open-source implementations of the JEE platform include IBM
WebSphere [10], JOnAS [17], and JBoss [11].

Two common characteristics of application servers are thatthey
are long-running, and their service demands can vary significantly.
Interestingly, the periods of higher demands often “coincide with
the times when the service has the most value” [27]. Thus, it is cru-
cial for these servers to be able to face unexpected heavy demands
without failing or yielding unacceptable performances. However,
a study by Xianet al. [29] has shown that the throughput perfor-
mances of these application servers degrade ungracefully and the
root cause for such poor degradation behavior isgarbage collec-
tion.

This Work. To date, most investigations of GC performances in
application servers have been done using fixed-ratio generational
collectors [8, 21, 29, 28]. As the first step, we implemented an Ap-
pel collector into HotSpot, our experimental Java virtual machine
(JVM) platform from Sun Microsystems. We then investigatedits
performance in an application server setting using SPECjbb2000.
We found the Appel collector to deliver more graceful degradation
behavior, but much lower average throughput performance than the
fixed-ratio collector. We then investigated the main reasons that
cause the throughput performance of the fixed ratio collector to de-
grade so poorly. Our investigation yielded the following conclu-
sions:

1. Longer-living objects.A study by Xianet al. has shown
that as the demands become heavier, objects also tend to live
longer due to higher degree of concurrency [28]. In large
servers, higher demands often mean that a larger number of
threads compete for the CPUs, and therefore, each thread
makes less execution progress in a given amount of time.
Thus, objects are not used in a timely fashion and remain
reachable in the heap for a longer period of time.

2. Inefficient memory usage.A study by Hertz and Berger finds
that an application using garbage collection often requires
three to five times more memory than a similar application

1Definition of Application Servers from WikiPedia,
http://en.wikipedia.org/wiki/Applicationserver

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2008-0008
Issued August 31, 2008

using explicit memory management [6]. This additional mem-
ory is used to extend GC intervals so that objects have more
time to die. As the demands become heavier, the heap is
filled up much quicker, resulting in higher frequency of GC
invocations. However, because objects are now longer living,
these GC invocations are not effective.

3. Frequent invocations of full collection.Most generational
collectors utilizecopy-reservespace, a space equaled to the
size of the nursery located in the mature generation, to en-
sure that nursery collection (or minor collection) can com-
plete successfully. If the amount of copy-reserve is smaller
than the nursery, there is a chance that minor collection will
fail due to a larger volume of surviving objects than the size
of copy-reserve. When such condition occurs, full heap col-
lection is invoked instead of minor collection. We discovered
that under heavy workload, this condition occurs repeatedly,
leading to many consecutive full collection invocations.

We leveraged these insights to constructNMFLUX, a framework
that dynamically selects when to use fixed-ratio collector and when
to use variable-ratio collector. NMFLUX monitors the GC behavior
to detect instances when the JVM invokes full collection consecu-
tively due to the copy-reserve space being too small. When such an
instance is detected, the nursery/remote ratio is reduced.

We utilized this framework to create two variations of genera-
tional collector: thedynamic-ratiocollector and thehybrid collec-
tor. Our dynamic-ratio collector initially sets the nursery/remote
ratio to be the value that yields the optimal performance. Once an
instance of two consecutive full collection invocations isencoun-
tered, our dynamic-ratio collector reduces the nursery/mature ratio
from 1:m to 1:m+1, wherem indicates the number of times the ma-
ture space is larger than the nursery. In this technique, thecollector
has full control of the nursery size, as it remains fixed untilthe next
instance of back-to-back full collection.

Our hybrid collector is also similar to the dynamic-ratio collector
except that it switches to an Appel collector when full collection is
invoked consecutively. Thus, the collector does not have the full
control of the nursery size because the Appel collector automati-
cally adjusts the size based on the available amount of heap mem-
ory. In effect, the goal of these two techniques is to facilitate more
minor collection invocations when the demand is high, and thus,
improving the throughput performance at this critical execution re-
gion. It is worth noting that both collectors can switch backto the
optimal fixed-ratio once the demands become lighter.

The remainder of this paper is organized as follows. Section2
provides information pertinent to this work. Section 3 reports the
results of our investigation of the throughput degradationbehav-
ior between fixed-ratio collectors and our Appel collector.Section
4 details the design of NMFLUX and the dynamic-ratio and the
hybrid collectors. Section 5 evaluates the effectiveness of our pro-
posed schemes. Section 6 briefly discusses some of the existing
related research efforts. Section 7 discusses future work,and the
last section concludes this paper.

2. BACKGROUND
One of our proposed algorithms is a combination of the fixed-

ratio generational collector and our implementation of an Appel
collector in HotSpot. This section outlines the HotSpot collector
[5] and the basics of an Appel collector [1].

2.1 Generational Collector in HotSpot
The HotSpot VM partitions the heap into three major genera-

tions: nursery, mature, and permanent. The nursery is further par-

titioned into three areas:edenand two survivor spaces,from and
to, which collectively account for a minimum of 20% of the nurs-
ery (i.e. the ratio of the eden to the survivor spaces is 4:1).There
is also a requirement that each of the two survivor spaces be larger
than 64 KB. Users can set the size of the nursery using a command-
line argument that specifies the ratio between the nursery and the
mature space (e.g. the ratio of 1/3 nursery and 2/3 mature or 1:2
is used as the default ratio for systems using AMD 64 processors).
Once set, the ratio stays fixed throughout an execution. Object al-
locations initially take place in theedenspace. If theedenspace is
full, and there is available space in thefrom space, thefrom space
is used to service subsequent allocation requests.

HotSpot uses copying collector to collect the nursery (minor col-
lection) and mark-compact to collect the entire heap (full collec-
tion). In this technique, minor collection is invoked when both
theedenandfrom spaces are full. The collection process consists
mainly of copying any surviving objects into theto space and then
reversing the names of the two survivor spaces (i.e.from space
becomesto space, and vice versa). Thus, theto space is always
empty prior to a minor collection invocation [22], and it is used
as an aging area for longer living objects to die within the nurs-
ery. It is worth noting that the aging area is only effective when
the number of copied objects from the eden and thefromspaces are
small. If the number of surviving objects become too large (such as
in application servers), most of these objects are promoteddirectly
to the mature generation, leading to more frequent full collection
invocations.

Similar to most copying-based collector, HotSpot usescopy-reserve
space to ensure that the amount of available memory in the mature
generation is large enough to accommodate surviving objects from
minor collection. It is possible that all objects in the nursery sur-
vive minor collection and thus, the size of the copy-reservespace
is usually set to be the same as the size of the nursery. When the
amount of the copy-reserve space is less than the nursery, full col-
lection based on mark-compact algorithm is invoked. We refer to
the default collector in HotSpot asfixed-ratiothroughout the paper.

The full collector in HotSpot performs garbage collection in four
phases: marking, precompaction, adjusting pointers, and compaction.
The marking phase goes through the root sets and marks all reach-
able objects. To avoid deep recursion, a marking stack is used [12].
The precompaction phase calculates a new target address foreach
object after compaction and encodes the address into the object.
The next phase updates any references to an object to the new tar-
get address. This is done by simply reading the value encodedin
the object as part of the precompaction phase [13]. The last phase
slides objects toward the lowest address of the mature space.

2.2 Appel Collector
Similar to the collector in HotSpot, Appel collector partitions

the heap into nursery and mature generations. However, the nurs-
ery size is variable depending on the object occupancy in thema-
ture space. If copying is used to collect the nursery, a copy-reserve
space is also used to ensure a successful completion of minorcol-
lection. An Appel collector adjusts the nursery size after each mi-
nor collection. Initially, the nursery,n, occupies half of the heap
and copy-reserve space,cr, occupies the other half (n = cr = heap

2
).

When the nursery is full, the surviving objects,m, are copied to
the copy-reserve space. Once done, the nursery occupies half of
the available space in the heap, and the copy-reserve occupies the
other half (n = cr = heap−m

2
). This nursery resizing process re-

peats until a certain size threshold is reached. At that point, full
collection is invoked. To date, semi-space copying [1, 9], mark-
sweep [9], and mark-compact [14] have been used to perform full

collection in Appel collectors.
Because both Appel and fixed-ratio collectors are widely used,

it is worth to point out some advantages and disadvantages ofeach
approach. One argument for using the fixed-ratio collectorsis that
the nursery size can be tuned to match the available memory ina
system and a lifespan characteristic of an application. Forexample,
the size of the nursery can be tuned to make sure that by the time the
nursery is exhausted, most of the objects allocated up to that point
have already died. Thus, in desktop-like applications where lifes-
pan characteristics are more predictable, the fixed-ratio collectors
can perform very well [5, 15].

On the other hand, the nursery size varies in Appel collectors.
Once the nursery size becomes too small to allow enough time for
newly created objects to die, these objects are promoted, causing
higher minor collection overhead. Thus, given an application with a
uniform lifespan characteristic, an Appel collector may not perform
as well as a fixed-ratio collector.

In applications with variable and unpredictable lifespan charac-
teristics such as application servers, a fixed ratio collector may not
perform efficiently when the lifespan characteristic is different than
the expected characteristic. As will be shown in the next section,
these collectors may forgo minor collection entirely when facing
heavy demands. On the other hand, Appel collectors are more toler-
ant to changes in characteristic as the nursery is dynamically sized
based on the available memory. Thus, minor collection continues
to be invoked as long as there is available memory in the heap.

3. MOTIVATION
A study of SPECjAppServer2004 by Xianet al. has shown that

a 20% increase in workload can result in a 75% decrease in the
throughput performance [29]. Such degradation behavior isconsid-
ered ungraceful as it can lead to non-uniform responses and unsta-
ble system performances. The study further identifies garbage col-
lection as the root cause of the problem. The experimental results
indicate that at the heaviest workload, full collection canspend over
five minutes to complete its task, preventing the application from
making any execution progress.

The major reason for such a long collection time is because the
number of full collection invocations increases disproportionally
to the number of minor collection invocations at heavy workload.
Figure 1 illustrates this scenario in SPECjbb2000. Notice that at
the beginning of the execution, the majority of GC invocations are
minor collection (indicated by gray bars). As the executionpro-
gresses toward termination, most of the GC invocations become
full collection (indicated by black bar). The change becomes dras-
tic at 8-warehouse workload.

Because the study by Xianet al. [29] was conducted using only
a fixed-ratio collector tuned to yield the best throughput perfor-
mance, we further investigated if similar throughput degradation
behavior is experienced when different nursery/mature ratios are
used and when an Appel collector is used. In the following sec-
tions, we outline:

1. The steps necessary to make HotSpot support Appel collec-
tor.

2. The throughput performances when different ratios are used
in the fixed-ratio collector.

3. The throughput performances of two fixed-ratio collectors
(one yielding the highest throughput and the other yielding
the best degradation behavior) and the Appel collector.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09 3e+09 3.5e+09

W
o
rk

lo
a

d
 (

n
u

m
b

e
r

o
f
w

a
re

h
o

u
s
e

s
)

Allocation (bytes)

Minor GC
Full GC

Figure 1: Distribution of minor and full collection invocat ions
over execution time (SPECjbb2000)

3.1 Modifying Heap Layout
The heap layout (detailed in Figure 2a) adopted in HotSpot does

not allow dynamic resizing of generations during execution. This
is because the starting address of the nursery is fixed, and the com-
paction process during each full collection slides the objects to-
ward the lowest address of the mature space. Thus, there is no
room to adjust the boundary between the nursery and the mature
generation. To support our proposed collectors, we reorganized the
heap so that the mature space starts at the lowest address of the
heap. In this layout, the compaction process slides objectstoward
the lowest address of the heap, leaving unused memory at the top
(higher-address) of the mature space. After each minor collection,
the eden space is also empty, allowing straightforward adjustment
of the nursery size.

Mature

Mature

Eden

To

From

Eden

To

From

Permanent

Compaction

starting

address

Permanent

N
u

rs
e

ry

N
u

rs
e

ry

(a) Original heap layout in HotSpot (b) Modified heap layout

Compaction

starting

address

lower address

higher address

Figure 2: Original vs. modified heap layouts

To confirm that our reorganization has minimal effects on perfor-
mance, we compared the throughput performances of SPECjbb2000
when the original layout and the modified layout were used. The
result is depicted in Figure 3. Notice that the performanceswere
nearly identical throughout the execution. Base on this result, we
concluded that our modified heap layout does not affect the over-
all performance and can be used as the foundation to support the

implementation of an Appel collector.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g

h
p

u
t

Warehouses

Original layout
Modified layout

Figure 3: Comparing the throughput performance using the
original and the modify heap layouts (SPECjbb2000)

3.2 Implementing Appel Collector
The modified heap layout allows us to adjust the nursery size

freely. Thus, it is possible to implement an Appel collectorusing
the modified HotSpot. Initially, the heap space, not including the
permanent space, is divided into two equal portions, nursery and
copy-reserve. Once the nursery is full, minor collection iscalled,
and surviving objects are moved to the copy-reserve space. Once
the minor collector finishes, the occupied space (64 KB alignment)
is considered as the mature space. The remaining space is then split
in half, one for the nursery and the other for the copy-reserve.

It is worth noting that there are numerous efforts to reduce the
size of copy-reserve space [14, 26, 25, 19]. (Brief descriptions are
provided in Section 6.) However, we chose not to use any of these
techniques for two reasons: First, we want to fairly comparethe
performance of a basic Appel collector to that of a fixed-ratio col-
lector. Second, most of the optimizations leverage an insight, based
on studies of desktop applications, that only a small numberof ob-
jects survive minor collection, thus, the copy-reserve size can be
reduced. Our previous study of application servers show that there
are times that most, if not all, objects survive minor collections [29,
28]. Thus, these optimizations may not work efficiently in our ex-
perimental settings.

When the available memory is smaller than 256 KB, full col-
lection is invoked. This is because the minimum requirementfor
the two survivor spaces is 64 KB each. Thus, if the nursery is set to
128 KB, there is not enough memory to create the eden space. Also
note that the only time that full collection is invoked back-to-back
is when the amount of available memory is fewer than 256 KB after
a full collection invocation.

As stated in Section 2, the default minor collector also leaves
the to space partially occupied after each minor collection invoca-
tion, making resizing more difficult. To overcome this challenge,
we modified the minor collector to copy all surviving objectsfrom
the nursery as well as thefrom space directly to the mature space.
In other words, the nursery is completely empty after each minor
collection to allow resizing of the nursery.

3.3 Experimental Environment
We conducted our experiment on an AMD Opteron system with

two 2 GHz processors. The system has 4 GB of physical mem-
ory. We used our modified HotSpot with the new heap layout. It
also supports both the fixed-ratio and the Appel collector. For our

benchmark, we used SPECjbb2000 that was configured to go from
one warehouse to sixteen warehouses in increments of one ware-
house. We set the maximum heap size to 308 MB, which was the
same as the maximum live-size. We used 308 MB to provide plenty
of heap space when the memory demand was light; thus, garbage
collection should perform efficiently. However, when the memory
demands became heavy, the heap would still be large enough for
SPECjbb2000 to execute, but without the necessary space to al-
low for efficient GC. Thus, this setting should closely emulate a
server application facing unexpected demands. Also note that our
maximum heap size (308 MB) was much smaller than our physical
memory capacity (4 GB), meaning that paging did not affect the
throughput performance. For the fixed-ratio approach, the nurs-
ery/mature ratio was set to 1:2 (the nursery occupies 33% of the
heap), which yielded the highest throughput.

3.4 Comparing Throughput Performances
Figure 4 illustrates the differences in throughput performances

due to different nursery/mature ratios. Notice that ratio 1:2 yields
the best throughput performance until the number of warehouses
is eight (we refer to this workload level as acritical point). After
that, ratios with smaller nursery outperform ratio 1:2. Also notice
that ratio 1:10 yields the best throughput once the number ofware-
houses is beyond 10. At 11-warehouse, the ratio 1:10 yields about
26% higher throughput than ratio 1:2.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g

h
p

u
t

Warehouses

 1:2
1:3
1:4
1:5
1:6
1:7
1:8
1:9

1:10

critical point

Figure 4: Throughput performances using different nurs-
ery/mature ratios in SPECjbb2000

Figure 5 depicts the throughput performances of two fixed-ratio
collectors (1:2-collector and 1:10-collector) and the Appel collec-
tor. Our study of SPECjbb2000 revealed that the 1:2-collector mostly
outperformed the Appel collector when the workload was lessthan
8 warehouses. However, once the workload level surpassed 8 ware-
houses, the Appel collector yielded much higher throughputper-
formance than both of the fixed-ratio collectors, leading tomore
graceful degradation behavior.

As stated in Section 2, one major benefit of the fixed-ratio ap-
proach is that the size of the nursery can be optimally tuned to
match the lifespan characteristic of an application. However, in
applications with varying lifespan characteristic (e.g. application
servers), the ratio becomes sub-optimal as soon as the lifespan
characteristic begins to change. Because the optimal ratioin our
experiment was 1:2, the nursery occupied a large portion of the
heap. Therefore, it became exceedingly difficult to maintain a large

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g

h
p

u
t

Warehouses

1:2
1:10

Appel

Figure 5: Throughput performances of 1:2-collector, 1:10-
collecto, and Appel collector (SPECjbb2000)

enough copy-reserve space to allow successful minor collection in-
vocations.

On the other hand, it is more difficult to tune the nursery size
of the Appel collector because the size is determined dynamically
by the amount of available heap memory. Thus, when the demand
is light, the nursery is often too small to give enough time for ob-
jects to die, leading to higher collection time due to largervolumes
of surviving objects. However, once the workload becomes heavy,
the Appel collector rarely suffers from the problem of copy-reserve
space being too small. Thus, minor collection is still invoked un-
der heavy workload, leading to shorter pauses and more time for
mutator execution.

Remark. The result of our experiment clearly indicates that tech-
niques not suffering from consecutive full collection invocations
during heavy demands will allow the throughput to degrade more
gracefully. In the next section, we will propose two techniques
that leverage the fixed-ratio approach to achieve high throughput
performance when the workload is light, but avoid sufferingfrom
repetitive full collection invocations when the workload is heavy.

4. INTRODUCING NMFLUX
As stated in the last section, one approach to make the through-

put performance of a fixed-ratio collector degrade more gracefully
is to prevent consecutive full collection invocations during heavy
workload. NMFLUX is created to accomplish this specific task.
The main component of NMFLUX is the decision process to switch
from a fixed-ratio collector to a variable-ratio collector when the
workload is heavy and then switch back when the workload is light.

Detecting critical point. We experimented with various run-time
parameters such as live-size, mature generation usage, andalloca-
tion rate only to discover that these parameters indicate application
specific behavior and do not always yield accurate predication or
representation of critical points. On the other hand, our investi-
gation of SPECjbb2000 showed that two or more consecutive full
collection invocations only occur at critical points. (To reiterate, a
critical point is an execution location where a collector with smaller
nursery/mature ratio outperforms a collector with larger ratio.)

NMFLUX leverages this insight to decrease the nursery/mature
ratio whenever it detects two consecutive full collection invoca-
tions, and increase the ratio when there is enough heap memory

to support the optimal fixed-ratio nursery size. To support dynamic
nursery enlargement, NMFLUX computes the amount of available
memory in the mature space after each full collection invocation.
When there is enough copy-reserve memory to support a largerra-
tio, the system automatically enlarges the nursery to the new ratio.

By how much should we decrease the nursery size?The frame-
work provides the locations to switch from fixed-ratio to variable-
ratio collectors and vice-versa. However, the actual implementa-
tion of a collector based on this framework must also select the
reduced nursery size after a critical point is detected. We imple-
mented two variations of generational collectors that leverage NM-
FLUX: dynamic-ratioandhybrid.

4.1 Dynamic-Ratio Collector
As shown in Section 3, smaller ratios allow the throughput per-

formances of SPECjbb2000 to degrade more gracefully than the
1:2 ratio. Thus, one approach is to incrementally reduce theratio
each time a critical point is reached. Our dynamic-ratio collector
reduces the size of the heap from 1:m to 1:m+1 (where m indicates
the number of times the mature space is larger than the nursery
space) each time a critical point is detected. Note that the reduction
can be made until the ratio is 1:15, the minimum ratio allowedby
HotSpot.

Instead of relying on NMFLUX to provide the switching points,
it is also possible to use different criteria (e.g. number ofthreads,
allocation rate, etc.) to trigger nursery reduction. However, the
following constraints must be followed:

• Nursery reduction without maintaining to/from spaces ra-
tio. As stated earlier, HotSpot set the combined size of the
to/from spaces to minimally be 20% of the nursery. If this
ratio does not have to be maintained, the new ratio can be ap-
plied after eachminor collectionas theedenspace is empty.
However, the new ratio must result in a nursery that is larger
than the 128KB due to the minimum size requirement of the
to andfrom spaces.

• Nursery reduction while maintaining to/from space ratio.Prior
to a full collection invocation, the new boundary address (be-
tween nursery and mature spaces) is calculated. Full collec-
tion slides objects to the beginning of the new boundary and
copies surviving objects in the nursery to the mature space.
At that point, the nursery is empty so new to/from spaces can
be configured to maintain the 20% ratio. In summary, this
type of adjustment can only be done throughfull collection.

4.2 Hybrid Collector
Our collector is initially configured to use the optimal fixed-

ratio between the nursery and mature spaces (e.g. 1:2 ratio for
SPECjbb2000). However, once a critical point is reached, the sys-
tem switches to Appel collector. The switch becomes effective after
a full collection invocation has completed.

In the next section, we will evaluate the performances of these
two collectors by comparing them against the performance ofan
optimally tuned fixed-ratio collector.

5. EVALUATION
The goal of our collectors is to provide the best of both worlds

performance by utilizing fixed-ratio collector when a server appli-
cation is facing light memory demands and variable-sized-nursery
collector when the application is facing heavy memory demands.
Thus, our benchmarks must havevarying demands in memory us-
agesimilar to a long-running server application. That is we want

Benchmark Description Input configurations Total allocations Maximum Number of
objects (million) bytes (MB) live-size (MB) threads

xalan (DaCapo) Transforms XML documents into HTML. -s default 161 60 26 1
javac (SPECjvm98) JDK 1.0.2 Java compilers. problem size = 100 5.9 178 7.2 1
SPECjbb2000-16 A Java program emulating 3-tier sytem 16 warehouses 788 41000 308 21

focusing on the middle tier.
SPECjbb2000-32 A Java program emulating 3-tier sytem 32 warehouses 3573 188000 768 37

focusing on the middle tier.
SPECjbb2005-16 A Java program emulating 3-tier sytem 16 warehouses 5757 325000 620 21

focusing on the middle tier.
SPECjbb2005-32 A Java program emulating 3-tier sytem 32 warehouses 6002 339000 1200 37

focusing on the middle tier.

Table 1: Benchmark Characteristics

Benchmark (heap size) Fixed-ratio Appel Dynamic-ratio Hybrid
Minor GCs Full GCs Minor GCs Full GCs Minor GCs Full GCs Minor GCs Full GCs

Calls (seconds) Calls (seconds) Calls (seconds) Calls (seconds) Calls (seconds) Calls (seconds) Calls (seconds) Calls (seconds)

xalan (64MB) 926 (27.82) 243 (27.60) 909 (26.83) 232 (25.24) 959 (28.67) 268 (30.19) 917 (26.81) 236 (25.62)
javac (20MB) 21 (0.33) 46 (3.79) 205 (1.41) 6 (0.17) 75 (0.75) 26 (1.96) 245 (1.62) 10 (0.49)
jbb2000-16 (308MB) 2049 (143.31) 1326 (808.56) 25159 (1002.38) 2 (0.04) 2891 (224.15) 1265 (782.63) 19091 (829.33) 279 (114.72)
jbb2000-32 (768MB) 1602 (242.17) 322 (1146.19) 15429 (1071.39) 2 (0.05) 2120 (343.53) 275 (925.83) 11152 (932.43) 71 (140.99)
jbb2005-16 (620MB) 2530 (226.16) 623 (1220.14) 27259 (1126.76) 2 (0.05) 3571 (329.17) 515 (978.81) 19009 (929.15) 128 (160.71)
jbb2005-32 (1.2GB) 1777 (201.84) 357 (379.61) 8074 (613.10) 2 (0.04) 2010 (265.06) 310 (313.67) 5158 (453.43) 180 (119.33)

Table 2: Comparing GC behaviors when fixed-ratio, Appel, dynamic-ratio, and hybrid collectors are used. Also note that all appli-
cations, the optimal ratio is 1:2.

(i) the application to be heap intensive and maintain a largelive-
size over the entire execution, and (ii) the heap requirement and
live-size to increase and decrease over time.

We also experimented with applications that do not meet these
criteria. For example, our experiments with the SPECjvm98 suite
showed that our collectors did not provide any advantages over the
optimally tuned fixed-ratio collector in most applications(the only
exception wasjavac). This was because the lifespan characteristics
of these applications did not change drastically over time.In fact,
there were no instances of back-to-back full collection invocations
when the heap was set to be twice the maximum live-size. We also
conducted experiments using DaCapo benchmarks [4]. Our results,
once again showed that only one benchmark could slightly benefit
from our techniques (xalan). It is worth noting that we initially
expectedhsqldb to work well with our technique. However, its
optimal nursery:mature ratio was only 1:11, meaning that italready
used a very small nursery. Thus, our technique could not provide
any performance benefits.

In summary, we included the following benchmarks in our exper-
iments: xalan, javac, SPECjbb2000(16 and 32 warehouses), and
SPECjbb2005(16 and 32 warehouses). The basic characteristic of
our selected benchmarks are given in Table 1.

Our methodology was to execute these applications ten timesto
monitor various performance metrics (e.g. GC behavior, through-
put or execution time, and minimum mutator utilization). The fol-
lowing subsections report the average values of these metrics.

5.1 Basic GC Behavior
It is expected that different collectors yield different garbage col-

lection performances. In terms of throughput performance and
pause time, a collector that invokes more frequent minor collec-
tion should outperform a collector that invokes more frequent full
collection. Thus, the focus of this section is on the differences in
the number of minor and full collection invocations and the time
spent in each type of collections. Table 2 reports the experimental
results.

The Appel collector invoked the highest number of minor col-

lection (as many as ten times more than that of the fixed-ratiocol-
lector). In doing so, it significantly reduced the number of full col-
lection invocations. However, these changes in the number of mi-
nor and full collection invocations did not mean that less time was
spent in GC. For example, in SPECjbb2000 with 16 warehouses,
the fixed-ratio collector spent about 952 seconds on GC whilethe
Appel collector spent about 1000 seconds. However, the average
minor collection time for the Appel collector was much smaller.
This was mainly due to smaller nursery sizes.

5.2 Throughput Performance
Table 2 shows that different collectors yield different GC per-

formances. However, it is unclear how these differences affect
the overall throughput performance and its degradation behavior of
each server application. Because the focus of this section is mainly
on throughput, we only observed the performances of SPECjbb2000
and SPECjbb2005. Figure 6 illustrates our experimental results.

Notice that the two proposed collectors yielded nearly the same
peak throughput performances as the fixed-ratio collector.In addi-
tion, the dynamic-ratio collector was able to maintain higher through-
put performances during heavy demands by making several nurs-
ery reductions. Under heavy workload, the throughput improve-
ments in the 16 warehouses settings were as much as 16% (at 11
warehouses) and 75% (at 12 warehouses) in SPECjbb2000 and
SPECjbb2005, respectively. In addition, the hybrid collector was
able to maintain nearly the same throughput performances asthe
Appel collector, with the peak throughput performance improve-
ments of 26% for SPECjbb2000 and 125% for SPECjbb2005, over
the fixed-ratio collector.

When our collectors were tested under more extreme memory
demands (32 warehouses), they performed even better as the dif-
ferences in throughput performances were higher than thoseof the
16 warehouses settings. Moreover, the throughput performance of
the Appel collector during light to moderate workload was much
worse than the other collectors in SPECjbb2000. In this scenario,
the throughput performances at heavy workload of SPECjbb2000
were 23% (dynamic-ratio) and 28% (hybrid) higher than that that

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t

Warehouses

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

(a) SPECjbb2000 (16 warehouses)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u
g
h
p
u
t

Warehouses

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

(b) SPECjbb2005 (16 warehouses)

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

T
h
ro

u
g
h
p
u
t

Warehouses

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

(c) SPECjbb2000 (32 warehouses)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

T
h

ro
u

g
h

p
u

t

Warehouses

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

(d) SPECjbb2005 (32 warehouses)

Figure 6: Comparing the throughput performances of the proposed collectors against the Appel collector and the fixed-ratio collector
(optimal ratio = 2)

of the fixed-ratio collector. For SPECjbb2005, the improvements
were 68% (dynamic-ratio) and 133% (hybrid).

5.3 Execution Time
In this section, we report the effects of our collector on theex-

ecution times ofxalan and javac. We also wish to report that for
applications not benefiting from using our collectors, the execution
times were virtually unchanged, implying that the overheadof crit-
ical point detection is negligible.

Execution time of javac. We set the heap to be about twice as
large as the maximum live-size so that the application wouldstill
invoke a reasonable number of garbage collection, without being
excessive. Our result indicated that the dynamic-ratio collector in-
creased the execution time by 2% (10.13 seconds for the fixed-ratio
collector and 10.36 seconds for the dynamic-ratio collector) and the
hybrid collector reduced the execution time by 14% (8.68 seconds
for the hybrid collector).

Execution time of xalan. Again, we set the heap size to be about
twice as large as the maximum live-size. We initially specified
56MB for the heap but due to internal alignment and round-up,
HotSpot assigned 64MB for the heap. Our result indicated that the
both collectors reduced the execution time by about 7.5%.

5.4 Mutator Utilization
We used MMU (minimum mutator utilization) [3] to measure

the pause time and mutator utilization. Mutator utilization is the
fraction of the time that an application (or mutator) executes within
a given window. For example, given an execution window of 10
ms, within that time the collector runs for 4 ms, and the mutator
runs for 6 ms. Thus, the mutator utilization is 60%. Theminimum
mutator utilization(MMU) is the minimum utilization across all
execution windows of the same size. For example, an MMU of
40% at 10 ms means that the application will at least execute 4ms
out of every 10 ms. Figure 7 depicts the MMU of each collector
for each benchmark. The x-intercept indicates the maximum pause
time, and the asymptotic y-value indicates the mutator utilization.

Typically, an application that invokes minor collection more fre-
quently and seldom invokes full collection often yields shorter pauses
and higher overall mutator utilization. Injavac the mutator utiliza-
tion of the hybrid approach was the highest. This was becauseit
invoked a large number of minor collections. On the other hand,
xalan showed very little effects from different collectors because
the number of minor collection and full collection invocations only
changed slightly when different collectors were used.

For SPECjbb2005, both the dynamic-ratio and hybrid collectors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.01 0.1 1 10

M
M

U

Window size (seconds, log scale)

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

Heap size = 20MB

(a) javac

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.01 0.1 1 10 100

M
M

U

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

Heap size = 64MB

Window size (seconds, log scale)

(b) xalan

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 1 10 100 1000

M
M

U

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

Heap size = 308MB

Window size (seconds, log scale)

(c) SPECjbb2000 (16 warehouses)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 1 10 100 1000

M
M

U

Window size (seconds, log scale)

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

Heap size = 620MB

(d) SPECjbb2005 (16 warehouses)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 1 10 100 1000

M
M

U

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

Heap size = 768MB

Window size (seconds, log scale)

(e) SPECjbb2000 (32 warehouses)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 1 10 100 1000

M
M

U

Window size (seconds, log scale)

Fixed-ratio (2)
Dynamic-ratio

Appel
Hybrid

Heap size = 1200MB

(f) SPECjbb2005 (32 warehouses)

Figure 7: Comparing minimum mutator utilizations (MMUs)

significantly impacted the throughput performances, especially at
higher workload. Moreover, the two collectors significantly in-
creased the number of minor collection invocations and reduced
the number of full collection invocations; thus, major differences
in the MMUs were observed. For SPECjbb2000, the differences
in MMUs were not as wide ranging. This might be due to less
performance impacts from our collectors.

5.5 Ability to Switch Back
We modified SPECjbb2000 to decrease the workload after 16

warehouses. Basically, the application starts destroyingits ware-
houses one at a time until it reduces the number of warehousesto
2. We used this setting to emulate decreasing demands in server ap-
plications. Figure 8 depicts our collectors’ abilities to switch back
to the optimal ratio once the workload has lightened.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

T
h
ro

u
g
h
p
u
t

Warehouses

Fixed-ratio (2)
Dynamic-ratio

Hybrid

(a) javac

Figure 8: Switching back to fixed-ratio collector once the work-
load has lightened

Notice that the hybrid collector was able to easily switch back
when the number of warehouses was reduced to 4. This was be-
cause the hybrid collector, once operated in the Appel style, checked
the size of the mature space after each minor collection, which oc-
curred very frequently. On the other hand, the dynamic-ratio ex-
perienced a long delay because switching could only occur after
full collection. Prior to the workload reduction, the nursery was
very small while the mature space was very large. Because objects
were not prolifically created during the workload reductionpro-
cess, full collection was never called so switching never took place.
One possible approach to overcome this long delay is to use an-
other criterion such as a reduction in number of threads to enforce
switching.

6. RELATED WORK
There have been numerous research efforts to reduce the copy-

reserve overhead and improve the performance of Appel collec-
tors. Though the focus of our work is not on reducing the size of
copy-reserve space, it is worth mentioning some of these efforts as
they present opportunities to further improve the performance of
our proposed collectors.

Work by Velascoet al. [26, 25] reports that the volume of surviv-
ing objects from the nursery during minor collection rarelyexceeds
20% of the nursery; however, a collector often reserves 100%of

the nursery to ensure successful minor collection. Their technique
leverages information from prior GC invocations to safely reduce
the size of the copy-reserve space. In doing so, the space is more
efficiently utilized and the frequency of GC invocations is also re-
duced.

Their experimental results show a 16% speed-up of garbage col-
lection time. The heap usage is also reduced by 19% to 40%. One
possible issue with this approach is that objects in server applica-
tions can be much longer living than objects in desktop applica-
tions. The assumption that only a small portion of objects survives
minor collection does not always hold and can cause their algorithm
to fail.

Work by Sachindran and Moss [19] attempts to reduce the copy
reserve space in the mature generation by partitioning the heap into
small windows. Thus, the size of copy-reserve is limited by the size
of each window. The copying phase is done in several passes, and
each pass only “copying a subset of windows in the old generation”
[19]. Because the HotSpot collector uses mark-compact withno
copy-reserve space for full collection, this technique does not apply
to our work.

Work by McGachey and Hosking [14] also reduces the copy-
reserve space by exploiting the insight similar to Velascoet al. that
only a small portion of objects survives a garbage collection invo-
cation. However, their technique uses compaction to as a back-up
in the case that their prediction is wrong. The back-up collector
recovers additional copy-reserve space to ensure that all surviving
data are “accommodated” [14].

In their technique, the copy-reserve space is set to be only a
fraction of, instead of equal to, the nursery. In an instancethat
the volume of surviving objects from the nursery is larger than the
copy-reserve space, an algorithm similar to mark-compact used in
HotSpot is activated. In a way, their approach is more advance
than HotSpot because it can recover from a failing minor collection
by switching to compaction on the fly. If this scenario occursin
HotSpot, the failed minor collection would be partially completed.
The objects that cannot be promoted stay in the nursery. The next
allocation failure will result in full collection invocation.

Another related area to this work is dynamic switching of algo-
rithms. Work by McGachey and Hosking switches from copying-
based minor collection to compaction-based full collection on the
fly [14]. The main criterion for switching is failing minor collec-
tion due to insufficient copy-reserve space. This criterionis the
same as ours except that our algorithms do not invoke full collec-
tion, but instead reactively reduce the nursery size to allow more
minor collection invocations. Work by Somanet al. [20] switches
to different garbage collection techniques based on changes in exe-
cution profiles. An annotation-based technique is used to guide the
selection process. Their work is based on Jikes RVM with MMtK
[2] so many garbage collection techniques are readily available.

Work by Printezis uses hot-swapping to switch between mark-
sweep and mark-compact to perform full collection [18]. Thework
does not modify the copying algorithm used for minor collection.
The heuristic is that mark-compact can allocate objects much faster
due to pointer-bumping algorithm; thus it is used when thereis
plenty of space in the mature generation (e.g. during initial start-up
or after heap expansion). However, mark-sweep has lower execu-
tion cost due to non-compacting nature. Thus, when the heap is
tight and full collection needs to be called frequently, mark-sweep
should be used.

In effect, his approach tries to achieve the best of both worlds
with these two algorithms. The goal of our work is similar to Print-
ezis’s in that we also try to achieve the best of both worlds through
fixed-ratio and variable-ratio collectors. However, our focus is on

the performance and efficiency of minor collection instead of full
collection. Combining their work and ours will create an oppor-
tunity for further improvement that will be investigated asfuture
work.

7. FUTURE WORK
In this paper, we have shown that the proposed dynamic-ratio

and hybrid collectors can significantly improve the throughput degra-
dation behaviors of the two server benchmarks, SPECjbb2000and
SPECjbb2005. Our collectors are based on the standard genera-
tional collector in HotSpot and not the concurrent collector [23],
which supposes to yield the best throughput performance when
used in multiprocessor environment [5]. However, a study byXian
et al. shows that the throughput degradation behavior of the concur-
rent collector is very similar to the standard generationalcollector
[29]. Thus, integrating NMFLUX into the concurrent collector may
make the throughput performance degrade more gracefully. This
integration is outside the scope of this work but will be interesting
to investigate in the future.

Work by Xian et al. [28] introduces a high-throughput genera-
tional collector for application servers or AS-GC. Their collector
leverages thekey objectnotion to segregate local and remote ob-
jects into two independent nurseries. Their result shows a 20%
improvement in throughput performance and an ability to handle
10% higher workload before the memory is exhausted [28]. How-
ever, their optimization does not improve the degradation behavior
so integration with our work would make an interesting studyin the
future.

It is quite common for the heap size of a large server application
to exceed the physical memory capacity when facing unexpected
heavy demands. In this scenario, paging activities become ama-
jor factor that limits and degrades throughput performance. So far,
our study has not investigated the effect of our collectors on paging
behavior. For example, because our collectors invoke fewerfull
collections, they may improve paging performance as full collec-
tion has been known to induce a large number of page faults due
to heap traversal [7, 12, 16]. We are currently conducting such an
investigation.

8. CONCLUSION
In this paper, we introduce NMFLUX, a framework to switch

between a fixed-ratio collector and a variable-ratio collector for op-
timal throughput performance and graceful degradation behavior.
Our framework leverages an insight that when copy-reserve space
becomes too small, it is a sign that the nursery should be reduced, as
the lifespan characteristic is no longer conform to the one initially
used to tune the nursery size. We then utilized this framework to
construct:

1. A dynamic ratio collector that incrementally reduces thenurs-
ery size each time an instance of two consecutive full-collection
is detected.

2. A hybrid collector that combines the fixed-size collectorwith
an Appel style collector. In our hybrid collector, the Ap-
pel collector replaces the fixed-size collector whenever an
instance of two consecutive full collection invocations isde-
tected.

Both schemes can switch back to fixed-ratio collector once the
workload has lightened.

Our study has shown that these two collectors have very limited
use in desktop-like applications. However, our experimental re-
sult indicates that both techniques, especially the hybridcollector,

can make the throughput degradation behavior of server applica-
tion more predictable and graceful. In effect, it can improve the
serviceability of server applications under heavy memory demands
as the throughput performance can improve by as much as 133%.

9. REFERENCES
[1] A. W. Appel. Simple Generational Garbage Collection and

Fast Allocation.Software Practice and Experience,
19(2):171–183, 1989.

[2] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
Water? High Performance Garbage Collection in Java with
MMTk. In Proceedings of the 26th International Conference
on Software Engineering (ICSE), pages 137–146, Scotland,
UK, May 2004.

[3] P. Cheng and G. E. Blelloch. A parallel, real-time garbage
collector. InPLDI ’01: Proceedings of the ACM SIGPLAN
2001 conference on Programming language design and
implementation, pages 125–136, Snowbird, Utah, USA,
2001.

[4] DaCapo Group. Dacapo benchmarks.
http://dacapobench.org/.

[5] A. Gupta and M. Doyle. Turbo-charging Java HotSpot
Virtual Machine, v1.4.x to Improve the Performance and
Scalability of Application Servers. On-line article.
http://java.sun.com/developer/technicalArticles/Programming/turbo/.

[6] M. Hertz and E. Berger. Quantifying the performance of
garbage collection vs. explicit memory management. In
OOPSLA ’05: 20th annual ACM SIGPLAN conference on
Object-oriented Programming Systems, Languages, and
Applications, pages 313–326, San Diego, CA, USA, 2005.

[7] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection
without paging. InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 143–153, Chicago, IL, USA,
June 2005.

[8] H. Hibino, K. Kourai, and S. Shiba. Difference of
Degradation Schemes among Operating Systems:
Experimental Analysis for Web Application Servers. In
Workshop on Dependable Software, Tools and Methods,
Yokohama, Japan, July 2005.
http://www.csg.is.titech.ac.jp/paper/hibino-dsn2005.pdf.

[9] IBM. Jikes Research Virtual Machine.
http://jikesrvm.sourceforge.net.

[10] IBM. Ibm websphere.
http://www-306.ibm.com/software/webservers/appserv/was/,
last visited June 2007.

[11] JBoss. Jboss Application Server. Product Literature,Last
Retrieved: June 2007. http://www.jboss.org/products/jbossas.

[12] R. Jones and R. Lins.Garbage Collection: Algorithms for
automatic Dynamic Memory Management. John Wiley and
Sons, 1998.

[13] H. B. M. Jonkers. A fast garbage compaction algorithm.
Information Processing Letters, 9(1):26–30, 1979.

[14] P. McGachey and A. L. Hosking. Reducing generational
copy reserve overhead with fallback compaction. In
International Symposium on Memory Management, pages
17–28, Ottawa, Ontario, Canada, June 2006.

[15] Microsoft. About the Common Language Runtime (CLR).
http://www.gotdotnet.com/team/clr/aboutclr.aspx.

[16] D. A. Moon. Garbage collection in a large lisp system. In
Proceedings of the ACM Symposium on Lisp and Functional
Programming, pages 235–246, Austin, TX, 1984.

[17] ObjectWeb. JOnAS: Java Open Application Server. White
Paper, Last Retrieved: June 2007.
http://www.jonas.objectweb.org.

[18] T. Printezis. Hot-swapping between a mark&sweep and a
mark&compact garbage collector in a generational
environment. InJVM’01: Proceedings of the JavaTM Virtual
Machine Research and Technology Symposium on JavaTM
Virtual Machine Research and Technology Symposium, pages
20–32, Monterey, California, April 2001.

[19] N. Sachindran and J. E. B. Moss. Mark-copy: fast copying
GC with less space overhead.SIGPLAN Not.,
38(11):326–343, 2003.

[20] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selection of
application-specific garbage collectors. InISMM ’04:
Proceedings of the 4th International Symposium on Memory
Management, pages 49–60, Vancouver, BC, Canada, 2004.

[21] W. Srisa-an, M. Oey, and S. Elbaum. Garbage Collection in
the Presence of Remote Objects: An Empirical Study. In
Proceedings of the International Symposium on Distributed
Objects and Applications (DOA), pages 1065–1082, Agia
Napa, Cyprus, 2005.

[22] Sun. Performance Documentation for the Java HotSpot VM.
On-Line Documentation, Last Retrieved: June 2005.
http://java.sun.com/docs/hotspot/.

[23] Sun Microsystems. Java Technology is Everywhere,
Surpasses 1.5 Billion Devices Worldwide. Press Release,
February 2004.
http://www.sun.com/smi/Press/sunflash/2004-
02/sunflash.20040219.1.html.

[24] D. Ungar. Generation Scavenging: A non-disruptive high
performance storage reclamation algorithm. InProceedings
of the First ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, pages 157–167, 1984.

[25] J. M. Velasco, K. Olcoz, and F. Tirado. Adaptive tuning of
reserved space in an appel collector. InProceedings of the
18th European Conference on Object-Oriented
Programming, pages 543–559, Oslo, Norwary, June 2004.

[26] V. Velasco, A. Ortiz, K. Olcoz, and F. Tirado. Dynamic
management of nursery space organization in generational
collection.interact, 00:33–40, 2004.

[27] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet
Services. InProceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 230–243,
Chateau Lake Louise, Banff, Canada, October 2001.

[28] F. Xian, W. Srisa-an, C. Jia, and H. Jiang. AS-GC: An
Efficient Generational Garbage Collector for Java
Application Servers. InProceedings of the 21st European
Conference on Object-Oriented Programming (ECOOP),
pages 126–150, Berlin, Germany, July 2007.

[29] F. Xian, W. Srisa-an, and H. Jiang. Investigating the
throughput degradation behavior of Java application servers:
A view from inside the virtual machine. InProceedings of
the 4th International Conference on Principles and Practices
of Programming in Java, pages 40–49, Mannheim, Germany,
2006.

	NMFLUX: Improving Degradation Behavior of Server Applications through Dynamic Nursery Resizing
	

	main.dvi

