View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UNL | Libraries

University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering, Department

CSE Technical reports of

8-31-2008

NMFLUX: Improving Degradation Behavior of Server Applications
through Dynamic Nursery Resizing

Witawas Srisaan
University of Nebraska-Lincoln, witty@cse.unl.edu

Cheng Huan Jia
University of Nebraska-Lincoln, cjia@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

b Part of the Computer Sciences Commons

Srisaan, Witawas and Huan Jia, Cheng, "NMFLUX: Improving Degradation Behavior of Server Applications
through Dynamic Nursery Resizing" (2008). CSE Technical reports. 93.
https://digitalcommons.unl.edu/csetechreports/93

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://core.ac.uk/display/188135591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/93?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages

University of Nebraska—Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2008-0008
Issued August 31, 2008

NMFLUX: Improving Degradation Behavior of Server
Applications through Dynamic Nursery Resizing

Witawas Srisa-an and ChengHuan Jia
Department of Computer Science & Engineering
University of Nebraska-Lincoln
Lincoln, NE 68588-0115

{witty,cjia}@cse.unl.edu

ABSTRACT

Currently, most generational collectors are tuned to eitediver
peak performance when the heap is plentiful, but yield uepicc
able performance when the heap is tight or maintain goocbdegr
tion behavior when the heap is tight, but deliver sub-optipea-
formance when the heap is plentiful. In this paper, we preséf
FLUX (continuously varyinghe Nursery/Matureratio), a frame-
work that switches between using a fixed-nursery generatioi-
lector and a variable-nursery collector to achieve the bebbth
worlds; i.e. our framework delivers optimal performancelemn
normal workload, and graceful performance degradatioeuneavy
workload. We use this framework to create two generatioadiage
collectors and evaluate their performances in both desktdserver
settings. The experimental results show that our proposéece
tors can significantly improve the throughput degradatiendvior
of large servers while maintaining similar peak perfornematathe
optimally configured fixed-ratio collector.

1. INTRODUCTION

Garbage collection (GC) is a process to automatically ecla
dynamically allocated memory. It has been adopted as a éyggu
feature in many modern object-oriented languages inctudava,
C#, and Visual Basic .NET. With garbage collection, progreams
are relieved from the burden of explicitly managing memarngsk
that has proved to be tedious and error prone. As of now, tret mo
adopted GC strategy is generational garbage collection.

Generational GC is based on the hypothesis that “most abject
die young”, and thus, concentrates its collection effothimnurs-
ery, amemory area used for object creation [24]. Because ttee nur
ery is usually configured to be much smaller than the matuxeesp
(an area to host surviving objects from the nursery), gdivera
collectors often yield shorter GC pauses than most othert@@es
gies. The two common ways to set the size of the nursery are to
use fixed nursery/mature ratio throughout execution (e@Splot
generational collector [5]) or varying the nursery sizedabsn the
amount available memory after each collection (e.g. theehgen-
erational collector [1] in Jikes RVM [9]).

In applications that demand a large volume of dynamic mem-

Permission to make digital or hard copies of all or part of tvork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ory, it is attractive to use languages with garbage cobectis the
development platform. One example of such memory intersgive
plications is application servers. An application sengrisoft-
ware system that delivers “applications to client compiterlt
also handles most business logics and data accesses fop-the a
plications it managés The leading technology used to develop
application servers is Java Platform Enterprise EditiodEfE (for-
merly known as J2EE) from Sun Microsystems. Many commercial
and open-source implementations of the JEE platform irciBi
WebSphere [10], JOnAS [17], and JBoss [11].

Two common characteristics of application servers arettest
are long-running, and their service demands can vary Sigmifiy.
Interestingly, the periods of higher demands often “calaciith
the times when the service has the most value” [27]. Thusgitu-
cial for these servers to be able to face unexpected heavgrism
without failing or yielding unacceptable performances.wéuer,
a study by Xiaret al. [29] has shown that the throughput perfor-
mances of these application servers degrade ungracefulyhe
root cause for such poor degradation behaviggagbage collec-
tion.

This Work. To date, most investigations of GC performances in
application servers have been done using fixed-ratio géoeah
collectors [8, 21, 29, 28]. As the first step, we implementedp-
pel collector into HotSpot, our experimental Java virtuaafmine
(JVM) platform from Sun Microsystems. We then investigaitsd
performance in an application server setting using SPEX00.
We found the Appel collector to deliver more graceful degtamh
behavior, but much lower average throughput performaree tie
fixed-ratio collector. We then investigated the main reasibrat
cause the throughput performance of the fixed ratio colteotde-
grade so poorly. Our investigation yielded the followinghclu-
sions:

1. Longer-living objects. A study by Xianet al. has shown

that as the demands become heavier, objects also tend to live
longer due to higher degree of concurrency [28]. In large
servers, higher demands often mean that a larger number of
threads compete for the CPUs, and therefore, each thread
makes less execution progress in a given amount of time.
Thus, objects are not used in a timely fashion and remain
reachable in the heap for a longer period of time.

. Inefficient memory usagé study by Hertz and Berger finds
that an application using garbage collection often reguire
three to five times more memory than a similar application

!Definition of Application Servers from WikiPedia,

http://en.wikipedia.org/wiki/Applicatiorserver

using explicit memory management [6]. This additional mem-

titioned into three areasedenand two survivor spaceom and

ory is used to extend GC intervals so that objects have more to, which collectively account for a minimum of 20% of the nurs-
time to die. As the demands become heavier, the heap isery (i.e. the ratio of the eden to the survivor spaces is 4hgre

filled up much quicker, resulting in higher frequency of GC
invocations. However, because objects are now longewgljvin
these GC invocations are not effective.

. Frequent invocations of full collectionMost generational
collectors utilizecopy-reservespace, a space equaled to the
size of the nursery located in the mature generation, to en-
sure that nursery collection (or minor collection) can com-
plete successfully. If the amount of copy-reserve is smalle
than the nursery, there is a chance that minor collectioh wil
fail due to a larger volume of surviving objects than the size
of copy-reserve. When such condition occurs, full heap col-
lection is invoked instead of minor collection. We discagbr
that under heavy workload, this condition occurs repegted|
leading to many consecutive full collection invocations.

We leveraged these insights to constiNMFLUX, a framework
that dynamically selects when to use fixed-ratio collectmt&hen
to use variable-ratio collector. NMFLUX monitors the GC betor
to detect instances when the JVM invokes full collectionsemu-
tively due to the copy-reserve space being too small. Wheh an
instance is detected, the nursery/remote ratio is reduced.

We utilized this framework to create two variations of gener
tional collector: thedynamic-ratiocollector and théwybrid collec-
tor. Our dynamic-ratio collector initially sets the nungeemote
ratio to be the value that yields the optimal performancecelam
instance of two consecutive full collection invocationeigoun-
tered, our dynamic-ratio collector reduces the nurserijuneaatio
from 1:mto 1:m+1, wheremindicates the number of times the ma-
ture space is larger than the nursery. In this techniquesdiector
has full control of the nursery size, as it remains fixed uhelnext
instance of back-to-back full collection.

Our hybrid collector is also similar to the dynamic-ratidleotor
except that it switches to an Appel collector when full cclien is
invoked consecutively. Thus, the collector does not haeefuii
control of the nursery size because the Appel collectorraatn
cally adjusts the size based on the available amount of heap-m
ory. In effect, the goal of these two techniques is to featiéitmore
minor collection invocations when the demand is high, angth
improving the throughput performance at this critical exem re-
gion. It is worth noting that both collectors can switch baglhe
optimal fixed-ratio once the demands become lighter.

The remainder of this paper is organized as follows. Se@ion
provides information pertinent to this work. Section 3 nepdhe
results of our investigation of the throughput degradatehav-
ior between fixed-ratio collectors and our Appel collec®ection
4 details the design of NMFLUX and the dynamic-ratio and the
hybrid collectors. Section 5 evaluates the effectivenésaiopro-
posed schemes. Section 6 briefly discusses some of thengxisti
related research efforts. Section 7 discusses future vemd,the
last section concludes this paper.

2. BACKGROUND

One of our proposed algorithms is a combination of the fixed-
ratio generational collector and our implementation of gypél
collector in HotSpot. This section outlines the HotSpotexibr
[5] and the basics of an Appel collector [1].

2.1 Generational Collector in HotSpot

The HotSpot VM partitions the heap into three major genera-
tions: nursery, mature, and permanent. The nursery isdugér-

is also a requirement that each of the two survivor spacearger
than 64 KB. Users can set the size of the nursery using a codvman
line argument that specifies the ratio between the nurseshttan
mature space (e.g. the ratio of 1/3 nursery and 2/3 mature2or 1
is used as the default ratio for systems using AMD 64 proecssso
Once set, the ratio stays fixed throughout an execution. adDbje
locations initially take place in thedenspace. If theedenspace is
full, and there is available space in tfrem space, thérom space

is used to service subsequent allocation requests.

HotSpot uses copying collector to collect the nursemnpr col-
lection) and mark-compact to collect the entire he#yl (collec-
tion). In this technique, minor collection is invoked when both
the edenandfrom spaces are full. The collection process consists
mainly of copying any surviving objects into the space and then
reversing the names of the two survivor spaces (frem space
becomedo space, and vice versa). Thus, tteespace is always
empty prior to a minor collection invocation [22], and it ised
as an aging area for longer living objects to die within theshu
ery. It is worth noting that the aging area is only effectiveen
the number of copied objects from the eden andiitra spaces are
small. If the number of surviving objects become too largelisas
in application servers), most of these objects are pronditedtly
to the mature generation, leading to more frequent fullemibn
invocations.

Similar to most copying-based collector, HotSpot usgsy-reserve
space to ensure that the amount of available memory in therenat
generation is large enough to accommodate surviving abfemtn
minor collection. It is possible that all objects in the ramssur-
vive minor collection and thus, the size of the copy-resepace
is usually set to be the same as the size of the nursery. Wigen th
amount of the copy-reserve space is less than the nursérgpfu
lection based on mark-compact algorithm is invoked. Werrgfe
the default collector in HotSpot dixed-ratiothroughout the paper.

The full collector in HotSpot performs garbage collectinrfidur
phases: marking, precompaction, adjusting pointers, amgaction.
The marking phase goes through the root sets and marks elfi-rea
able objects. To avoid deep recursion, a marking stack t 1.
The precompaction phase calculates a new target addresadbor
object after compaction and encodes the address into tleetobj
The next phase updates any references to an object to theanew t
get address. This is done by simply reading the value encioded
the object as part of the precompaction phase [13]. The reste
slides objects toward the lowest address of the mature space

2.2 Appel Collector

Similar to the collector in HotSpot, Appel collector padits
the heap into nursery and mature generations. However,utse n
ery size is variable depending on the object occupancy imife
ture space. If copying is used to collect the nursery, a cepgive
space is also used to ensure a successful completion of wohor
lection. An Appel collector adjusts the nursery size aftectemi-
nor collection. Initially, the nursery;, occupies half of the heap
and copy-reserve spaee, occupies the other half(= cr = hzﬂ).
When the nursery is full, the surviving objects, are copied to
the copy-reserve space. Once done, the nursery occupiesfhal
the available space in the heap, and the copy-reserve esctiyg
other half @ = ¢r = W). This nursery resizing process re-
peats until a certain size threshold is reached. At thattpif
collection is invoked. To date, semi-space copying [1, S%rkn
sweep [9], and mark-compact [14] have been used to perfolim fu

collection in Appel collectors.

Because both Appel and fixed-ratio collectors are widelyduse
it is worth to point out some advantages and disadvantageaabf
approach. One argument for using the fixed-ratio colledtotisat
the nursery size can be tuned to match the available memay in
system and a lifespan characteristic of an applicationekample,
the size of the nursery can be tuned to make sure that by tletien
nursery is exhausted, most of the objects allocated up tgtiat
have already died. Thus, in desktop-like applications whiées-
pan characteristics are more predictable, the fixed-ratiectors
can perform very well [5, 15].

On the other hand, the nursery size varies in Appel collector
Once the nursery size becomes too small to allow enough time f
newly created objects to die, these objects are promotedinga
higher minor collection overhead. Thus, given an applacatvith a
uniform lifespan characteristic, an Appel collector mayperform
as well as a fixed-ratio collector.

In applications with variable and unpredictable lifespharac-
teristics such as application servers, a fixed ratio calfetiay not
perform efficiently when the lifespan characteristic idatiént than
the expected characteristic. As will be shown in the nexticec
these collectors may forgo minor collection entirely wheaoifg
heavy demands. On the other hand, Appel collectors are rlere t
ant to changes in characteristic as the nursery is dynamiiakd
based on the available memory. Thus, minor collection coes
to be invoked as long as there is available memory in the heap.

3. MOTIVATION

A study of SPECjAppServer2004 by Xiat al. has shown that
a 20% increase in workload can result in a 75% decrease in the
throughput performance [29]. Such degradation behavimnsid-
ered ungraceful as it can lead to non-uniform responses fastd-u
ble system performances. The study further identifies ggrioal-
lection as the root cause of the problem. The experimensaltse
indicate that at the heaviest workload, full collection spend over
five minutes to complete its task, preventing the applicafiom
making any execution progress.

The major reason for such a long collection time is because th
number of full collection invocations increases dispraojpo@lly
to the number of minor collection invocations at heavy woskl.
Figure 1 illustrates this scenario in SPECjbb2000. Noticet &t
the beginning of the execution, the majority of GC invocasi@are
minor collection (indicated by gray bars). As the executiwo-
gresses toward termination, most of the GC invocations beco
full collection (indicated by black bar). The change becsries-
tic at 8-warehouse workload.

Because the study by Xiaat al. [29] was conducted using only
a fixed-ratio collector tuned to yield the best throughputfqre
mance, we further investigated if similar throughput degtan
behavior is experienced when different nursery/maturiegare
used and when an Appel collector is used. In the following sec
tions, we outline:

1. The steps necessary to make HotSpot support Appel collec-
tor.

2. The throughput performances when different ratios aeel us
in the fixed-ratio collector.

3. The throughput performances of two fixed-ratio collestor
(one yielding the highest throughput and the other yielding
the best degradation behavior) and the Appel collector.

[L_FulGC x

Workload (number of warehouses)

1 1 1 1
1.5e+09 2e+09 2.5e+09 3e+09

Allocation (bytes)

1 1
5e+08 1e+09 3.5e+09

Figure 1: Distribution of minor and full collection invocat ions
over execution time (SPECjbb2000)

3.1 Modifying Heap Layout

The heap layout (detailed in Figure 2a) adopted in HotSpesdo
not allow dynamic resizing of generations during executi®his
is because the starting address of the nursery is fixed, arabth-
paction process during each full collection slides the cilsj¢o-
ward the lowest address of the mature space. Thus, there is no
room to adjust the boundary between the nursery and the enatur
generation. To support our proposed collectors, we redgdrthe
heap so that the mature space starts at the lowest addrelss of t
heap. In this layout, the compaction process slides obfewtard
the lowest address of the heap, leaving unused memory abphe t
(higher-address) of the mature space. After each minoectidin,
the eden space is also empty, allowing straightforwardsaatjant
of the nursery size.

lower address
Eden

Nursery

Compaction
starting
address

To
From

Mature

Compaction
starting
address

Mature

Eden

Nursery

To
From

Permanent Permanent

higher address

(a) Original heap layout in HotSpot (b) Modified heap layout

Figure 2: Original vs. modified heap layouts

To confirm that our reorganization has minimal effects orfigrer
mance, we compared the throughput performances of SPE@)Bb2
when the original layout and the modified layout were usede Th
result is depicted in Figure 3. Notice that the performaneese
nearly identical throughout the execution. Base on thisltewe
concluded that our modified heap layout does not affect tlee-ov
all performance and can be used as the foundation to sugport t

implementation of an Appel collector.

40000

T
Original layout
Modified layout -=----

35000 |-
30000 /£
25000 ¥ .,

20000

Throughput

15000
10000 - N

5000 [

0

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1"
Warehouses

Figure 3: Comparing the throughput performance using the
original and the modify heap layouts (SPECjbb2000)

3.2 Implementing Appel Collector

The modified heap layout allows us to adjust the nursery size
freely. Thus, it is possible to implement an Appel colleatsing
the modified HotSpot. Initially, the heap space, not inahgdihe
permanent space, is divided into two equal portions, nyraad
copy-reserve. Once the nursery is full, minor collectiocasied,
and surviving objects are moved to the copy-reserve spaoee O
the minor collector finishes, the occupied space (64 KB atignt)
is considered as the mature space. The remaining space isglite
in half, one for the nursery and the other for the copy-reserv

It is worth noting that there are numerous efforts to redinee t
size of copy-reserve space [14, 26, 25, 19]. (Brief dedorigtare
provided in Section 6.) However, we chose not to use any aiethe
techniques for two reasons: First, we want to fairly comphee
performance of a basic Appel collector to that of a fixederatl-
lector. Second, most of the optimizations leverage anliskgased
on studies of desktop applications, that only a small nurobeb-
jects survive minor collection, thus, the copy-reserves sian be
reduced. Our previous study of application servers shoutlieae
are times that most, if not all, objects survive minor cdilags [29,
28]. Thus, these optimizations may not work efficiently i ex-
perimental settings.

When the available memory is smaller than 256 KB, full col-
lection is invoked. This is because the minimum requirenfent
the two survivor spaces is 64 KB each. Thus, if the nursergtisos
128 KB, there is not enough memory to create the eden spase. Al
note that the only time that full collection is invoked backback
is when the amount of available memory is fewer than 256 Keéraft
a full collection invocation.

As stated in Section 2, the default minor collector also ésav
theto space partially occupied after each minor collection imvoc
tion, making resizing more difficult. To overcome this cbhalje,
we modified the minor collector to copy all surviving objefrism
the nursery as well as tifeom space directly to the mature space.
In other words, the nursery is completely empty after eaatomi
collection to allow resizing of the nursery.

3.3 Experimental Environment
We conducted our experiment on an AMD Opteron system with

two 2 GHz processors. The system has 4 GB of physical mem-

ory. We used our modified HotSpot with the new heap layout. It
also supports both the fixed-ratio and the Appel collector. dur

benchmark, we used SPECjbb2000 that was configured to go from
one warehouse to sixteen warehouses in increments of ore war
house. We set the maximum heap size to 308 MB, which was the
same as the maximum live-size. We used 308 MB to provide plent
of heap space when the memory demand was light; thus, garbage
collection should perform efficiently. However, when themuoey
demands became heavy, the heap would still be large enough fo
SPECjbb2000 to execute, but without the necessary spade to a
low for efficient GC. Thus, this setting should closely entela
server application facing unexpected demands. Also naiecir
maximum heap size (308 MB) was much smaller than our physical
memory capacity (4 GB), meaning that paging did not affeet th
throughput performance. For the fixed-ratio approach, tms-n
ery/mature ratio was set to 1:2 (the nursery occupies 33%eof t
heap), which yielded the highest throughput.

3.4 Comparing Throughput Performances

Figure 4 illustrates the differences in throughput perfances
due to different nursery/mature ratios. Notice that rat® yiields
the best throughput performance until the number of warsé®u
is eight (we refer to this workload level asatical point). After
that, ratios with smaller nursery outperform ratio 1:2. dAftice
that ratio 1:10 yields the best throughput once the numbesmoé-
houses is beyond 10. At 11-warehouse, the ratio 1:10 yidldata
26% higher throughput than ratio 1:2.

40000 T T T T T T T T T T T T

35000

30000

20000

Throughput

15000

10000

5000

Warehouses

Figure 4: Throughput performances using different nurs-
ery/mature ratios in SPECjbb2000

Figure 5 depicts the throughput performances of two fixeid-ra
collectors (1:2-collector and 1:10-collector) and the Apgollec-
tor. Our study of SPECjbb2000 revealed that the 1:2-callenbstly
outperformed the Appel collector when the workload was tkeaa
8 warehouses. However, once the workload level surpassede8 w
houses, the Appel collector yielded much higher througgaust
formance than both of the fixed-ratio collectors, leadingriore
graceful degradation behavior.

As stated in Section 2, one major benefit of the fixed-ratio ap-
proach is that the size of the nursery can be optimally tuoed t
match the lifespan characteristic of an application. Hawein
applications with varying lifespan characteristic (e.gplécation
servers), the ratio becomes sub-optimal as soon as thgdifes
characteristic begins to change. Because the optimal irmtor
experiment was 1:2, the nursery occupied a large portiomef t
heap. Therefore, it became exceedingly difficult to maimégaliarge

40000 ——————————————————————

12 ——
> 1:10 ==kemn
------- Appel ---%---
35000 - i A
o .,
o,
3 L
30000) A
F e Kemmm mmme *“"«."""’l'
L \ .%%
25000 // 41‘».“.,_ 4
: ' R
5 ' N
: ~\.‘.
2 20000 - A
(<} “
£ “
= \ '.
15000 | T A
10000 | A
~4
5000 |- g
%
0 . . L L L L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Warehouses

Figure 5: Throughput performances of 1:2-collector, 1:10-
collecto, and Appel collector (SPECjbb2000)

enough copy-reserve space to allow successful minor ¢alfein-
vocations.

On the other hand, it is more difficult to tune the nursery size
of the Appel collector because the size is determined dycelipi

to support the optimal fixed-ratio nursery size. To suppgniagnic
nursery enlargement, NMFLUX computes the amount of avialab
memory in the mature space after each full collection intiooa
When there is enough copy-reserve memory to support a leager
tio, the system automatically enlarges the nursery to therago.

By how much should we decrease the nursery sizefhe frame-
work provides the locations to switch from fixed-ratio toiahbte-
ratio collectors and vice-versa. However, the actual immgleta-
tion of a collector based on this framework must also seleet t
reduced nursery size after a critical point is detected. Wale-
mented two variations of generational collectors thatriege NM-
FLUX: dynamic-ratioandhybrid.

4.1 Dynamic-Ratio Collector

As shown in Section 3, smaller ratios allow the throughput pe
formances of SPECjbb2000 to degrade more gracefully than th
1:2 ratio. Thus, one approach is to incrementally reduceatie
each time a critical point is reached. Our dynamic-ratidexbr
reduces the size of the heap from 1:m to 1:m+1 (where m ingicat
the number of times the mature space is larger than the wnurser
space) each time a critical point is detected. Note thatetieation
can be made until the ratio is 1:15, the minimum ratio allowgd
HotSpot.

Instead of relying on NMFLUX to provide the switching points
it is also possible to use different criteria (e.g. humbethogads,
allocation rate, etc.) to trigger nursery reduction. Hogrethe

by the amount of available heap memory. Thus, when the demandfollowing constraints must be followed:

is light, the nursery is often too small to give enough timedb-
jects to die, leading to higher collection time due to langglumes

of surviving objects. However, once the workload becomesye
the Appel collector rarely suffers from the problem of capgerve
space being too small. Thus, minor collection is still inedkun-
der heavy workload, leading to shorter pauses and more time f
mutator execution.

Remark. The result of our experiment clearly indicates that tech-
niques not suffering from consecutive full collection ications
during heavy demands will allow the throughput to degradeemo
gracefully. In the next section, we will propose two techmg
that leverage the fixed-ratio approach to achieve high tirput
performance when the workload is light, but avoid sufferirgm
repetitive full collection invocations when the workloadheavy.

4. INTRODUCING NMFLUX

As stated in the last section, one approach to make the throug
put performance of a fixed-ratio collector degrade moreeftaly
is to prevent consecutive full collection invocations dariheavy
workload. NMFLUX is created to accomplish this specific task
The main component of NMFLUX is the decision process to switc
from a fixed-ratio collector to a variable-ratio collectoh@n the
workload is heavy and then switch back when the workloadfs li

Detecting critical point. We experimented with various run-time
parameters such as live-size, mature generation usagalland-
tion rate only to discover that these parameters indicgtécgtion
specific behavior and do not always yield accurate predicati
representation of critical points. On the other hand, ouesti-
gation of SPECjbb2000 showed that two or more consecutive fu
collection invocations only occur at critical points. (Teterate, a
critical pointis an execution location where a collector with smaller
nursery/mature ratio outperforms a collector with largsior)
NMFLUX leverages this insight to decrease the nursery/meatu
ratio whenever it detects two consecutive full collectiomoca-

e Nursery reduction without maintaining to/from spaces ra-
tio. As stated earlier, HotSpot set the combined size of the
to/from spaces to minimally be 20% of the nursery. If this
ratio does not have to be maintained, the new ratio can be ap-
plied after eaclminor collectionas theedenspace is empty.
However, the new ratio must result in a nursery that is larger
than the 128KB due to the minimum size requirement of the
to andfrom spaces.

e Nursery reduction while maintaining to/from space ratrior
to a full collection invocation, the new boundary address (b
tween nursery and mature spaces) is calculated. Full eollec
tion slides objects to the beginning of the new boundary and
copies surviving objects in the nursery to the mature space.
At that point, the nursery is empty so new to/from spaces can
be configured to maintain the 20% ratio. In summary, this
type of adjustment can only be done throdgt collection.

4.2 Hybrid Collector

Our collector is initially configured to use the optimal fixed
ratio between the nursery and mature spaces (e.g. 1:2 mtio f
SPECjbb2000). However, once a critical point is reacheal stfs-
tem switches to Appel collector. The switch becomes efiecifter
a full collection invocation has completed.

In the next section, we will evaluate the performances ofehe
two collectors by comparing them against the performancanof
optimally tuned fixed-ratio collector.

5. EVALUATION

The goal of our collectors is to provide the best of both werld
performance by utilizing fixed-ratio collector when a serappli-
cation is facing light memory demands and variable-sizadery
collector when the application is facing heavy memory deisan
Thus, our benchmarks must havarying demands in memory us-

tions, and increase the ratio when there is enough heap mgemor age similar to a long-running server application. That is we tvan

Benchmark Description Input configurations] Total allocations Maximum Number of
| “objects (million) | bytes (MB) | live-size (MB) threads ‘
xalan (DaCapo) Transforms XML documents into HTML] -s default 161 60 26 1
javac (SPECjvm98)| JDK 1.0.2 Java compilers. problem size = 100 5.9 178 7.2 1
SPECjbb2000-16 | A Java program emulating 3-tier sytem | 16 warehouses 788 41000 308 21
focusing on the middle tier.
SPECjbb2000-32 | A Java program emulating 3-tier sytem | 32 warehouses 3573 188000 768 37
focusing on the middle tier.
SPECjbb2005-16 | A Java program emulating 3-tier sytem | 16 warehouses 5757 325000 620 21
focusing on the middle tier.
SPECjbb2005-32 | A Java program emulating 3-tier sytem | 32 warehouses 6002 339000 1200 37
focusing on the middle tier.
Table 1: Benchmark Characteristics
Benchmark (heap size Fixed-ratio Appel Dynamic-ratio Hybrid
Minor GCs FullGCs Minor GCs Full GCs Minor GCs FullGCs Minor GCs FullGCs
Calls (seconds)| Calls (seconds)| Calls (seconds)| Calls (seconds)| Calls (seconds)| Calls (seconds)| Calls (seconds)| Calls (seconds)
xalan (64MB) 926 (27.82) 243 (27.60) 909 (26.83) 232 (25.24) 959 (28.67) 268 (30.19) 917 (26.81) 236 (25.62)
avac (20MB) 21 (0.33) 46 (3.79) 205 (1.41) 6 (0.17) 75 (0.75) 26 (1.96) 245 (1.62) 10 (0.49)
bb2000-16 (308MB) | 2049 (143.31)| 1326 (808.56)| 25159 (1002.38) 2(0.04) | 2891 (224.15)| 1265 (782.63)| 19091 (829.33)] 279 (114.72)
bb2000-32 (768MB) | 1602 (242.17)| 322 (1146.19)| 15429 (1071.39) 2(0.05) | 2120 (343.53)] 275 (925.83)| 11152 (932.43) 71 (140.99)
bb2005-16 (620MB) 2530 (226.16)| 623 (1220.14)| 27259 (1126.76) 2(0.05) | 3571(329.17) 515 (978.81) 19009 (929.15) 128 (160.71)
jbb2005-32 (1.2GB) 1777 (201.84) 357 (379.61) 8074 (613.10) 2(0.04) | 2010 (265.06) 310 (313.67)[5158 (453.43) 180 (119.33)

Table 2: Comparing GC behaviors when fixed-ratio, Appel, dyrmamic-ratio, and hybrid collectors are used. Also note that # appli-

cations, the optimal ratio is 1:2.

(i) the application to be heap intensive and maintain a l¢ivge
size over the entire execution, and (ii) the heap requir¢raad
live-size to increase and decrease over time.

We also experimented with applications that do not meetethes

criteria. For example, our experiments with the SPECjvméges
showed that our collectors did not provide any advantages tbe
optimally tuned fixed-ratio collector in most applicatig(ise only

exception wagavac). This was because the lifespan characteristics

of these applications did not change drastically over tilndact,
there were no instances of back-to-back full collectiorogations

when the heap was set to be twice the maximum live-size. e als
conducted experiments using DaCapo benchmarks [4]. Ouitses
once again showed that only one benchmark could slightlgfiten

from our techniques (xalan). It is worth noting that we ity

expectedhsqldbto work well with our technique. However, its

optimal nursery:mature ratio was only 1:11, meaning that@ady

used a very small nursery. Thus, our technique could notigeov

any performance benefits.

In summary, we included the following benchmarks in our expe
iments: xalan javac SPECjbb200q16 and 32 warehouses), and
SPECjbb200%16 and 32 warehouses). The basic characteristic of

our selected benchmarks are given in Table 1.

Our methodology was to execute these applications ten times

monitor various performance metrics (e.g. GC behaviogugh-
put or execution time, and minimum mutator utilization).eTfol-
lowing subsections report the average values of theseagetri

5.1 Basic GC Behavior

Itis expected that different collectors yield differentigage col-

lection performances.

In terms of throughput performance a

pause time, a collector that invokes more frequent minolecel
tion should outperform a collector that invokes more freyuell

collection. Thus, the focus of this section is on the diffees in
the number of minor and full collection invocations and thmeet
spent in each type of collections. Table 2 reports the erpartal

results.

The Appel collector invoked the highest number of minor col-

lection (as many as ten times more than that of the fixed-catio
lector). In doing so, it significantly reduced the numberwdf €ol-
lection invocations. However, these changes in the numberi-o

nor and full collection invocations did not mean that lessetivas
spent in GC. For example, in SPECjbb2000 with 16 warehouses,
the fixed-ratio collector spent about 952 seconds on GC whée
Appel collector spent about 1000 seconds. However, theageer
minor collection time for the Appel collector was much sreall
This was mainly due to smaller nursery sizes.

5.2 Throughput Performance

Table 2 shows that different collectors yield different G&-p
formances. However, it is unclear how these differencescaff
the overall throughput performance and its degradatiomiehof
each server application. Because the focus of this sediorainly
on throughput, we only observed the performances of SPEO[b
and SPECjbb2005. Figure 6 illustrates our experimentailtes

Notice that the two proposed collectors yielded nearly thaes
peak throughput performances as the fixed-ratio colleticaddi-
tion, the dynamic-ratio collector was able to maintain leigirough-
put performances during heavy demands by making severat nur
ery reductions. Under heavy workload, the throughput imgro
ments in the 16 warehouses settings were as much as 16% (at 11
warehouses) and 75% (at 12 warehouses) in SPECjbb2000 and
SPECjbb2005, respectively. In addition, the hybrid catleavas
able to maintain nearly the same throughput performancéiseas
Appel collector, with the peak throughput performance iover
ments of 26% for SPECjbb2000 and 125% for SPECjbb2005, over
the fixed-ratio collector.

When our collectors were tested under more extreme memory
demands (32 warehouses), they performed even better a#f-the d
ferences in throughput performances were higher than thiotbe
16 warehouses settings. Moreover, the throughput perfurenaf
the Appel collector during light to moderate workload wascimu
worse than the other collectors in SPECjbb2000. In thisaten
the throughput performances at heavy workload of SPECja®20
were 23% (dynamic-ratio) and 28% (hybrid) higher than that t

40000 T T T T T T T T T T T

T T T
Fixed-ratio (2) —+—
Dynamic-ratio ---x---

Appel .
Hybrid

35000 7 gl e
30000 f
25000

20000 -

Throughput

15000

10000 |- N %

5000

T
!

Warehouses
(a) SPECjbb2000 (16 warehouses)

22000 T T T T T T T T T T

T T T T
Fixed-ratio (2) —+—
Dynamic-ratio ==-%-=-

epten

‘‘‘‘‘‘ B

Appel

20000 [Hybrid

18000

16000 |-

Throughput

14000 %
12000

10000

8000 L L L L L L L L L L L L L L
16 18 20 22 24 26 28
Warehouses

(c) SPECjbb2000 (32 warehouses)

32

14000 T T T T T T T T T T

T T
Fixed-ratio (2)
Dynamic-ratio
Appel -
Hybrid

12000 | Fea
.........

P Rl . v

10000 4]

8000

Throughput

6000

4000

2000

Warehouses
(b) SPECjbb2005 (16 warehouses)

7000 T T T T T T T T T T

T T T
Fixed-ratio (2)

Dynamic-ratio =--%---
. Appel ---a-e
6000 & ... Hybrid B
5000
S 4000 T
a
=
=)
E}
e
£ 3000
2000
1000
0 L L L L L L L L L L L L L L
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Warehouses

(d) SPECjbb2005 (32 warehouses)

Figure 6: Comparing the throughput performances of the proposed collectors against the Appel collector and the fixed-ti collector

(optimal ratio = 2)

of the fixed-ratio collector. For SPECjbb2005, the improeats
were 68% (dynamic-ratio) and 133% (hybrid).

5.3 Execution Time

In this section, we report the effects of our collector on ¢ixe
ecution times ofkalanandjavac We also wish to report that for
applications not benefiting from using our collectors, thecgition
times were virtually unchanged, implying that the overhebctit-
ical point detection is negligible.

Execution time of javac. We set the heap to be about twice as
large as the maximum live-size so that the application watilt
invoke a reasonable number of garbage collection, witheiurigo
excessive. Our result indicated that the dynamic-ratitector in-
creased the execution time by 2% (10.13 seconds for the fadial-
collector and 10.36 seconds for the dynamic-ratio coligend the
hybrid collector reduced the execution time by 14% (8.6®8ds
for the hybrid collector).

Execution time of xalan. Again, we set the heap size to be about
twice as large as the maximum live-size. We initially spedifi
56MB for the heap but due to internal alignment and round-up,
HotSpot assigned 64MB for the heap. Our result indicatetitttea
both collectors reduced the execution time by about 7.5%.

5.4 Mutator Utilization

We used MMU (minimum mutator utilization) [3] to measure
the pause time and mutator utilization. Mutator utilizatis the
fraction of the time that an application (or mutator) exesuvithin
a given window. For example, given an execution window of 10
ms, within that time the collector runs for 4 ms, and the nuortat
runs for 6 ms. Thus, the mutator utilization is 60%. Thmimum
mutator utilization(MMU) is the minimum utilization across all
execution windows of the same size. For example, an MMU of
40% at 10 ms means that the application will at least executs 4
out of every 10 ms. Figure 7 depicts the MMU of each collector
for each benchmark. The x-intercept indicates the maximans@
time, and the asymptotic y-value indicates the mutatoizatilon.

Typically, an application that invokes minor collection radre-
quently and seldom invokes full collection often yieldssbopauses
and higher overall mutator utilization. Javacthe mutator utiliza-
tion of the hybrid approach was the highest. This was becruse
invoked a large number of minor collections. On the otherdhan
xalan showed very little effects from different collectors besau
the number of minor collection and full collection invoaats only
changed slightly when different collectors were used.

For SPECjbb2005, both the dynamic-ratio and hybrid codliesct

MMU

MMU

MMU

0.9
Fixed-ratio (2) Fixeé-raliu (2
Dynamic-ratio Dynamic-rati
08 | Appel
0.6 | Hybrid
o7 b Heap size = 20MB Heap size = 64MB
0.5 |
06
05 | 04 |
=)
S
04 03 |
03 |
02| H
¥
02 i
£
01 | H
01 | . i
£
£
a
0 0 H L
0.01 0.1 1 10 0.01 0.1 1 10 100
Window size (seconds, log scale) Window size (seconds, log scale)
(a) javac (b) xalan
0.7 T 0.8 T
Fixed-ratio (2) Fixed-ratio (2)
Dynamic-ratio Dynamic-rati
06 |- orr
Heap size = 308MB fi Heap size = 620MB
4
i 06
05| ;
0.5 |-
04
=) L
é 0.4
03 |
03 |-
02|
0.2 |
01t o1h
o 0 ! L
0.1 1 10 100 1000 0.1 1 10 100 1000
Window size (seconds, log scale) Window size (seconds, log scale)
(c) SPECjbb2000 (16 warehouses) (d) SPECjbb2005 (16 warehouses)
0.8 0.8 T
Fixed-ratio (2)
Dynamic-rati
Appel -
07 | 07 | Hybrid
Heap size = 768MB Heap size = 1200MB
0.6 |- 0.6 |-
05 05 |
- =} o
0.4 2 0.4
=
0.3 | 0.3 |
02} 02|
0.1 |- 0.1 |
0 0 ! i ! ! !
0.1 1 10 100 1000 0.1 1 10 100 1000

Window size (seconds, log scale)

(e) SPECjbb2000 (32 warehouses)

Window size (seconds, log scale)

(f) SPECjbb2005 (32 warehouses)

Figure 7: Comparing minimum mutator utilizations (MMUSs)

significantly impacted the throughput performances, aapeat the nursery to ensure successful minor collection. Thehrgue
higher workload. Moreover, the two collectors significgnith- leverages information from prior GC invocations to safagduce
creased the number of minor collection invocations and cqedu the size of the copy-reserve space. In doing so, the spaceris m
the number of full collection invocations; thus, major dittnces efficiently utilized and the frequency of GC invocations liscare-

in the MMUs were observed. For SPECjbb2000, the differences duced.

in MMUs were not as wide ranging. This might be due to less Their experimental results show a 16% speed-up of garbdge co

performance impacts from our collectors. lection time. The heap usage is also reduced by 19% to 40%. One
.. . possible issue with this approach is that objects in sempplica-
5.5 Ability to Switch Back tions can be much longer living than objects in desktop appli
We modified SPECjbb2000 to decrease the workload after 16 tions. The assumption that only a small portion of objectsigas
warehouses. Basically, the application starts destroigmgare- minor collection does not always hold and can cause thebritihgn
houses one at a time until it reduces the number of warehdases to fail.
2. We used this setting to emulate decreasing demands iersgrv Work by Sachindran and Moss [19] attempts to reduce the copy
plications. Figure 8 depicts our collectors’ abilities teiteh back reserve space in the mature generation by partitioningehg nto
to the optimal ratio once the workload has lightened. small windows. Thus, the size of copy-reserve is limitedi®ydize
of each window. The copying phase is done in several passds, a
45000 —————————T—— T each pass only “copying a subset of windows in the old geioerat
) _ [19]. Because the HotSpot collector uses mark-compact math
oo r ' copy-reserve space for full collection, this techniquesdoat apply
35000 to our work.

Work by McGachey and Hosking [14] also reduces the copy-
reserve space by exploiting the insight similar to Velastcal. that
only a small portion of objects survives a garbage collectivo-
cation. However, their technique uses compaction to as lkeyac
in the case that their prediction is wrong. The back-up ctdie
recovers additional copy-reserve space to ensure thairaiveng
data are “accommodated” [14].

In their technique, the copy-reserve space is set to be only a
W\ /7 fraction of, instead of equal to, the nursery. In an instatize

| the volume of surviving objects from the nursery is largenthhe
e copy-reserve space, an algorithm similar to mark-compsetl in
HotSpot is activated. In a way, their approach is more advanc
than HotSpot because it can recover from a failing minorectibn

30000 |f
25000

20000

Throughput

15000

10000

5000

T

0
1234567 8 9101112131415161514131211109 8 7 6 5 4 3 2

Warehouses

(a) javac by switching to compaction on the fly. If this scenario occirs
HotSpot, the failed minor collection would be partially cpleted.
Figure 8: Switching back to fixed-ratio collector once the wok- The objects that cannot be promoted stay in the nursery. &kie n
load has lightened allocation failure will result in full collection invocatin.

Another related area to this work is dynamic switching ofalg
rithms. Work by McGachey and Hosking switches from copying-
Notice that the hybrid collector was able to easily switchkba hased minor collection to compaction-based full collectm the
when the number of warehouses was reduced to 4. This was be-ﬂy [14] The main criterion for Switching is fa|||ng minor dec-

cause the hybrid collector, once operated inthe Appel sthlecked tion due to insufficient copy-reserve space. This criteiothe

the size of the mature space after each minor collection;hwbe- same as ours except that our algorithms do not invoke fulécel
curred very frequently. On the other hand, the dynami@rex- tion, but instead reactively reduce the nursery size toratfwore
perienced a long delay because switching could only ocder af mjinor collection invocations. Work by Somat al. [20] switches
full collection. Prior to the workload reduction, the nunsevas to different garbage collection techniques based on Chaimw(e_
very small while the mature space was very large. Becaugeisbj cution profiles. An annotation-based technique is used itleghe
were not prolifically created during the workload reductjano- selection process. Their work is based on Jikes RVM with MMtK
Ccess, full collection was never called so SWitChing neVekwace. [2] S0 many garbage collection techniques are read”y alvks|
One possible approach to overcome this long delay is to use an work by Printezis uses hot-swapping to switch between mark-
other criterion such as a reduction in number of threads fiores sweep and mark-compact to perform full collection [18] Tk
switching. does not modify the copying algorithm used for minor collect
The heuristic is that mark-compact can allocate objectdrfaster
6. RELATED WORK due to pointer-bumping algorithm; thus it is used when thisre

plenty of space in the mature generation (e.g. during irstat-up

or after heap expansion). However, mark-sweep has low&uexe
tion cost due to non-compacting nature. Thus, when the heap i
tight and full collection needs to be called frequently, kasweep
should be used.

In effect, his approach tries to achieve the best of both dgorl
with these two algorithms. The goal of our work is similar rin®
ezis's in that we also try to achieve the best of both worldsugh
fixed-ratio and variable-ratio collectors. However, ourus is on

There have been numerous research efforts to reduce the copy
reserve overhead and improve the performance of Appelaolle
tors. Though the focus of our work is not on reducing the size o
copy-reserve space, it is worth mentioning some of thesetefhs
they present opportunities to further improve the perfaroeaof
our proposed collectors.

Work by Velasceet al. [26, 25] reports that the volume of surviv-
ing objects from the nursery during minor collection rarekgeeds
20% of the nursery; however, a collector often reserves 100%

the performance and efficiency of minor collection instefiflib
collection. Combining their work and ours will create an opp
tunity for further improvement that will be investigated fasure
work.

7. FUTURE WORK

can make the throughput degradation behavior of serveicappl
tion more predictable and graceful. In effect, it can imgrdfe
serviceability of server applications under heavy memamyands

as the throughput performance can improve by as much as 133%.

9. REFERENCES

In this paper, we have shown that the proposed dynamic-ratio [1] A- W.Appel. Simple Generational Garbage Collection and

and hybrid collectors can significantly improve the thropmgrdegra-
dation behaviors of the two server benchmarks, SPECjbbanao
SPECjbb2005. Our collectors are based on the standardagener
tional collector in HotSpot and not the concurrent colled&s],
which supposes to yield the best throughput performancenwhe
used in multiprocessor environment [5]. However, a studXian

et al. shows that the throughput degradation behavior of the @dencu
rent collector is very similar to the standard generatiaudiiector
[29]. Thus, integrating NMFLUX into the concurrent collectmay
make the throughput performance degrade more gracefullis T
integration is outside the scope of this work but will be retting

to investigate in the future.

Work by Xian et al. [28] introduces a high-throughput gerera
tional collector for application servers or AS-GC. Theitlector
leverages th&ey objectnotion to segregate local and remote ob-
jects into two independent nurseries. Their result show8% 2
improvement in throughput performance and an ability todhan
10% higher workload before the memory is exhausted [28]. How
ever, their optimization does not improve the degradatieimalyior
so integration with our work would make an interesting stime
future.

Itis quite common for the heap size of a large server apjticat
to exceed the physical memory capacity when facing uneggect
heavy demands. In this scenario, paging activities becomea-a
jor factor that limits and degrades throughput performarsmefar,
our study has not investigated the effect of our collectorpaging
behavior. For example, because our collectors invoke féuler
collections, they may improve paging performance as fullece

tion has been known to induce a large number of page faults due 8]

to heap traversal [7, 12, 16]. We are currently conductirchsan
investigation.

8. CONCLUSION

In this paper, we introduce NMFLUX, a framework to switch
between a fixed-ratio collector and a variable-ratio codietor op-
timal throughput performance and graceful degradatioraien
Our framework leverages an insight that when copy-resgraees
becomes too small, itis a sign that the nursery should beesjas
the lifespan characteristic is no longer conform to the oritéaily
used to tune the nursery size. We then utilized this framlewmr
construct:

1. Adynamic ratio collector that incrementally reducesrthes-
ery size each time an instance of two consecutive full-ctbe
is detected.

2. Ahybrid collector that combines the fixed-size colleatith
an Appel style collector. In our hybrid collector, the Ap-
pel collector replaces the fixed-size collector whenever an
instance of two consecutive full collection invocationslés
tected.

Both schemes can switch back to fixed-ratio collector onee th
workload has lightened.

Our study has shown that these two collectors have verydinit
use in desktop-like applications. However, our experiralerg-
sult indicates that both techniques, especially the hytwitector,

Fast Allocation Software Practice and Experience
19(2):171-183, 1989.
[2] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
Water? High Performance Garbage Collection in Java with
MMTK. In Proceedings of the 26th International Conference
on Software Engineering (ICSH)ages 137-146, Scotland,
UK, May 2004.
P. Cheng and G. E. Blelloch. A parallel, real-time garvag
collector. INPLDI’'01: Proceedings of the ACM SIGPLAN
2001 conference on Programming language design and
implementationpages 125-136, Snowbird, Utah, USA,
2001.
DaCapo Group. Dacapo benchmarks.
http://dacapobench.org/.
[5] A. Gupta and M. Doyle. Turbo-charging Java HotSpot
Virtual Machine, v1.4.x to Improve the Performance and
Scalability of Application Servers. On-line article.

(3]

(4]

http://java.sun.com/developer/technicalArticlesffeanming/turbo/.

[6] M. Hertz and E. Berger. Quantifying the performance of
garbage collection vs. explicit memory management. In
OOPSLA ’'05: 20th annual ACM SIGPLAN conference on
Object-oriented Programming Systems, Languages, and
Applications pages 313326, San Diego, CA, USA, 2005.
M. Hertz, Y. Feng, and E. D. Berger. Garbage collection
without paging. InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI)pages 143-153, Chicago, IL, USA,
June 2005.

H. Hibino, K. Kourai, and S. Shiba. Difference of
Degradation Schemes among Operating Systems:
Experimental Analysis for Web Application Servers. In
Workshop on Dependable Software, Tools and Methods
Yokohama, Japan, July 2005.
http://www.csg.is.titech.ac.jp/paper/hibino-dsn2q@eb.

IBM. Jikes Research Virtual Machine.
http://jikesrvm.sourceforge.net.

IBM. Ibm websphere.
http://www-306.ibm.com/software/webservers/appseag/,
last visited June 2007.

JBoss. Jboss Application Server. Product Literatiast
Retrieved: June 2007. http://www.jboss.org/products/fas.
R. Jones and R. Lin&arbage Collection: Algorithms for
automatic Dynamic Memory Managemedbhn Wiley and
Sons, 1998.

H. B. M. Jonkers. A fast garbage compaction algorithm.
Information Processing Letter§(1):26-30, 1979.

P. McGachey and A. L. Hosking. Reducing generational
copy reserve overhead with fallback compaction. In
International Symposium on Memory Managemeates
17-28, Ottawa, Ontario, Canada, June 2006.

Microsoft. About the Common Language Runtime (CLR).
http://www.gotdotnet.com/team/clr/abocit.aspx.

D. A. Moon. Garbage collection in a large lisp system. In
Proceedings of the ACM Symposium on Lisp and Functional
Programming pages 235-246, Austin, TX, 1984.

(7]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

ObjectWeb. JONAS: Java Open Application Server. White
Paper, Last Retrieved: June 2007.
http://www.jonas.objectweb.org.

T. Printezis. Hot-swapping between a mark&sweep and a
mark&compact garbage collector in a generational
environment. IN'VM’01: Proceedings of the JavaTM Virtual
Machine Research and Technology Symposium on JavaTM
Virtual Machine Research and Technology Sympospages
20-32, Monterey, California, April 2001.

N. Sachindran and J. E. B. Moss. Mark-copy: fast copying
GC with less space overheg&lGPLAN Not.
38(11):326-343, 2003.

S. Soman, C. Krintz, and D. F. Bacon. Dynamic selectibn o
application-specific garbage collectorsI8MM '04:
Proceedings of the 4th International Symposium on Memory
Managementpages 49-60, Vancouver, BC, Canada, 2004.
W. Srisa-an, M. Oey, and S. Elbaum. Garbage Collection i
the Presence of Remote Objects: An Empirical Study. In
Proceedings of the International Symposium on Distributed
Objects and Applications (DOApages 1065-1082, Agia
Napa, Cyprus, 2005.

Sun. Performance Documentation for the Java HotSpot VM
On-Line Documentation, Last Retrieved: June 2005.
http://java.sun.com/docs/hotspot/.

Sun Microsystems. Java Technology is Everywhere,
Surpasses 1.5 Billion Devices Worldwide. Press Release,
February 2004.
http://www.sun.com/smi/Press/sunflash/2004-
02/sunflash.20040219.1.html.

D. Ungar. Generation Scavenging: A non-disruptivehhig
performance storage reclamation algorithmPhoceedings

of the First ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environmentspages 157-167, 1984.

J. M. Velasco, K. Olcoz, and F. Tirado. Adaptive tunirfg o
reserved space in an appel collectorPhoceedings of the
18th European Conference on Object-Oriented
Programming pages 543-559, Oslo, Norwary, June 2004.
V. Velasco, A. Ortiz, K. Olcoz, and F. Tirado. Dynamic
management of nursery space organization in generational
collection.interact 00:33-40, 2004.

M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet
Services. IrProceedings of the ACM Symposium on
Operating Systems Principles (SOSpages 230-243,
Chateau Lake Louise, Banff, Canada, October 2001.

F. Xian, W. Srisa-an, C. Jia, and H. Jiang. AS-GC: An
Efficient Generational Garbage Collector for Java
Application Servers. IfProceedings of the 21st European
Conference on Object-Oriented Programming (ECOQOP)
pages 126-150, Berlin, Germany, July 2007.

F. Xian, W. Srisa-an, and H. Jiang. Investigating the
throughput degradation behavior of Java application serve
A view from inside the virtual machine. IRroceedings of

the 4th International Conference on Principles and Pragsic
of Programming in Javapages 40—49, Mannheim, Germany,
2006.

	NMFLUX: Improving Degradation Behavior of Server Applications through Dynamic Nursery Resizing
	

	main.dvi

