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abstract: Biological systems provide examples of differential success
among taxa, from ecosystems with a few dominant species (ecological
success) to clades that possess far more species than sister clades (mac-
roevolutionary success). Macroecological success, the occupation by a
species or clade of an unusually high number of areas, has received less
attention. If macroecological success reflects heritable traits, then suc-
cessful species should be related. Genera composed of species possess-
ing those traits should occupy more areas than genera with comparable
species richness that lack such traits. Alternatively, if macroecological
success reflects autapomorphic traits, then generic occupancy should
be a by-product of species richness among genera and occupancy of
constituent species. We test this using Phanerozoic marine inverte-
brates. Although temporal patterns of species and generic occupancy are
strongly correlated, inequality in generic occupancy typically is greater
than expected. Genus-level patterns cannot be explained solely with
species-level patterns. Within individual intervals, deviations between
the observed and expected generic occupancy correlate with the number
of lithological units (stratigraphic formations), particularly after con-
trolling for geographic range and species richness. However, elevated
generic occupancy is unrelated to or negatively associated with either
generic geographic ranges or within-genus species richness. Our results
suggest that shared traits among congeneric species encourage short-
term macroecological success without generating short-term macro-
evolutionary success. A broad niche may confer high occupancy but
does not necessarily promote speciation.

Keywords: occupancy, dominance, macroecology, speciation, fossil
record.

Introduction

Inequity abounds in biological systems at multiple scales of or-
ganization. At the community level, there typically are a few
species with many individuals andmany species with few in-
dividuals (Preston 1948; Magurran and Henderson 2003;
McGill et al. 2007). At the clade level, there are a small num-
ber of species-rich clades andmany species-poor ones (Alfaro
et al. 2009). Occupancy—that is, the number of places inhab-
ited by a taxon—might be an important link between eco-
logical success andmacroevolutionary success, yet it has got-
ten much less theoretical and empirical attention than have
abundance and diversification. Species abundant in any one
locality also tend to occupy many localities (Buzas et al. 1982;
Brown 1984; Chao et al. 2005), suggesting that there is ineq-
uity in occupancy. Brown (1984; see also Wagner and Erwin
1995; Goldberg et al. 2011; Castiglione et al. 2017) posits that
the macroecological success of being widespread should lead
tomacroevolutionary success, because species found inmany
places should be more prone to allopatric speciation. Con-
versely, Servedio andKirkpatrick (1997) note that species with
densely filled ranges could have lower probabilities of achiev-
ing peripheral isolation because of elevated gene flow offset-
ting the effects of selection and drift. Given the established
relationship between abundance and occupancy, it is impor-
tant to explore patterns of success and dominance in occu-
pancy and how they relate to species richness.
Although occupancy is related to geographic range (Gas-

ton 2003), the density of occurrences within a geographic
range also is important to occupancy. The “Swiss cheese”
model (Rapoport 1982;Hurlbert andWhite 2005, 2007)makes
this distinction clear. Suppose we represent the distributions
of two species as two slices of cheese with the same dimen-
sions, but one slice is cheddar and the other is Swiss. The spe-
cies represented by cheddar occupies more of its geographic
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range (i.e., the area of the slice) than does the species repre-
sented by Swiss. Brown (1984; also Gaston and Spicer 2001;
Slatyer et al. 2008) suggests that species with traits promoting
broad niche breadths can occupy more habitats than species
with similar geographic ranges but narrower niche breadths.
This is equivalent to reducing the number and/or size of the
holes in the Swiss cheesemodel.Mechanisms, such as dispersal
ability, that affect geographic range (e.g., Jablonski 1987) are
equivalent to changing the size of a slice of cheese. Thus, spe-
cies can achieve themacroecological success of high occupancy
through wide geographic ranges (large cheese slices) and/or
denser inhabitation of those ranges (fewer holes per slice).

The predictions of these models are not restricted to indi-
vidual species: phylogenetic autocorrelation (Raup andGould
1974; Felsenstein 1985) predicts that, in general, closely related
species will share traits because of common ancestry.We have
no a priori reason to think that traits affecting occupancy
should be exceptions to this rule; that is, there is no reason
why only autapomorphies might promote high occupancy
as opposed to synapomorphies. For example, dispersal capa-
bilities often are similar among closely related species, and
species with good dispersal ability often have high potential
to occupy many areas (e.g., Jablonski 1987). As a corollary,
occupancy patterns among genera should be more than just
a by-product of variation in occupancy among species and
variation in species richness among genera. Instead, because
congeneric species should share traits affecting occupancy,
generic occupancy should be an indirect “trait” of the genus,
generated by traits shared by constituent species.

The fossil record is a useful system for distinguishing the
predictions of models about what drives dominance in oc-
cupancy and how macroecological success corresponds with
macroevolutionary success. Several studies use locality-level
data to look at occupancy patterns among fossil taxa (Foote
et al. 2007; Carotenuto et al. 2010; Liow 2013; Foote 2016),
although their uses of the concept of occupancy differ some-
what. These locality data, in turn, provide us with informa-
tion about (paleo)geographic ranges (Kiessling and Aberhan
2007; Miller et al. 2009; Wu and Miller 2014; Foote et al.
2016; Ritterbush and Foote 2017) and different basic sedi-
mentary environments inhabited by fossil taxa (e.g., Heim and
Peters 2011; Foote 2014). These consequently are important
for assessing ideas about how dispersal ability and ecological
flexibility affect occupancy.

In this article, we set out to assess three basic ideas. First,
we askwhether occupancy patterns among fossil genera in dif-
ferent time intervals suggest that traits shared among closely
related species affect occupancy or whether occupancy among
genera is just a by-product of occupancy among species and
variation in species richness among genera. Second, if species-
level patterns of occupancy and richness within genera
combined do not explain genus-level patterns in occupancy,
then we assess whether deviations from expected genus-level

occupancy correlated with estimates of environmental breadth
and geographic range. Finally, we evaluate the contrasting
predictions for association between macroevolutionary suc-
cess (i.e., evolving many species) and macroecological suc-
cess (i.e., occupying many communities). If high occupancy
promotes speciation, or if common factors promote both oc-
cupancy and speciation, then we expect positive correlations
between excess occupancy and species richness. Conversely,
models in which success in one comes at the expense of suc-
cess in the other predict negative associations.

Data and Methods

Fossil Occurrences and Associated Data

We analyzed trilobite, brachiopod, gastropod, bivalve, ceph-
alopod, and echinoid species and genera from the Paleobi-
ology Database (PaleoDB; https://paleobiodb.org/#/). These
taxa include archetypal representatives of the Cambrian, Pa-
leozoic, andMeso-Cenozoic faunas (sensu Sepkoski 1981) and
represent a range of basic ecologic modes, including sessile
benthic, mobile benthic, and nektonic taxa. These are also
known (or thought) to represent a range of basic metabo-
lisms (see Bambach et al. 2002), from very low (e.g., brachio-
pods and trilobites) to very high (e.g., mollusks). Thus, shared
ecology or morphology are unlikely to explain any common-
alities in basic occupancy patterns among these six taxa.
We downloaded the occurrence data on September 29,

2013.We vetted species records extensively prior to our anal-
yses. Because we wished to assess whether species-level occu-
pancy patterns alone explain genus-level occupancy patterns,
we used only records in which a species is identified rather
than only a genus. That is, we used records for only, say, Bel-
lerophon vasculites or Turritella subangulata but not for Bel-
lerophon sp. or Turritella sp. We used the latest generic
assignments for species for which there are taxonomic data
in the PaleoDB. In addition to this, we also checked exten-
sively formisspellings. Finally, we converted all species names
to gender-neutral versions. Thus, our analyses consider Tro-
chonema umbilicata, T. umbilicatum, and T. umbilicatus to
be the same species within a genus, even if there are no en-
tered taxonomic opinions to those effects.
We treat subgenera as genera in our analyses. In part, we

simply follow the protocols of earlier diversity studies (e.g.,
Sepkoski 1997). We also do so because researchers use gen-
era and subgenera inconsistently in published articles and
thus in PaleoDB entries. Although taxonomic fields fix these
ranks to the latest opinion in many genera and subgenera,
they do not yet do so for all cases. Thus, Leptaena (Septo-
mena) juvenilis, L. juvenilis, and Septomena juvenilis all are
occurrences for S. juvenilis.
We use presence or absence in a PaleoDB collection as our

unit of occurrence (see, e.g., Alroy et al. 2001) and thus as our
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basic unit of occupancy. Note that this is essentially the nu-
merator for measures of occupancy in other paleobiological
studies (e.g., Carotenuto et al. 2010; Liow 2013; Hannisdal
et al. 2017), which divide sites occupied by the total possible
sites occupied for an interval. However, variation in how re-
searchers delimit fossil localities and sample areas with fos-
sils means that raw occurrence numbers might misrepresent
occupancy. For example, whereas some studies simply re-
cord the fossils found in a rock unit in a general area, other
studies provide bed-by-bed lists of fossils over many meters
of the same rock section. Such binge sampling can result in a
species known only from a restricted area having numerous
records if it appears in multiple rock layers in a well-studied
section (see, e.g., Raup 1972). Therefore, we lumped together
all collectionswithin 5 kmof each other (even those fromdif-
ferent rock units). This effectively creates a grid of 5-km cells
for each time interval andmakes our unit of occupancy com-
parable to studies using grids rather than sites (Foote 2016).
We get similar results using a smaller 1-km radius (supple-
mentary information, available online). We stress that grid
approaches are not a complete antidote for the more general
issue of fossiliferous localities being nonrandomly distrib-
uted geographically (e.g., Plotnick 2017), but they do address
one of the more obvious aspects of nonrandom sampling.

The six taxonomic groups we analyze include 84,677 spe-
cies from 14,222 genera (table S1; tables S1–S29 are avail-
able online). The raw data include 369,637 records from
65,821 localities. After lumping together collections within
5 km of each other, there are 164,135 records from 18,152 lo-
calities to analyze. We partitioned those data into 50 time
units of approximately 10 million years each, spanning the
Cambrian through the Late Cenozoic (see Alroy et al. 2008;
note that these are modified to reflect the timescale in Grad-
stein et al. 2012). Counting each combination of taxon and
time independently (i.e., each species or genus that occurs in
multiple bins is tallied for each bin), there were 31,058 total
genus-bin combinations and 98,059 species-bin combinations.

Our data come from 6,315 studies and/or published data
sets (supplementary references, availableonline).Twenty stud-
ies contributed more than 1,400 records each (King 1931;
Reed 1944; Gardner 1947; Besairie and Collignon 1972; Coo-
per and Grant 1977; Toulmin 1977; Woodring 1982; Sohl
and Koch 1983, 1984, 1987; Gitton et al. 1986; Manivit et al.
1990; Aberhan 1992; Tozer 1994; Jablonski and Raup 1995;
Fürsich 1999, 2006; Rode and Lieberman 2004; Holland
and Patzkowsky 2007; Hendy et al. 2008). We provide all of
the references in the online supplementary information.

We tallied generic occupancy using the minimum and
maximum possible counts. The minimum possible allows
one genus occurrence per locality, regardless of how many
constituent species appear there. The maximum possible
simply sums the occurrences of constituent species. Thus,
a genus with three species occupying one locality occupies

the locality three times given the maximum criterion but
only once given the minimum criterion. Minimum counts
offer a safeguard against oversplitting of genera, which often
manifests itself in specimens from well-sampled sites being
split into multiple species, owing to differences that likely
represent intraspecific variation (e.g., Batten 1966; Laban-
deira and Hughes 1994; Alroy 2002). The relational taxo-
nomic fields in the PaleoDB do synonymize many species
following alpha taxonomic studies. However, many relevant
taxonomic opinions have not been entered. Moreover, many
taxa have not undergone species-level alpha taxonomic revi-
sions in recent decades. Thus, the problem could be rampant.
Conversely, legitimate congeneric species found at the same
localities might indicate that a genus occupies a greater num-
ber of niches and/or is more flexible in its environmental
requirements than are genera that lack co-occurring conge-
neric species. If both minimum and maximum occupancy
patterns point to the same conclusions, then our results are
robust to these potential difficulties.
Our data (tables S2, S3; fig. S1; figs. S1–S29 are available

online) replicate the results of prior studies showing that ge-
neric occupancy correlates positively with rock units occu-
pied, geographic range, and species richness (e.g., Liow
2007; Foote et al. 2016). Therefore, we contrast deviations
from expected generic occupancy (see below) with rock units
occupied, geographic span occupied, and species richness.
We use formations for rock units, after standardizing
PaleoDB records of formation names in the following ways.
We treat rock units that differ by inclusion of rock types
(e.g., Burgess Shale and Burgess) as the same formation. In
cases where the rock units do not yet have formal formation
names, we informally name the unit based on the local stage
and continental plate on which the rock unit occurs. A very
different problem is that some rock units are ranked as
formations by some researchers and as members by others.
Rules of stratigraphic nomenclature do allow a rock unit to
be a member of two formations or a formation in one place
but a member in another place. However, for the cases we
researched, different rankings represent a change in opinion
about the rank of the rock unit, akin to the issue of whether
specimens represent a subspecies or species. Thus, for such
rock units, we used the rank from the latest reference con-
tributing occurrence data to the PaleoDB. This rank was ap-
plied to all collections that included that rock unit. Similarly,
we used the latest formation-member combination (includ-
ing a rank as formation) for all members assigned tomultiple
formations.
We used paleocoordinates provided by the PaleobDB for

each locality to test the effects of geographic ranges. We used
maximum span, which provides a good proxy for the geo-
graphic area encompassed by a species (Wu andMiller 2014).
Finally, species richness per genus requires only the spe-

cies records we used to measure dominance. However, we
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expect average species richness to be higher in well-sampled
intervals than in poorly sampled intervals, simply because in-
creased sampling provides a greater chance for finding rare
species within genera. Therefore, instead of using raw species-
per-genus counts, we use average species-per-genus counts
after sampling standardization (see below).

Measuring Dominance in Occupancy among Genera

Wemeasured dominance in occupancy among genera using
theGini index (Gini 1912; Ceriani andVerme 2012). This in-
dex is best known as a measure of income inequality in eco-
nomic studies (Bradlow and Fader 2001; Chin and Culotta
2014; Underwood 2014); however, ecologists have used it
as a dominance metric in community ecology studies (Dam-
gaard and Weiner 2000; Wittebolle et al. 2009). Gini con-
trasts two different cumulative frequency curves (i.e., Lorenz
curves): (1) an empirical curve with taxa and (2) a theoretical
curve giving the maximum possible equality among taxa.
Note that the Lorenz curves sum observed and theoretical
frequencies from rarest to most common. Gini then sum-
marizes the area separating the two curves as

G p
S1 1
S

2
2#

XS

jp1

Xj

ip1
f i

S#N

 !
,

where S is the total number of taxa, N is the total number
of occurrences, and fi is the frequency of the ith taxa. If all
taxa have the same number of occurrences (e.g., n1 p n2 p
⋯ p nS), then the second term goes to (S1 1)=S and
Gini p 0:0. Gini approaches 1.0 as inequality increases.How-
ever, for any particular data set, the maximum possible G
depends both on S and the number of localities or colections,
C. Suppose we have N p 350, S p 100, and C p 100. Be-
cause nmax p 100, the most inequitable distribution of oc-
currences is two genera with n p 100, one with n p 53,
and 97 with n p 1. Thus, Gmax p 0:696, not 1.0. Unless N
is evenly divisible by S, there also is a limit on the minimum
G. AtN p 350 and S p 100, themost equitable distribution
of occurrences has 50 genera with n p 3 and 50 genera with
n p 4. (Note that C is not relevant here because the mini-
mum number of collections must be equal to or greater than
the average number of collections.) Thus, Gmin p 0:071. Our
permutation tests described below will generate different
minimum and maximum Gini when using minimum ge-
neric occupancy (i.e., one locality per genus) because the
number of co-occurring congeneric species will differ from
one run to the next. We therefore rescaled the metric to

G0 p
Gobs 2 Gmin

Gmax 2 Gmin

:

Now, G0 p 0:0 means the minimum possible dominance,
and G0 p 1:0 means the maximum possible dominance.

For each interval, we have an occupancy distribution for
observed genera (fig. 1A). Our null hypothesis is that genus-
occupancy distributions reflect only the occupancy distribu-
tion among the constituent species of those genera (fig. 1B,
showing occurrences and occupancy for 1,730 Late Ordovi-
cian species) and the distribution of species richnesses within
those genera (fig. 1C). We constructed expectations for the
null hypothesis by giving each genus withX species the local-
ities ofX species drawn at random (without replacement) from
the species-occupancy distribution (fig. 1B; see also fig. S2).
We repeated this permutation test 1,000 times to estimate
the expected genus-occupancy distribution under the null hy-
pothesis (fig. 1D). Note that our example in figure 1D tallies
minimum generic occupancy. In each run, we also calculated
G0 from the cumulative frequency curve from permuted generic-
occupancy distribution (fig. 1E), calculating both themedian
G0 (based on the medium blue curve) and the range of sim-
ulated G0s (the blue-gray cloud around that line). For com-
parison, we illustrate the empirical cumulative frequency
curve from figure 1A in red. In this case, because the empir-
ical cumulative frequency curve ismore convex than the sim-
ulated cumulative frequency curves, the empiricalG0 (and thus
inequality) is greater than the expected G0. We assessed the
significance based on the proportion of permutation runs
that equal or exceed the empirical G0; in this case, none do
(fig. 1F), so we assigned P ! :001 here.
We also analyzed the six higher taxa individually. Al-

though all six taxa generally show high sampling levels (Foote
and Sepkoski 1999), the relative sampling within each taxon
varies over time (Connolly and Miller 2001). What might be
more relevant to our study is that it might be easier to sepa-
rate closely related species within genera, such as trilobites
and echinoids, than it is to distinguish equally closely related
species in the other taxa, due to differences in overall mor-
phological complexity (Schopf et al. 1975; Smith 1994). The
different higher taxa tend to favor different basic environ-
ments, which in turn vary in their relative representation
within and over time intervals (see, e.g., Jablonski et al. 1983;
Sepkoski and Miller 1985; Sepkoski 1991; Miller 1997; Hol-
land and Zaffos 2011). Finally, turnover rates within groups
such as brachiopods and (especially) trilobites are much
higher than among groups such as gastropods and bivalves
(Sepkoski 1981), which in turn makes it easier for gastro-
pods and bivalves to persist over entire intervals. All of these
factors could affect the expected occupancy among species
and genera withN species without shared traits elevating ex-
pected occupancy. Thus, replicating general patterns within
these taxa suggests that these factors are not the primary
drivers of those patterns.
Paleontologists have sampled fossils from North Amer-

ica and Europe more thoroughly than fossils from other
areas (Sheehan 1977; Signor 1985). Thus, genera known from
NorthAmerica or Europemight bemore prone to having high
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sampled occupancy than genera restricted to rocks in other
parts of the world. To control for this effect, we repeated our
analyses for the European and North American records only.

Finally, variation in bin durations or turnoverwithin those
bins could affect results. Therefore, we also ran the permuta-
tions for the pooled data set, but using only midlife genera
that were sampled before and after each interval. Unless they
are polyphyletic, midlife genera necessarily exist throughout
each interval. Differences among these cannot be attributed
to different life spans and thus are unaffected by turnover
within the bin.

Assessing Correlates of Excess or Deficient Occupancy

The permutation tests described above also determine ex-
pected occupancies for genera with one, two, three, or more
species and thus the excess or deficient occupancy for each
genus. This is given by the difference between the red dots
and the blue line in figure 2 and for the genera in the figure 1
example. We then used Kendall’s rank correlation tests to
assess the associations between excess generic occupancy and

our three test variables. Kendall’s correlation is better suited
to dealing with ties in ranks (which are ubiquitous in our
data) than are other nonparametric correlation metrics such
as Spearman’s (Sokal and Rohlf 1981).
Kendall’s correlationmetric also is amenable to partial cor-

relations, which are useful here because occupied rock units,
maximum geographic span, and subsampled species richness
all show significant correlations with each other (fig. S1B; ta-
ble S3). Thus, a causal relationship between excess occupancy
and any of our three extrinsic variables might induce correla-
tions between excess occupancy and the other two variables.
For example, suppose that extended geographic range causes
excess occupancy. High-occupancy genera with extended geo-
graphic ranges should occur in many formations, simply be-
cause formations are geographically constrained units of sed-
iments. This, in turn, would create a correlation between
excess occupancy and numerous occupied rock units. Partial
correlations should indicate that excess or deficient generic
occupancy does not correlate with occupyingmore rock units
than expected given geographic ranges. We used the R pack-
age ppcor (Kim and Yi 2006) to assess the unique effects of
each variable after accounting for the general association be-
tween each of the variables.1

We restricted both the standard and partial Kendall’s cor-
relation tests to genera withmore than two occurrences within
a time interval. Otherwise, singletons would create very strong
positive associations in all tests: genera with one species known
from one locality necessarily have minimum rock units occu-
pied and geographic span; such genera also have minimum
species richness. To assess the possible effects of different
taxa and different sampling regimes, we repeated the tests
on the six individual higher taxa separately for North Amer-
ican and European data. In these cases, we examined only
intervals with more than 10 genera known from more than
localities.
Variation in sampling intensity among intervals will affect

observed species richness within genera. Therefore, we esti-
mated average species richness per genus after sampling stan-
dardization.We employed shareholder quorum subsampling
(SQS; Alroy 2010; Chao and Jost 2012), which uses coverage
statistics (Good 1953; Chao et al. 2015) to approximate com-
parable levels of sampling among intervals. Thus, genera are
species rich only if they have many frequently subsampled
species. We used SQS based on the minimum species-level
coverage (U p 0:438) to estimate the average subsampled
species richness for each genus based on 1,000 SQS replica-
tions (fig. 3).
Examining partial correlations between average subsam-

pled species richness and either formations occupied ormax-
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Figure 2: Estimating excess and deficient occupancy for individual
genera from the Late Ordovician (458–448 million years ago). Red dots
correspond to those in figure 1A, but they are ordered first by species
richness and then by occupancy and occurrences. Individual groups
of genera with the same number of species therefore create distinct oc-
cupancy distribution curves. Themedium-blue line represents the aver-
age occupancy for a genus with X species, based on permutation tests
outlined in the text and in figure 1. Thus, the red curve corresponding
to each blue line gives the occupancy distribution for genera withN spe-
cies. The difference between each red dot and the blue line gives the ex-
cess (or deficient) occupancy of that genus.

1. R code developed for these analyses is given in the supplemental material.
Code that appears in The American Naturalist is provided as a convenience to the
readers. It has not necessarily been tested as part of the peer review.

Trait-Based Dominance in Occupancy E125



imum geographic span might appear to be double dipping,
given that deviations from expected generic occupancy are
relative to expected occupancy given the number of species
in a genus. However, the important question here is whether
a two-species genuswith deviations from expected occupancy
also occurs in more formations and/or over a broader geo-
graphic range than do other two-species genera. Removing
the effect of species richness on occupied formations and/
or geographic span might further emphasize important cor-
relations. Conversely, if there is a positive or negative asso-
ciation between species richness and occupancy (i.e., mac-
roevolutionary and macroecological success), then it might
become more apparent when we remove the effect of for-
mations occupied or geographic span.

Controlling for “Wastebasket” Species

It has long been noted that some taxa become default clas-
sifications for groups of similar-looking species. Although
paleontologists have been more concerned with this at the
genus level (e.g., Plotnick and Wagner 2006), examples also
exist at the species level (e.g., Hoel 2005; Antoine 2012). Such
species will artificially create apparent excess generic occu-
pancy by simply attributing the occurrences of several spe-
cies to one species and thus cause the genus to have greater
occupancy than expected given reported species richness. Al-
though a genus might have one “wastebasket” species, it is
very improbable that it will have two. Therefore, we exam-
ined the association between the second most common spe-
cies in a genus and excess generic occupancy. This necessar-
ily is restricted to genera with more than two species. We

again used Kendall’s rank correlation test. If excess generic
occupancy is driven by “wastebasket” species artificially in-
flating generic occupancy, we should see no association be-
tween excess generic occupancy and occupancy of the second
most common species. However, if excess occupancy is driven
by traits shared by congeneric species, we expect that the sec-
ond most common species will have high occupancy too.

Results

Occupancy Inequity among Genera

Inequality in occupancy among species and that among gen-
era correlate strongly with each other regardless of whether
generic occupancy represents all unique localities (minimum)
or all occurrences of constituent species (maximum; figs. S3–
S5). Nevertheless, inequality in generic occupancy is greater
than expected given our null model in all 50 intervals given
either minimum or maximum generic occupancy. Further-
more, generic inequality is greater than expected in 47 of
48 intervals given minimum occupancy among only midlife
genera (i.e., those also known in earlier and later intervals;
fig. 4; table S4). Moreover, the differences typically are sig-
nificant at P ≤ :05 for all intervals given maximum occu-
pancy, 43 intervals given minimum occupancy, and 46 in-
tervals given midlife genera only.
These results are largely replicated in subsets of the data.

Within the six major taxonomic groups, 181 of 225 intervals
with collections of more than 50 show excess generic domi-
nance given minimum generic occupancy, with 110 of those
cases being significant at P ≤ :05 (fig. 5; table S5). Given
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Figure 3: Distributions of average subsampled species richnesses for each genus in every interval after 1,000 shareholder quorum subsampling
(SQS) runs. SQS analyses are based on the minimum Good’s coverage for species (U p 0:438). Spindles within each bin are scaled so that the
most common average subsampled species is the widest bar, and thus they are not scaled to each other.
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maximumoccupancy, 194 intervals showexcess genericdom-
inance, with 111 of those cases significant at P ≤ :05 (fig. S6).
When we look at only midlife genera, 126 of 190 intervals
show excess generic dominance, with 48 of those cases being
significant at P ≤ :05 (fig. S7).

Within Europe and North America, 77 of 100 intervals
(33 of 50 in Europe and 44 of 50 in North America) show
excess generic dominance given minimum occupancy, with

58 of those cases (27 in Europe and 31 inNorth America) be-
ing significant at P ≤ :05 (fig. 6; table S6). Given maximum
generic occupancy, 92 of 100 intervals (44 of 50 in Europe
and 48 of 50 in North America) show excess generic domi-
nance, with 62 of those cases (28 in Europe and 34 in North
America) significant at P ≤ :05 (table S6). Minimum occu-
pancy among onlymidlife genera shows excess generic dom-
inance in 70 of 93 intervals (36 of 47 in Europe and 34 of
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Figure 5: Deviations between observed and expected Gini within each of the six higher taxa analyzed, given minimum generic occupancy.
Colors are as in figure 3.
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46 in North America), with 40 of those cases (25 in Europe,
15 in North America) significant at P ≤ :05 (table S6).

Elevated Occupancy among Second Species

Among genera with more than two species and using mini-
mumoccupancy, deviations from expected generic occupancy
correlate positively with the occupancy of the second most
common species in 49 of the 50 intervals examined (fig. 7; ta-
ble S7). The correlations are significant at P ≤ :05 in 45 of the
50 intervals and at P ≤ :001 in 35 of the 50 intervals. Using
maximum occupancy, then the associations are positive and
significant at P ≤ 1027 in all intervals (table S7). Using min-
imumoccupancy amongmidlife genera, associations are pos-
itive in 45 of 48 intervals, with associations significant at
P ≤ :05 in 47 intervals andP ≤ :001 in 45 intervals (table S7).

Correlates of Excess or Deficient Occupancy among Genera

Excess generic occupancy correlates strongly with rock units
occupied (tables 1, S8, S11, S14). Althoughminimum generic

occupancy shows positive associations for only 29 of 50 in-
tervals, 12 of those are significant at P ≤ :05, whereas only
5 of the 21 negative associations are significant at P ≤ :05
(fig. 8; table S8). Given either maximum generic occupancy
(fig. S8; table S11) orminimum occupancy among onlymid-
life genera (fig. S9; table S14), nearly all intervals show pos-
itive associations, with the preponderance significant at
P ≤ :05. Under all three metrics, controlling for the effects
of both maximum geographic span and average subsampled
species richness results in nearly all intervals having positive
associations, with most significant at P ≤ :05.
Excess occupancy shows similar associations with both

maximum geographic span and average subsampled species
richness (tables 1, S9, S10, S12, S13, S15, S16). Positive asso-
ciations are common given either maximum occupancy or
midlife occupancy, whereas negative associations predomi-
nate given minimum occupancy. Controlling for rock units
occupied greatly decreases positive associations, except for
the association between excess occupancy for midlife genera
andaverage subsampled species richness. In contrast, control-
ling for average subsampled species richness or geographic
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span has little effect on associations for geographic span or
average subsampled species richness.

Each of the three types of analyses was run on each individ-
ual clade (figs. S10–S27; tables S17–S25). The results are con-

sistent with the patterns found when all clades are analyzed
together. In particular, brachiopods consistently show strong
positive associations between deviations from expected ge-
neric occupancy and rock units occupied (tables 1, S10).

0.5

0.5

Cm O S D C P T J K Pg Ng

500 400 300 200 100 0

Millions of Years Ago Millions of Years Ago

Excess/Deficient Occupancy vs. Formations 
Excess/Deficient Occupancy vs. Formations | Span

p>0.05
p<0.05

Cm O S D C P T J K Pg Ng

500 400 300 200 100 0

Excess/Deficient Occupancy vs. Formations 
Excess/Deficient Occupancy vs. Formations | Species

Cm O S D C P T J K Pg Ng

500 400 300 200 100 0

Cm O S D C P T J K Pg Ng

500 400 300 200 100 0

Cm O S D C P T J K Pg Ng

500 400 300 200 100 0

Cm O S D C P T J K Pg Ng

500 400 300 200 100 0

Excess/Deficient Occupancy vs. Span 
Excess/Deficient Occupancy vs. Span | Formations

p<0.01
p<0.001

Excess/Deficient Occupancy vs. Span 
Excess/Deficient Occupancy vs. Span | Species

Excess/Deficient Occupancy vs. Species 
Excess/Deficient Occupancy vs. Species | Formations

E
Excess/Deficient Occupancy vs. Species 
Excess/Surfeit Occupancy vs. Species | Span

F

A B

C D

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
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neric occupancy. The correlation coefficient is shown by t. Increased t for partial correlation means that, say, the association between excess
occupancy and formations occupied improves once we take into account the expected correlation between occupied formations and maximum
geographic span. All comparisons are restricted to genera with more than two occurrences in a given interval. A, B, Formations, controlling for
maximum geographic span (A) and average subsampled species richness (B). C,D, Maximum geographic span, controlling for formations (C) and
average subsampled species richness (D). E, F, Average subsampled richness, controlling for formations (E) and maximum geographic span (F).
See tables S8–S10; see also figures S8, S9.
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There are some exceptions. For example, trilobites, which
tend to be short-lived, do not show the pattern when using
only the midlife genera. However, because the overall results
for the individual clades generally recapitulate the results for
all taxa, and because discussing the results of the analyses on
individual clades is beyond the scope of this article, we do not
attempt to dissect individual deviations in great detail.

Within either Europe or North America, the same general
correlations are repeated (figs. S28, S29; tables S27–S29). Ex-
cess occupancy correlates positively with occupied rock units,
particularly after controlling for the effects of geographic range
and average subsampled species richness. Similarly, weak pos-
itive or negative associations between excess occupancy and
eithermaximumgeographic span or average subsampled spe-
cies richness tend to become stronger negative associations
after controlling for occupied rock units.

Discussion

Trait-Based Macroecological Success

Our results demonstrate that occupancy patterns among gen-
era cannot be explained solely by occupancy patterns among
species. This conclusion cuts across time intervals, taxonomic
groups, and biogeographic units. In particular, unusually
high occupancy correlates with genera occupying more rock
units than expected given geographic span or species rich-
ness. Thus, we have evidence that some genera are truly mac-
roecologically dominant in the sense that they occupy more
areas than would be expected by chance.

Macroecologically successful genera seemingly have more
high-occupancy species than expected, rather than a single
highly successful species (fig. 7). Moreover, there is a strong
positive correlation between the number of formations in
which a genus occurs and how much more common that
genus is than expected given its species richness (fig. 8). Al-
though there is not a 1∶1 correspondence between environ-
ment and formation, differences in lithology reflecting dif-
ferences in sedimentary environments are a primary reason
why stratigraphers separate contemporaneous and geograph-
ically adjacent rock units into separate formations. Thus, the
simplest explanation for this association is that genera with
excess occupancy include species that can inhabit a wider va-
riety of environments than can those with expected or defi-
cient occupancy. Genera occupying more environments than
average would have relatively few Swiss cheese holes in their
distributions and a high probability that the strata yielding
their species are separated into multiple formations because
of differences in lithology. Indeed, a common explanation for
why the two species co-occur in some formations but not
in others is differences in environmental tolerances (see, e.g.,
Holland 2003). Because congeneric species should share nu-
merous traits, this corroborates Brown’s (1984) suggestion

that species traits shared among close relatives contribute to
greater niche breadth, greater environmental tolerance, or
greater ability to engineer niches and allows them to occupy
a greater range of environmental types within their geographic
ranges (see also Gaston and Spicer 2001; Slatyer et al. 2008).
Unfortunately, less than one-third of the localities used in
this study include environmental interpretations more exact
than indeterminate carbonateor siliclastic environments.How-
ever, our results and the interpretation of those results predict
thatmacroecologically dominant genera will show greater dis-
parity in occupied environments than is typical.
Although our results are consistent with trait-based mac-

roecological success, identifying which traits contribute to
macroecological success will be difficult. In some cases, the
trait or traits responsible might be among those diagnosing
a genus. However, in many cases, unfossilizable traits in soft
tissue or physiology inherited from a common ancestor will
be important. Identifying particular ecologicalmodels respon-
sible formacroecological success also is problematic, and it is
possible that no one particular model predominates. For ex-
ample, an intuitively appealing model is one in which traits
favoring niche construction (Laland et al. 1999; Erwin 2008)
explain differences in generic occupancy. Gastropods and
cephalopods both would be good candidates for niche-
construction models, as they both possess mobility, fairly
high metabolisms, and biochemistries buffered against local
seawater chemistry (Bambach et al. 2002). However, both
show correlations between occupied rock units and excess oc-
cupancy only after controlling for species richness. Conversely,
brachiopods are sedentary, low-metabolism organisms and
thus poor candidates for niche constructionmodels. Neverthe-
less, they fit the overall model quite well. There also are no
clear temporal trends (e.g., fig. 4), even though the dominant
taxa and types of ecosystems vary substantially over the
Phanerozoic. The wide variety of basic life histories (e.g., sed-
entary vs. mobile, nektonic vs. benthic, etc.) generating the
same basic pattern further confounds any attempt to infer
some universal tactic for macroecological dominance.
With regard to the above stated, traits that allow marine

organisms to inhabit a variety of different sedimentary envi-
ronments might be key. This would explain why their fossils
occur in sediments generating greater numbers of rock units
over some geographic spans than is typical for genera with
similar geographic spans. Examining this would best be done
using independent contrasts where we can look at apparently
independent derivations of macroecological dominance on
a phylogeny.

The Apparent Decoupling of Macroecological
and Macroevolutionary Success

An equally important conclusion is that our results imply that
macroevolutionary success and macroecological success of-
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ten are decoupled and are even at odds with one another.
The negative associations between species richness and devia-
tions fromexpected generic occupancy reflect species-rich gen-
era often having numerous restricted species. Although our
estimate of expected generic occupancy is based on species
richness, lower-than-expected occupancy for high-richness
genera should not be an artifact of that. One reason is that just
having two high-occupancy species accounts for much of the
pattern (fig. 7), and species-rich genera have a higher proba-
bility of having two high-occupancy species just by chance.
Another reason is that we generally expect even species-rich
genera to have few occurrences. Only 10 of the 50 intervals
have a median species occupancy of two; in all others, it is
one (fig. S4B). However, species-rich genera seem prone to
including those rare species.

The scale at which we lump together collections might
somehow affect the patterns we document. However, if we
repeat these analyses by lumping together collections within
1 km, then we achieve essentially the same results and reach
the same conclusions.

Our minimum occupancy criterion (i.e., one locality per
genus) offers a control for oversplitting species within genera.
A different taxonomic problem is the possibility of “waste-
basket” genera. These could drive this pattern if researchers
nonrandomly lump together rare contemporaneous species
into polyphyletic genera. However, it seems to be more typ-
ical for such genera to be distributed widely over time (Plot-
nick andWagner 2006). Moreover, it seems that such genera
are most apt to be used for genus-only identifications rather
than for specimens identified at the species level (Wagner
et al. 2007). Because our study uses only occurrences identi-
fied with specific identifications, this cannot be a factor.

Yet another possibility is that inconsistencies in sampling
in the fossil record might drive this pattern. However, the
global results are replicated within each of the major taxo-
nomic groups, despite the fact that those groups represent
a range of sampling rates (Foote and Sepkoski 1999). These
taxa also exhibit a wide range of skeletal complexity (Schopf
et al. 1975) and show a range of propensities for homoplasy
(Wagner 2012). Thus, it is not likely that our results separate
complex genera with easily distinguished species from sim-
ple genera with easily conflated species within, say, only gas-
tropods. Moreover, differences in the effects of homoplasy
cannot explain the association between deviations from ex-
pected generic occupancy and rock units occupied. Finally,
we also find these basic patterns within North America or Eu-
rope alone. This indicates that nonrandom sampling of easily
accessible and/or long-studied rocks (Sheehan 1977) is not
driving the pattern; we are not getting densely sampled Euro-
pean genera separating out from poorly sampled Australian
ones in the European-only (or North American-only) results.

Our two primary results, that is, that genera occupying
more sites than expected occur in high numbers of rock

units within their geographic ranges and that there is a neg-
ative association between species richness and deviations from
expected generic occupancy, raise an important question:
Does short-term macroecological success come at the ex-
pense of short-termmacroevolutionary success, or vice versa?
The Swiss cheese model offers an explanation for this ap-
parent dichotomy (Rapoport 1982; Hurlbert and White 2005,
2007).We usually think of allopatric speciation as happening
on the outer rim of species ranges. However, under a Swiss
cheese model, the air bubbles within species ranges represent
additional peripheries that might allow allopatric speciation.
Moreover, the factors encouraging holes might encourage
isolation, which in turn makes it easier for selection and drift
to fix newmorphotypes (Sanderson 1989; Servedio andKirk-
patrick 1997). Analogous scenarios have been invoked to ex-
plain elevated speciation associated with restricted geographic
ranges and sexual selection in orchids (Hodges and Arnold
1995). This is also consistent with Foote et al.’s (2016) find-
ing that broad geographic ranges for genera correlate with
among-species geographic dispersion.
Conversely, cheddar cheese distributions would work

against allopatric speciation models. Dense occupation of a
range would effectively decrease the overall periphery of a
geographic range. Greater adjacency between populations
would encourage gene flow, which would demand stronger
reinforcing selection for incipient species to remain indepen-
dent (Servedio and Kirkpatrick 1997). Moreover, the niche
breadth that would favor dense occupation of geographic
ranges could reduce the intensity of reinforcing selection and
thus make it easier for gene flow to prevent complete speci-
ation (Servedio and Noor 2003; Hoskin et al. 2005).
The apparent disassociation between unexpectedly high

genus-level occupancy and average subsampled species rich-
ness contradicts Brown’s (1984) suggestion that traits en-
couraging high occupancy should also encourage speciation.
However, Brown’s model might still apply if we are con-
trasting closely related species (e.g., Wagner and Erwin 1995;
Goldberg et al. 2011) and if we focus on geographic span.
If two species have similar occupation densities within those
ranges, then the one with the greater geographic range will
havemore periphery.Moreover, geographic range size should
affect evolutionary potential over longer terms than the bins
analyzed here. Many paleontological studies show negative
correlations between extinction risk and geographic range
size (e.g., Anstey 1986; Jablonski 1986, 1987; Miller 1997;
Aberhan and Baumiller 2003; Jablonski and Hunt 2006;
Kiessling and Aberhan 2007; Liow 2007; Foote et al. 2008;
Harnik 2011; Heim and Peters 2011; Hopkins 2011; Foote
and Miller 2013). Thus, broad geographic distribution with
low occupancy might foster both high speciation within one
interval and survival into the next interval. This would rep-
resent a difference between macroevolutionary success (i.e.,
numerous progeny and/or prolonged survival) and unusual
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macroecological success (i.e., high occupancy, given geographic
ranges, and species richness). In other words, our results sug-
gest that within-intervalmacroecological success is decoupled
frommacroevolutionary success in the short-term and possi-
bly over the long term.

Future Directions

Although Linnaean taxonomy often is a good substitute for
phylogeny (Soul and Friedman 2015), one obvious next step
is to examine occupancy patterns in a phylogenetic context.
Two studies (Wagner 2000; Carotenuto et al. 2010) indicate
that occurrences and occupancy do show strong phylogenetic
signal, which corroborates our interpretation of high occu-
pancy being trait based. However, these results have implica-
tions for phylogenetic studies themselves. Researchers have
begun using fossilized birth-death (FBD) analyses (e.g., Heath
et al. 2014) for analyses of fossil taxa (e.g., Cau 2017; Wright
2017), in which sampling intensity affects both the likelihood
and prior probabilities of phylogenies (e.g., Huelsenbeck and
Rannala 1997; Foote et al. 1999; Wagner 2000). As noted
above, occupancy is nearly identical to paleobiological con-
cepts of sampling intensity (Liow 2013). Thus, FBD models
should allow for occupancy and sampling rates to be ran-
domly distributed across phylogeny. An even more general
implication of our results is that macroecological theory
should play a role in paleobiologists’ attempts to model sam-
pling from the fossil record.

Our results also have implications for conservation biol-
ogy. Anthropogenic homogenization of environments could
be hurting the evolutionary potential of species-rich clades
with many locally specialized species. Moreover, our Swiss
cheese1 peripheral isolationmodel requires that some holes
in ranges ultimately include habitable regions. This is much
less apt to be the case in the modern world than in the past
(e.g., Lyons et al. 2016).

Conclusions

Inequality in occupancy patterns amongmarine fossil genera
cannot be explained solely by inequalities in species occu-
pancy patterns and species richness among genera. More-
over, elevated occupancy among genera correlates with the
number of stratigraphic formations inwhich constituent spe-
cies occur but not with the maximum geographic span en-
compassed by those species or the number of species in the
genus. This suggests that macroecological success (high oc-
cupancy) andmacroevolutionary success (numerous species)
are decoupled duringmarine evolution. In other words, mac-
roecological success might be a trade-off for macroevolu-
tionary success when the traits that permit members of a ge-
nus to occupy many environments (and thus ubiquity in the

fossil record) also reduce the potential of those members to
leave additional daughter taxa.
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