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Effects of aspect ratio on the mode couplings of thin-film
bulk acoustic wave resonators

Nian Li,1 Zhenghua Qian,2,a and Jiashi Yang2,b
1State Key Laboratory of Mechanics and Control of Mechanical Structures, College of
Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China
2Department of Mechanical and Materials Engineering, The University of Nebraska-Lincoln,
Lincoln, Nebraska 68588-0526, USA

(Received 23 March 2017; accepted 8 May 2017; published online 18 May 2017)

We studied mode couplings in thin film bulk acoustic wave resonators of a piezoelec-
tric film on a dielectric layer operating with the fundamental thickness-extensional
mode. A system of plate equations derived in our previous paper was used which
includes the couplings to the unwanted in-plane extension, flexure, fundamental and
second-order thickness shear modes. It was shown that the couplings depend strongly
on the plate length/thickness ratio. For a relatively clean operating mode with weak
couplings to unwanted modes, a series of discrete values of the plate length/thickness
ratio should be avoided and these values were determined in the present paper. The
results can be of great significance to the design and optimization of film bulk
acoustic wave resonators. © 2017 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4983890]

I. INTRODUCTION

Acoustic wave resonators made from piezoelectric crystals are key components of electrical
circuits called oscillators in a lot of electronic equipment.1,2 As frequency standards, resonators
are widely used for time keeping, frequency operation, and signal generation and processing. Fre-
quency shifts in resonators caused by various effects like a temperature change or stress are the
foundation of resonator-based acoustic wave sensors. Conventional piezoelectric resonators are made
from crystals like quartz and lithium niobate, etc. They may operate with bulk1,2 or surface acous-
tic waves.3,4 During the last couple of decades, researchers succeeded in depositing with good
enough quality a thin piezoelectric film of AlN or ZnO on a silicon layer to form thin-film bulk
acoustic wave resonators (FBARs or TFBARs) operating in the GHz frequency range.5–7 FBARs
have several advantages over conventional crystal resonators.8,9 They have also been used to make
acoustic wave sensors.10,11 Structurally, FBARs are multilayered plates with metal electrodes, a
piezoelectric film, and an elastic layer. In this paper we study the most common FBARs in which
the c-axis of the piezoelectric films are in the plate thickness direction and the FBARs operate
with the fundamental thickness-extensional mode of the plates. There are other structural types of
FBARs operating with shear modes12–16 or solidly mounted on an elastic substrate.17,18 Their mod-
eling requires separate and fundamentally different efforts and is out of the scope of the present
paper.

Because of the structural complexity and piezoelectric coupling, theoretical modeling of FBARs
is very challenging mathematically. Typical theoretical models of FBARs are for the operating
thickness-extensional mode only. The simplest models are one-dimensional,14,15,19,20 with onespatial
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variable along the normal direction of the plates only. One-dimensional models are valid for pure
thickness-extensional modes which can exist in unbounded plates. With some approximation of the
variation of the fields along the plate thickness, Tiersten and Stevens once derived a single two-
dimensional scalar differential equation21 that can describe the in-plane variation of the operating
thickness-extensional mode (transversely varying thickness-extensional mode). The scalar equa-
tion has been used in the analysis of a rectangular trapped energy resonator in Refs. 21 and 22,
a two-port filter in Refs. 21 and 23, and a rectangular resonator with ring electrodes for sensor
application.24

In real applications, in addition to the operating thickness-extensional mode, other modes are
often present in the operation of FBARs. These unwanted modes are called spurious modes.25 They
affect the performance of FBARs and are highly undesirable in general. For a successful device, we
need to be able to describe and predict these spurious modes so that they can be avoided through
proper design. However, the theoretical models used in Refs. 14, 15, and 19–24 for the thickness-
extensional mode alone cannot treat the couplings between the operating mode and the spurious
modes. Theoretical modeling of mode couplings in FBARs is crucial to the current design and
manufacturing of FBARs.

In our previous paper,26 a system of two-dimensional equations for the operating thickness-
extensional mode with couplings to the relevant spurious modes was derived. The spurious modes
included in Ref. 26 are the in-plane extensional mode, the flexural mode, the fundamental thickness-
shear mode, and the second-order thickness-shear mode. These are the modes that are coupled to the
operating thickness-extensional mode in the frequency range of interest of FBARs. In Ref. 26, the
propagation of these coupled waves in unbounded plates was studied to verify the equations obtained
and determine the correction factors in the equations. In this paper we use the equations obtained in
Ref. 26 to analyze the couplings between the operating mode and the spurious modes in a finite plate
FBAR.

II. GOVERNING EQUATIONS

Consider the four-layer plate in Fig. 1. The x2 axis is determined from x3 and x1 by the right-
hand rule. The x1 and x2 axes are in the middle plane of the plate. The total plate thickness is 2h = hs

+ h
′′

+ hf + h
′

. For a free vibration analysis, the electrodes are shorted and the electric field vanishes
within the approximation of the plate theory.

We consider straight-crested modes with u2=0 and ∂/∂x2 = 0. The plate theory in Ref. 26 which
is to be used in this paper is summarized briefly below. The displacement field is approximated
by

u1 � u(0)
1 (x1, t) + u(1)

1 (x1, t)x3 + u(2)
1 (x1, t)x2

3 ,

u3 � u(0)
3 (x1, t) + u(1)

3 (x1, t)x3,
(1)

where u(0)
1 is the in-plane extension, u(1)

1 is the fundamental thickness shear, u(2)
1 is the second-order

thickness shear, u(0)
3 is the flexure, and u(1)

3 is the thickness extension. The relevant plate strains
corresponding to Eq. (1) are

FIG. 1. A four-layer plate as an FBAR and the defined coordinate system.
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S(0)
1 = u(0)

1,1, S(0)
3 = u(1)

3 , S(0)
5 = u(0)

3,1 + u(1)
1 ,

S(1)
1 = u(1)

1,1, S(1)
5 = u(1)

3,1 + 2u(2)
1 ,

S(2)
1 = u(2)

1,1,

(2)

The equations of motion for u(0)
1 , u(1)

1 , u(2)
1 , u(0)

3 and u(1)
3 are

T (0)
11,1 = ρ

(0)ü(0)
1 + ρ(1)ü(1)

1 + ρ(2)ü(2)
1 ,

T (0)
13,1 = ρ

(0)ü(0)
3 + ρ(1)κ3ü(1)

3 ,

T (1)
11,1 − T (0)

31 = ρ
(1)ü(0)

1 + ρ(2)ü(1)
1 + ρ(3)ü(2)

1 ,

T (1)
13,1 − T (0)

33 = ρ
(1)ü(0)

3 + ρ(2)κ2
3ü(1)

3 ,

T (2)
11,1 − 2T (1)

31 = ρ
(2)ü(0)

1 + ρ(3)ü(1)
1 + ρ(4)ü(2)

1 ,

(3)

where the moments of the mass distribution along the plate thickness are defined by

ρ(n) =

∫ h

−h
ρx3

ndx3. (4)

The resultants in Eq. (3) are related to the plate strains in Eq. (2) through the following plate constitutive
relations:

T (0)
11 = c(0)

11 S(0)
1 + κ1c(0)

13 S(0)
3 + c(1)

11 S(1)
1 + c(2)

11 S(2)
1

+ c(2)
13 S(1)

1 γ3110 + c(4)
13 S(2)

1 γ3210 + c(1)
13 S(0)

1 γ3110

+ κ1c(1)
33 S(0)

3 γ3110 + c(2)
13 S(0)

1 γ3210 + κ1c(2)
33 S(0)

3 γ3210 + c(3)
13 S(1)

1 γ3210 + c(3)
13 S(2)

1 γ3110,

T (0)
13 = κ

2
0c(0)

44 S(0)
5 + κ0κ2c(1)

44 S(1)
5 − κ

2
0S(0)

5

c(2)
44 c(2)

44

c(4)
44

− κ0κ2S(1)
5

c(2)
44 c(3)

44

c(4)
44

,

T (1)
11 = c(1)

11 S(0)
1 + κ1c(1)

13 S(0)
3 + c(2)

11 S(1)
1 + c(3)

11 S(2)
1

+ c(2)
13 S(1)

1 γ3111 + c(4)
13 S(2)

1 γ3211 + c(1)
13 S(0)

1 γ3111

+ κ1c(1)
33 S(0)

3 γ3111 + c(2)
13 S(0)

1 γ3211 + κ1c(2)
33 S(0)

3 γ3211 + c(3)
13 S(1)

1 γ3211 + c(3)
13 S(2)

1 γ3111,

T (1)
13 = κ0κ2c(1)

44 S(0)
5 + κ2

2c(2)
44 S(1)

5 − κ0κ2S(0)
5

c(2)
44 c(3)

44

c(4)
44

− κ2
2S(1)

5

c(3)
44 c(3)

44

c(4)
44

,

T (0)
33 = κ1c(0)

13 S(0)
1 + κ2

1c(0)
33 S(0)

3 + κ1c(1)
13 S(1)

1 + κ1c(2)
13 S(2)

1 + c(2)
13 S(1)

1 κ1γ3130

+ c(4)
13 S(2)

1 κ1γ3230 + c(1)
13 S(0)

1 κ1γ3130 + κ2
1c(1)

33 S(0)
3 γ3130 + c(2)

13 S(0)
1 κ1γ3230

+ κ2
1c(2)

33 S(0)
3 γ3230 + c(3)

13 S(1)
1 κ1γ3230 + c(3)

13 S(2)
1 κ1γ3130,

T (2)
11 = c(2)

11 S(0)
1 + κ1c(2)

13 S(0)
3 + c(3)

11 S(1)
1 + c(4)

11 S(2)
1

+ c(2)
13 S(1)

1 γ3112 + c(4)
13 S(2)

1 γ3212 + c(1)
13 S(0)

1 γ3112

+ κ1c(1)
33 S(0)

3 γ3112 + c(2)
13 S(0)

1 γ3212 + κ1c(2)
33 S(0)

3 γ3212 + c(3)
13 S(1)

1 γ3212 + c(3)
13 S(2)

1 γ3112,

(5)

where

c(n)
pq =

∫ h

−h
cpqx3

ndx3, (6)

and cpq are the usual elastic constants. In Eq. (5), we have denoted
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γ3110 =
c(3)

33 c(2)
13 − c(4)

33 c(1)
13

c(2)
33 c(4)

33 − c(3)
33 c(3)

33

, γ3130 =
c(3)

33 c(2)
33 − c(4)

33 c(1)
33

c(2)
33 c(4)

33 − c(3)
33 c(3)

33

,

γ3111 =
c(3)

33 c(3)
13 − c(4)

33 c(2)
13

c(2)
33 c(4)

33 − c(3)
33 c(3)

33

, γ3112 =
c(3)

33 c(4)
13 − c(4)

33 c(3)
13

c(2)
33 c(4)

33 − c(3)
33 c(3)

33

,

γ3210 =
c(3)

33 c(1)
13 − c(2)

33 c(2)
13

c(2)
33 c(4)

33 − c(3)
33 c(3)

33

, γ3230 =
c(3)

33 c(1)
33 − c(2)

33 c(2)
33

c(2)
33 c(4)

33 − c(3)
33 c(3)

33

,

γ3211 =
c(3)

33 c(2)
13 − c(2)

33 c(3)
13

c(2)
33 c(4)

33 − c(3)
33 c(3)

33

, γ3212 =
c(3)

33 c(3)
13 − c(2)

33 c(4)
13

c(2)
33 c(4)

33 − c(3)
33 c(3)

33

.

(7)

κ0, κ1, κ2 and κ3 are correction factors26 whose values will be given later. With successive sub-
stitutions from Eqs. (2) and (5), we can write Eq. (3) as five equations for u(0)

1 , u(1)
1 , u(2)

1 , u(0)
3

and u(1)
3 :

[
c(0)

11 + c(1)
13 γ3110 + c(2)

13 γ3210

]
u(0)

1,11 +
[
c(1)

11 + c(2)
13 γ3110 + c(3)

13 γ3210

]
u(1)

1,11

+
[
κ1c(0)

13 + κ1c(2)
33 γ3210 + κ1c(1)

33 γ3110

]
u(1)

3,1 +
[
c(2)

11 + c(4)
13 γ3210 + c(3)

13 γ3110

]
u(2)

1,11

= ρ(0)ü(0)
1 + ρ(1)ü(1)

1 + ρ(2)ü(2)
1 , (8)


κ2

0c(0)
44 −

κ0c(2)
44

c(4)
44

κ0c(2)
44



[
u(1)

1,1 + u(0)
3,11

]
+

κ0κ2c(1)

44 −
κ0c(2)

44

c(4)
44

κ2c(3)
44



[
u(1)

3,11 + 2u(2)
1,1

]

= ρ(0)ü(0)
3 + ρ(1)κ3ü(1)

3 , (9)

[
c(1)

11 + c(1)
13 γ3111 + c(2)

13 γ3211

]
u(0)

1,11 +
[
c(2)

11 + c(2)
13 γ3111 + c(3)

13 γ3211

]
u(1)

1,11

+

κ1c(1)

13 + κ1c(1)
33 γ3111 + κ1c(2)

33 γ3211 − κ0κ2c(1)
44 +

κ0c(2)
44

c(4)
44

κ2c(3)
44


u(1)

3,1

+
[
c(3)

11 + c(4)
13 γ3211 + c(3)

13 γ3111

]
u(2)

1,11

−


κ2

0c(0)
44 −

κ0c(2)
44

c(4)
44

κ0c(2)
44



[
u(0)

3,1 + u(1)
1

]
− 2


κ0κ2c(1)

44 −
κ0c(2)

44

c(4)
44

κ2c(3)
44


u(2)

1

= ρ(1)ü(0)
1 + ρ(2)ü(1)

1 + ρ(3)ü(2)
1 , (10)


κ0κ2c(1)

44 −
κ2c(3)

44

c(4)
44

κ0c(2)
44


u(0)

3,11 +

κ2

2c(2)
44 −

κ2c(3)
44

c(4)
44

κ2c(3)
44


u(1)

3,11

−
[
κ1c(0)

13 + κ1c(1)
13 γ3130 + κ1c(2)

13 γ3230

]
u(0)

1,1

−


κ1c(1)

13 + κ1c(2)
13 γ3130 + κ1c(3)

13 γ3230 − κ0κ2c(1)
44 +

κ2c(3)
44

c(4)
44

κ0c(2)
44


u(1)

1,1

−
[
κ2

1c(0)
33 + κ2

1c(1)
33 γ3130 + κ2

1c(2)
33 γ3230

]
u(1)

3

−


κ1c(2)

13 + κ1c(4)
13 γ3230 + κ1c(3)

13 γ3130 − 2κ2
2c(2)

44 + 2
κ2c(3)

44

c(4)
44

κ2c(3)
44


u(2)

1,1

= ρ(1)ü(0)
3 + ρ(2)κ2

3ü(1)
3 , (11)
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[
c(2)

11 + c(1)
13 γ3112 + c(2)

13 γ3212

]
u(0)

1,11 +
[
c(3)

11 + c(2)
13 γ3112 + c(3)

13 γ3212

]
u(1)

1,11

+

κ1c(2)

13 + κ1c(1)
33 γ3112 + κ1c(2)

33 γ3212 − 2κ2
2c(2)

44 + 2
κ2c(3)

44

c(4)
44

κ2c(3)
44


u(1)

3,1

+
[
c(4)

11 + c(4)
13 γ3212 + c(3)

13 γ3112

]
u(2)

1,11

−2

κ0κ2c(1)

44 −
κ2c(3)

44

c(4)
44

κ0c(2)
44



[
u(0)

3,1 + u(1)
1

]
− 4


κ2

2c(2)
44 −

κ2c(3)
44

c(4)
44

κ2c(3)
44


u(2)

1

= ρ(2)ü(0)
1 + ρ(3)ü(1)

1 + ρ(4)ü(2)
1 . (12)

What we consider here are free vibrations. For a finite plate within –a < x1 < a, the boundary
conditions are

T (0)
11 =T (0)

13 =T (1)
11 =T (1)

13 =T (2)
11 = 0, x1 =±a. (13)

III. FREE VIBRATION SOLUTION OF A FINITE PLATE

For free vibration solutions to Eqs. (8)–(12), we let

u(0)
1 =A0 sin kx1 exp (iωt) , u(0)

3 =B0 cos kx1 exp (iωt) ,

u(1)
1 =

A1 sin kx1 exp (iωt)
h

, u(1)
3 =

B1 cos kx1 exp (iωt)
h

,

u(2)
1 =

A2 sin kx1 exp (iωt)

h2
,

(14)

where k is the wave number. ω is the frequency. A0, A1, A2, B0 and B1 are wave amplitudes. The
substitution of Eq. (14) into Eqs. (8)–(12) results in five linear homogeneous equations for the wave
amplitudes which, in matrix form, can be written as

[
C(Ω, ξ)

]
5×5



A0

B0

A1

B1

A2



= 0, (15)

where we have introduced the following dimensionless frequency and dimensionless wave number:

Ω=ωh

√
ρf

cf
44

, ξ = kh. (16)

For nontrivial solutions of the wave amplitudes, the determinant of the coefficient matrix of Eq. (15)
has to vanish, i.e.,

det
[
C(Ω, ξ)

]
5×5 = 0. (17)

Eq. (17) is a polynomial equation of degree five for ξ2. For a given Ω, there are five roots for ξ2 or
ξ because the sign of ξ does not matter in Eq. (14). Corresponding to each root of ξ, the nontrivial
solutions of the amplitudes determine the amplitude ratios which are denoted by

A0
i : B0

i : A1
i : B1

i : A2
i = 1 : β0

i : α1
i : β1

i : α2
i, i= 1∼ 5. (18)

Then the general solution to Eqs. (8)–(12) can be written as
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u(0)
1 =

5∑
i=1

A0
i sin

(
ξix1

h

)
eiωt , u(0)

3 =

5∑
i=1

A0
i βi

0 cos

(
ξix1

h

)
eiωt ,

u(1)
1 =

5∑
i=1

A0
iαi

1

h
sin

(
ξix1

h

)
eiωt , u(1)

3 =

5∑
i=1

A0
i βi

1

h
cos

(
ξix1

h

)
eiωt ,

u(2)
1 =

5∑
i=1

A0
iαi

2

h2
sin

(
ξix1

h

)
eiωt ,

(19)

where A0
i are undetermined constants. The substitution of Eq. (19) into the boundary conditions in

Eq. (13) gives five linear homogeneous equations for A0
i:

[D(Ω, a/h)]5×5



A0
1

A0
2

A0
3

A0
4

A0
5



= 0. (20)

For nontrivial solutions of A0
i, the determinant of the coefficient matrix of Eq. (20) has to vanish

which leads to the following frequency equation:

det [D(Ω, a/h)]5×5 = 0. (21)

Corresponding to each frequency, the nontrivial solutions of Eq. (20) determines the mode.

IV. NUMERICAL RESULTS AND DISCUSSION

As a numerical example, we consider the FBAR in Refs. 21 and 26 whose material constants for
the piezoelectric film, the silicon layer, and the electrodes are:

cf
11 = 20.97 × 1010N/m2, cf

33 = 21.09 × 1010N/m2, cf
13 = 10.51 × 1010N/m2,

cf
44 = 10.51 × 1010N/m2, ρf = 5.68 × 103kg/m3,

e31 =−0.573C/m2, e33 = 1.32C/m2, e15 =−0.48C/m2,

ε11 = 8.55ε0, ε33 = 10.2ε0, ε0 = 8.854 × 10−12F/m,

(22)

cs
11 = 16.57 × 1010N/m2, cs

33 = cs
11, cs

13 = 6.39 × 1010N/m2,

cs
44 = 7.956 × 1010N/m2, ρs = 2.332 × 103kg/m3,

(23)

and
c′11 = 18.6 × 1010N/m2, c′33 = c′11, c′13 = 15.7 × 1010N/m2,

c′44 = 4.2 × 1010N/m2, ρ′ = 19.3 × 103kg/m3,
(24)

respectively. The geometric parameters are determined by

hf = 15 µm, hs = 5 µm, h′′ = 0.2 µm, R′ = ρ′h′/(ρf hf )= 0.01. (25)

For such an FBAR, the correction factors were determined in Ref. 26 by matching the dispersion
relations of the relevant coupled waves calculated from both the plate equations and the three dimen-
sional equations.27,28 The detailed procedure can refer to our previous paper.26 For simplicity, the
factor values are directly given here:

κ0 = 1.3116, κ1 = 2.2822, κ2 = 0.7022, κ3 = 1.6936. (26)

Fig. 2 shows the dimensionless frequency Ω/ΩTE versus the plate length/thickness ratio a/h,
where ΩTE is the fundamental thickness-extensional frequency of an infinite plate (a=∞). For the
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FIG. 2. FBAR frequency spectra.

FIG. 3. Essentially thickness-extensional modes: (a) a/h=30.36,Ω/ΩTE=1.000836237; (b) a/h=50.30,Ω/ΩTE=1.000309792;
(c) a/h=70.28, Ω/ΩTE=1.000157753.
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relatively well-studied quartz resonators, similar figures are called frequency spectra and have been
systematically calculated29–35 because of their important applications in mode coupling analysis. The
curves in Fig. 2 are in fact formed by data points close to each other without really connecting them.
Each data point represents the frequency of a mode. Corresponding to a particular value of a/h, there
are infinitely many modes. A few can be seen in the frequency range shown. As to be shown later in
Fig. 3, the flat parts of the curves with Ω/ΩTE near 1 represent the operating thickness-extensional
modes with weak couplings to the other unwanted modes. When the flat parts begin to bend or seem to
intersect with other curves, stronger couplings to other modes begin to occur which is undesirable in
device operation and should be avoided. The usefulness of the frequency spectra is that it determines
when flat parts of the curves in Fig. 1 bend or end, and thus excludes a discrete series of values of
a/h.

Fig. 3 shows the plate displacement components according to Eq. (1) at the plate upper surface
where x3=h. They are for different values of a/h roughly in the middle of the flat parts of the curves

FIG. 4. A few modes within 70 < a/h < 71: (a) Frequency spectra; (b) Point A: a/h=70.29, Ω/ΩTE=1.000157276; (c)
Point B: a/h=70.46, Ω/ΩTE=1.000144497; (d) Point C: a/h=70.38, Ω/ΩTE=1.000800474; (e) Point D: a/h = 70.14, Ω/ΩTE =
1.001412358.
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in Fig. 2 near Ω/ΩTE =1. Clearly, the thickness-extensional displacement u(1)
3 dominates in these

modes and hence they are called the essentially thickness extensional modes. From (a) to (c), as a/h
increases, the dominance of u(1)

3 becomes stronger. This is because for longer plates the edge effects
that cause mode couplings are less influential. Therefore, in device applications, plates with large
values of a/h are with less mode couplings and are desirable as long as the requirements on size and
weight allow. The frequencies of these modes decrease very slightly as a/h increases, which is as
expected because the frequencies of the thickness-extensional mode are essentially determined by
the plate thickness 2h and depend very weakly on the length 2a, and therefore larger plates have
lower frequencies.

Fig. 4 shows four modes corresponding to the four points on the curves in Fig. 4 (a). Fig. 4 (b)
is for point A which is in the middle of the flat part of the curves near Ω/ΩTE=1. It is an essentially
thickness-extensional mode with a dominating u(1)

3 . Fig. 4 (c) is for point B which is near the end

of a flat part in Fig. 4 (a). It is still thickness-extensional although u(1)
3 is less dominating compared

to Fig. 4 (b). This mode can still be used in devices but it is not as ideal as the mode in Fig. 4 (b).
In Fig. 4 (d) which is for point C, no plate displacement component is dominating although the
second-order thickness-shear displacement u(2)

1 is larger than the other displacements. This mode is
simply not useful for devices. The mode in Fig. 4 (e) corresponds to point D in Fig. 4 (a) which in a
flat part of the curves that is not one of those that are very close to Ω/ΩTE=1. Its displacement u(1)

3

is much larger than other displacements. However, u(1)
3 has two nodal points (zeros) along the plate.

This causes the cancellation of charges on the electrodes produced by the thickness-extensional strain
through piezoelectric coupling, and, as a consequence, lowers the capacitance of the resonator which
is undesirable. Therefore this mode is not useful in applications.

Fig. 5 shows a few modes with large values of a/h. The one in Fig. 5 (b) is a nice essentially
thickness-extensional mode with a strongly dominating u(1)

3 . The two other modes are also essentially
thickness-extensional but they correspond to the flat parts of the curves in the frequency spectra at

FIG. 5. A few modes within 120 < a/h < 121: (a) Frequency spectra; (b) Point A: a/h=120.39, Ω/ΩTE=1.000053146; (c)
Point B: a/h=120.31, Ω/ΩTE=1.000477682; (d) Point C: a/h=120.15, Ω/ΩTE=1.001323741.
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higher places. Both of these two modes have nodal points and hence the related charge cancellation
as discussed after Fig. 4, and are not very useful in devices.

V. CONCLUSION

In FBARs, the operating thickness-extensional mode is coupled to the in-plane extension, flexure,
fundamental and second-order thickness-shear modes. The frequency spectra obtained show that these
couplings are sensitive to the plate length/thickness ratio. To avoid strong couplings to unwanted
modes, a discrete series of values of the length/thickness ratio need to be avoided in design. The
essentially thickness-extensional modes are more pure for plates with larger length/thickness ratios.
The plate equations derived in our previous paper26 are ready to be used and are effective in the
modeling of mode couplings in FBARs. They can be used to produce the frequency spectra and
predict when the mode coupling is weak or strong.
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