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1. Introduction

The transient response of fins is important in a wide range of 
engineering devices including heat exchangers, clutches, motors 
and so on. The authors’ interest in this topic grew out of analy-
sis of transient data for determination of surface heat transfer co-
efficients on railroad roller bearings, in which the outer race of the 
bearing is treated as a fin. Next a review of literature is given in 
the areas of transient fins and in transient experiments for estima-
tion of heat transfer coefficients.

There are several papers on transient heat transfer in fins, start-
ing with Chapman [1] who studied the transient behavior of an an-
nular fin of uniform thickness subjected to a sudden step change in 
the base temperature. His interest in circular annular fins stemmed 
from the numerous applications of these types of fins, especially 
on cylinders of air-cooled internal combustion engines. Chapman 
developed equations that give the temperature distribution within 
the fin, the heat removed from the source, and the heat dissipated 
to the surroundings, all as functions of time. He also presents his 
equations in graphical form for the use of design engineers. Don-
aldson and Shouman [2] studied the transient temperature dis-
tribution in a convecting straight fin of constant area for two dis-
tinct cases, namely, a step change in base temperature, and a step 
change in base heat flow rate. The tip of the fin is insulated. The 
authors developed the equations for the transient temperature dis-
tribution and the heat flow rate for the two aforementioned cases, 
and present their results graphically. Also included is a summary 
of their experimental work to verify their results for the case of a 

step function in heat flow rate. In a series of papers, Suryanarayana 
[3, 4] also studied the transient response of straight fins of constant 
cross-sectional area. However, rather than using the separation of 
variables technique followed by Donaldson and Shouman, he uti-
lized the Laplace transforms in order to develop the solutions for 
small and large values of time when the base of the fin is subjected 
to a step change in temperature or heat flux. The tip of the fin is 
insulated. In addition, the use of the Laplace transforms made it 
easier for Suryanarayana to develop solutions for the case of a fin 
subjected to a sinusoidal temperature or heat flux at its base. His 
second paper on the subject provided an analysis of the heat trans-
fer that takes place from one fluid to another separated by a solid 
boundary with fins on one side. Mao and Rooke [5] also used the 
Laplace transform method to study straight fins with three differ-
ent transients: a step change in base temperature; a step change in 
base heat flux; and, a step change in fluid temperature.

Transient fins of constant cross-section have also been stud-
ied with the method of Green’s functions [6, pp. 60–64], a flexi-
ble and powerful approach that are applicable to any combination 
of end conditions on the fin. Kim [7] developed an approximate 
solution to the transient heat transfer in straight fins of constant 
cross-sectional area and constant physical and thermal properties. 
The author utilized the Kantorovich method in the variational for-
mulation to provide a simpler expression of the exact form of the 
solution.

In some fin applications, Newton’s law of cooling is not appli-
cable, and a power-law type dependence of convective heat flux 
on temperature better describes the cooling process. Such cases in-
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clude cooling of fins due to film boiling, natural convection, nucle-
ate boiling, and radiation to space at absolute zero. Aziz and Na 
[8] considered the transient response of a semi-infinite fin of uni-
form thickness, initially at the ambient temperature, subjected to a 
step change in temperature at its base, with fin cooling governed 
by a power-law type dependence on temperature difference. The 
choice of a semi-infinite geometry enabled the transformation of 
the governing nonlinear partial differential equations into a se-
quence of similarity type linear perturbation equations. Aziz and 
Na also discussed the applicability of the results to finite fins.

Aziz and Kraus [9] present a variety of analytical results for tran-
sient fins, developed by separation of variable and Laplace trans-
form techniques. Results discussed include rectangular fins with 
three different base conditions, rectangular fins with power-law 
convective heat loss, and radial fins, along with several specific ex-
amples. Aziz and Kraus also present a comprehensive literature re-
view. The material on transient fins of constant cross-section is also 
included in a book by Kraus, Aziz and Welty [10, ch. 16].

The work discussed so far has focused on the transient re-
sponse of fins of simple geometry such as circular annular fins 
and straight fins. In addition, several simplifying assumptions 
were utilized such as uniform thickness, constant cross-sectional 
area, semi-infinite length, insulated tip, and small fin thickness-to-
length ratio to ensure one-dimensional heat conduction. Recently, 
work has included fins of various shapes and cross-sections, two- 
and three-dimensional heat transfer, and practical applications of 
finned heat exchangers. Tseng et al. [11] analyzed the transient 
heat transfer in two-dimensional straight fins of various shapes 
subjected at their base to a decayed exponential function of time 
in heat flux. The latter authors used Laplace transforms and in-
tegral methods to obtain solutions. The same solution technique 
was also utilized by Cheng and Chen [12] to study the transient 
response of annular fins of various shapes exposed to specified 
heat flux at the base. The shapes studied were fins with rectan-
gular, triangular, and parabolic profiles. Approximate treatment 
of two-dimensional heat conduction in short rectangular fins was 
carried out by Ju et al. [13] with a perturbation technique, by Onur 
[14] with an averaging technique, and by Singh [15] by a varia-
tional method. These studies account for cross-axis heat conduc-
tion in short fins.

Campo and Salazar [16] explored the analogy between the tran-
sient conduction in a planar slab for short times and the steady-
state conduction in a straight fin of uniform cross-section. They 
made use of a hybrid computational method, known as the Trans-
versal Method Of Lines (TMOL), to arrive at approximate analyt-
ical solutions of the unsteady-state heat conduction equation for 
short times in a plane having a uniform initial temperature and 

subjected to a Dirichlet boundary condition. The resulting solu-
tions are suitable for obtaining quality short-time temperature 
distributions within the slab when it is subjected to a Dirichlet 
boundary condition, or a Robin boundary condition for which the 
convective heat transfer coefficient is very large and/or the ther-
mal conductivity of the slab material is very small. In an applica-
tion type study, Saha and Acharya [17] conducted a detailed para-
metric analysis of the unsteady three-dimensional flow and heat 
transfer in a pin-fin heat exchanger. The work was motivated by 
the desire to enhance the performance of compact heat exchang-
ers, which are designed to provide high heat transfer surface area 
per unit volume and to alter the fluid dynamics to enhance mix-
ing. There have been several numerical studies of transient fins 
combined with complicating factors, such as natural convection 
[18, 19], spatial arrays of fins [20–22], and phase change materi-
als [23].

There are few publications on transient experiments for deter-
mining heat transfer coefficients in fins. Mutlu and Al-Shemmeri 
[24] studied a longitudinal array of straight fins suddenly heated 
at the base. The instantaneous heat transfer coefficient was found 
at one point on the fin as a ratio of the measured temperature to 
the measured heat flux. There are several papers on inverse tech-
niques for determination of heat transfer coefficient from tem-
peratures measured in compact bodies suddenly placed in a con-
vection environment [25–29]. In these studies, the heat transfer 
coefficient is found from a systematic comparison between the 
transient data and a mathematical model of the heat conduction in 
the body of interest.

The purpose of this paper is to introduce numerically efficient 
solutions for the transient heat transfer in flux-base fins. The con-
tributions of this paper are: first, a unified presentation of tran-
sient-fin solutions for three different tip conditions; second, im-
provement of convergence of the series solutions; and third, for 
the insulated-tip case, introduction of a closed-form quasi-steady 
solution. The usefulness of the quasi-steady solution is demon-
strated by a comparison with experimental data. The paper is di-
vided into sections on the exact transient solution, improvement 
of series convergence, the quasi-steady solution, an experimental 
example, and conclusions.

2. Exact solutions for flux-base fins

Traditional fin analysis describes a long, thin, high-conductiv-
ity body with a specified temperature on one end and a convec-
tion condition over the surface. The temperature distribution in 
the fin depends on the competing effects of conduction along the 
fin and convection from the surface of the fin.

Nomenclature

Ah surface area of fin for convection (m2)
Bi Biot number, hi(V/Ah)/k
B2 Biot number, hL/k
G Green’s function
h heat transfer coefficient (W m−2 K−1)
k thermal conductivity (W m−1 K−1)
L length of fin (m)
Nn norm, Equation (31) (m)
m fin parameter, Equation (1), (m−1)
M dimensionless fin parameter = mL
qo heat flux (W m−2)
Q input heat (W)
T temperature (K)
t time (s)

V fin volume (m3)
W transformed temperature, Equation (25)

Greek

 thermal diffusivity (m2 s−1)
βn eigenvalue, Equation (31)
δ	 cylindrical shell thickness, m
θ	 dimensionless temperature
ξ	 dimensionless x-coordinate
τ	 dimensionless time

Superscripts

L lumped capacitance
q quasi-steady

s steady-state
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In this section, we present solutions for the transient temper-
ature in flux-base fins. Consider a straight fin initially in equilib-
rium with the surrounding fluid environment at temperature 
Te. The fin has a constant cross-sectional area, but may be of any 
shape (pin, rectangular, etc.). For time t > 0 a steady heat flux is 
applied to the base of the fin. The temperature in the fin satisfies 
the following equations

(1)

(2)

(3)

(4)

Quantity m is the fin parameter given by m = (hAh/kV)1/2. The 
boundary condition at x = L is a general condition that represents 
one of three different tip conditions for the fin. For a tip condition 
of the first kind, setting k2 = 0 and h2 = 1 represents a specified end 
temperature (at T = Te). For a tip condition of the second kind, set-
ting k2 = k and h2 = 0 represents an insulated-end condition. For a 
tip condition of the third kind, setting k2 = k represents convection 
at x = L. It is not necessary that the convective coefficient at the 
end of the fin be the same as that along the sides of the fin (i.e. h2 ≠ 
h in general), but often h2 = h is used.

The details of the unified solution, for all tip conditions, are 
given in Appendix A. Here, the results will be written out for three 
tip conditions. For the temperature-end condition (first kind),

where βn  = (n – ½)π;                                          (5)

for the insulated-end condition (second kind),

where βn  = nπ;										 																																								(6)

and, for the convection-end condition (third kind),

where β	satisfies βn  tan βn  = B2                                    (7)
and where B2 = h2L/k.

Each solution contains a series that should be considered 
in two parts: a transient part with an exponential factor; and, a 
steady part with no exponential factor. Each of the transient se-
ries contains an exponential factor with argument (m2L2 + βn

2)t/L2, 
which defines the rate of decay of the transient. The decay rate de-
pends on fin effects (through m2L2) and also on the tip condition 
(through βn

2).
The steady part of the series converges slowly in each case, on 

the order of 1/(n2π2). Many terms of the series must be evaluated 
for accurate numerical values, requiring potentially long com-
puter-evaluation times. In the next section, the convergence speed 
of the exact solution is improved by replacing the steady series 
with a fully summed form.

3. Improvement of series convergence

It has long been known that classic solutions for the temper-
ature in a body heated on a boundary contain a slowly converg-
ing steady-state series [30]. In this section, the convergence of the 
transient solution is improved by replacing the steady series by 
a fully summed form. Although the steady-fin solutions are well 
known, a unified solution is presented with the method of Green’s 
functions.

The steady temperature satisfies the following equations:

(8)

(9)

(10)

Again, the boundary condition at x = L represents three kinds of 
tip conditions. Using the method of Green’s functions, the steady-
fin temperature has the form [31]

(11)

The symbol for Green’s function GX2J denotes a Cartesian co-
ordinate system (symbol X), boundary of the second kind at x = 0 
(symbol 2), and boundary of type J at x = L (symbol J) for J = 1, 2, 
or 3. This numbering system is used to catalog the many GF avail-
able on the GF Library web site [32].
Green’s function GX2J for the steady-fin is given by

(12)

where D = 2m(1 – R · e–2mL). 

Coefficient R is determined by the tip condition:

(13)

and where B2 = h2L/k.
The above GF may be evaluated at x′ = 0 and substituted into 

the above temperature expression, Equation (11), to give

(14)

where coefficient R is given above.
Alternately, steady-fin solutions may be obtained from com-

puter program TFIN described previously [31] that produces an-
alytical expressions for the steady temperature in fins under a va-
riety of boundary conditions. Program TFIN is also available for 
download at the Green’s Function Library [32].

Next the closed-form steady solutions given above are used in 
the transient-fin solutions given earlier to replace the slowly con-
verging series. The improved-convergence form of the transient 
temperature in flux-base fins are given by: for the temperature tip 
condition (first kind),

(15)
where βn  = (n – ½)π;
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for insulated-tip condition (second kind),

where βn  = nπ;                                                       (16)

and, for the convection tip condition (third kind),

where β	satisfies   βn  tan βn  = B2                                 (17)

and where B2 = h2L/k.
It is instructive to examine these three temperature solutions as 

a group. Each contains a steady term, and each contains a transient 
series term. However, the insulated-tip solution uniquely contains 
another term, a non-series transient. The significance of this non-
series transient term will be addressed in the next section.

4. Quasi-steady solution

The insulated-tip fin is of interest for our particular applica-
tion. The exact temperature expression for this case contains three 
terms (not two): a steady term, a series term, and a non-series 
transient term. The series contains an exponential factor with ar-
gument (m2t + βn

2t/L2) and the non-series transient contains an 
exponential factor with smaller argument (m2t). By comparing 
these arguments, it is clear that as time increases the series term 
will decay more rapidly. This suggests that a quasi-steady solu-
tion may be constructed of the form

Tq(x,t) = Ts(x)+TL(t)                       (18)

Here, Ts is the steady solution and TL is the non-series transient 
term from Equation (16). Symbol TL is used to denote “lumped-ca-
pacitance”, because the non-series transient term is identical to the 
transient portion of a lumped-capacitance model. Mathematically, 
there is another view of term TL. This term arises from that portion 
of the Green’s function associated with the zero eigenvalue, βn = 0, 
so that TL is the n = 0 term of the transient series for the fin temper-
ature. In this view, the quasi-steady approximation is akin to the 
one-term transient solutions in compact bodies charted many years 
ago by Heisler [33]. Unlike the Heisler solutions, however, for tran-
sient fins there is a spatially varying steady-state solution, and be-
cause of the zero eigenvalue, term TL is a function of time only.

The quasi-steady solution is an easily computed algebraic ex-
pression, containing no infinite series. Based on the above discus-
sion of exponential arguments, the quasi-steady solution should 
be accurate for later time. The numerical results given in the next 
section are presented with the following dimensionless variables:

(19)

Here, M is the dimensionless fin parameter. With these parame-
ters, the dimensionless quasi-steady temperature is given by

(20)

and the (dimensionless) exact fin temperature from Equation (6) 
is given by

(21)

4.1. Accuracy of quasi-steady solution

The quasi-steady solution is compared with the exact transient 
solution to determine the conditions under which the quasi-steady 
solution is accurate. Figure 1 shows the (dimensionless) tempera-
ture versus position for three different times, all for fin parame-
ter M = 1. This plot shows that the temperature distribution has 
a similar shape at each time, and the fixed-shape distribution is 
shifted upward to higher temperatures as time increases. The 
quasi-steady and exact temperatures agree closely except at early 
time (τ	< 0.2).

Figure 2 shows the (dimensionless) temperature versus time at 
three different positions on the fin, all for M = 1. For τ	< 0.2 the 
quasi-steady theory overestimates the exact values at x/L = 0 and 
underestimates the exact values at x/L = 1.0. For all locations the 
agreement improves as time increases.

Figure 3 shows temperature versus time at x = 0 for M = 0.2, 
1, and 5. At M = 5 the fin transient ends quickly so that this fin 
reaches steady-state at about τ = 0.1. As M decreases the tempera-
ture distribution takes longer and longer to reach steady-state. Fin 
parameter M may be interpreted as a ratio of thermal resistances: 
specifically, M2 is the thermal resistance along the fin length di-
vided by the convective thermal resistance from the surface of the 
fin. Thus when M is small, the convective thermal resistance from 
the surface of the fin is large compared to the thermal resistance 
along the fin, producing a long, slow transient.

Specific values of the percent error in the quasi-steady the-
ory are given in Table 1 for several values of dimensionless time  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Temperature distribution in a fin of constant cross-section 
for both quasi-steady theory and exact theory for M = 1 at dimension-
less times 0.2, 1.0, and 5.0.
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and several values of fin parameter M, all at x/L = 1.0. Table 1 
shows that for M ≤ 1 the error is less than 4% for dimensionless 
time τ	≥ 0.35, and the error decreases rapidly as time increases. For 
M>1 the region of small error extends to earlier time, for example 
to τ	≥ 0.25 at M = 4. Error values for other locations on the fin (not 
shown) are smaller than the Table 1 values and have similar trends. 
That is, the Table 1 values are worst-case errors, and the guidelines 
given above provide higher accuracy at locations x/L<1.

A comparison of the computer time needed to evaluate numer-
ical values was carried out between the exact series expression and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 the quasi-steady expression. For each expression, the temperature 
was computed at 300 locations in the range (0 < x/L < 1), at 300 
times in the range (0 < t/L2 < 1), and at fin parameter values M 
= 0.2, 1.0, and 5, for a total of 270,000 temperature values. For this 
calculation the exact series expression required 92.8 s (for conver-
gence within 10–6) and the quasi-steady expression required 2.8 s, 
less computer usage by a factor of 33. This calculation was coded 
in Fortran 77 under the Solaris operating system running on a Sun 
Blade 2000 with dual 900 MHz processors.

4.2. Application to parameter estimation

Next, the use of the quasi-steady expression will be discussed 
in light of the motivating application for this work, that of deter-
mining the heat transfer coefficient from experimental tempera-
ture data. This is a parameter estimation problem, in which the 
theoretical model is used as part of a data analysis procedure. Spe-
cifically, the sum-of-square error between the theoretical temper-
ature history and the experimentally measured temperature his-
tory is minimized by varying the model parameters (in this case, 
the heat transfer coefficient). The heat transfer coefficient that min-
imizes the sum-of-square error is the “best estimate.” In the min-
imization process, the model is evaluated over and over again for 
different values of the parameters. The computation-intensive na-
ture of the minimization problem was part of our motivation in 
developing the quasi-steady theory reported here. We were also 
interested in a model that was easy to implement and easy to 
understand.

The quality of an estimate depends on the quality of the data, 
and data quality depends on the sensitivity of the data to the pa-
rameter of interest. The sensitivity in this case is the derivative of 
temperature with respect to the heat transfer coefficient. We have 
computed the normalized sensitivity in the form

(22)

where Bi is the Biot number (dimensionless heat transfer coeffi-
cient) and θ is dimensionless temperature Equation (21). Figure 
4 shows this sensitivity at x/L = 0 plotted versus dimensionless 
time for three values of fin parameter M. Values at other values of 
x/L (not shown) have similar trends. The important information 
visible in Figure 4 is that the sensitivity is larger at large dimen-
sionless times, and consequently experimental data at large times 
is most important for successful parameter estimation. The point 
of the discussion is that the quasi-steady model, accurate at large 
dimensionless times, is perfectly suited to estimation of the heat 
transfer coefficient in fins.

5. Application to thin cylindrical shell

The theory for a straight fin of constant cross-section may be 
extended to include a fin in the form of a thin cylindrical shell. We 
use this geometry to describe the heat transfer in the outer bear-

Figure 2. Temperature history in a fin of constant cross-section for 
both quasi-steady theory and exact theory for M = 1 at locations x/L 
=  0.0, 0.5, and 1.0.

Figure 3. Temperature history in a fin of constant cross-section for 
both quasi-steady theory and exact theory at location x/L = 0.0 for M 
=  0.2, 1.0, and 5.0.

Table 1. Percent error in quasi-steady temperature evaluated at x/L = 
1.0 for several values of time τ and fin parameter M

τ										M = 0.1    M = 0.2   M = 0.5    M = 1      M = 2      M = 3      M = 4

0.20 45.6969 45.4860 44.0465 39.3820 26.0504 14.0220 6.2012
0.25 17.0646 1.9760 16.3713 14.4189 8.9264 4.2077 1.4755
0.30 7.2802 7.2379 6.9498 6.0235 3.4694 1.4088 .3795
0.35 3.3684 3.3467 3.1989 2.7262 1.4533 .5010 .1011
0.40 1.6443 1.6326 1.5532 1.3007 .6388 .1845 .0274
0.45 .8333 .8268 .7828 .6438 .2900 .0694 .0075
0.50 .4341 .4304 .4055 .3273 .1347 .0264 .0020
1.00 .0013 .0012 .0011 .0007 .0001 .0000 .0000
2.00 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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ing race of railroad roller bearings, the motivating application for 
this research.

Consider a cylindrical shell with radius a and thickness δ for 
which δ	 a. The coordinate location on the shell is given by angle 
f. For a complete shell the domain is (0 < f < 2π) and for a partial 
shell the domain is (0 < f < f0). The transient-fin equation in the 
cylindrical shell is given by [6, ch. 8]

(23)

The thin-shell heat equation may be converted to the straight-fin 
equation, discussed earlier, by a simple 1:1 mapping. First let x = 
fL/f0 which maps domain (0 < f < f0) onto (0 < x < L). Then the 
radius of the thin shell must be related to the fin length by L = 
f0a. Now, rearrange these two relationships in the form f = fox/
L and a = L/f0 and replace these for a and f in the diffusion in 
Equation (23)

(24)

With this mapping, the diffusion term for the thin cylindrical shell 
has been converted into the diffusion term for the straight fin.

6. Transient heating of a static railroad roller bearing

This research is part of a larger study to determine the amount 
of heat needed to explain elevated temperatures that are occasion-
ally observed on the outside of railroad roller bearings. In this sec-
tion, an experiment is described for transient heating of a non-ro-
tating bearing, and experimental temperatures are compared to 
the quasi-steady theory.

A railroad class K (6 1/2 by 12) tapered-roller bearing was 
used for the non-rotating transient thermal experiment. Heat was 
supplied to the bearing by two rollers which contained cartridge-
type electrical-resistance heaters. Type-K thermocouples were 
mounted at several locations on the bearing as shown in Figure 
5. A large hose clamp was used to fix thermocouples 4 through 11 

to the outside of the cup (outer bearing race) at the same axial dis-
tance from the edge of the cup, corresponding to the middle of 
the hot rollers. Power was delivered to the two resistance heaters 
using two variable AC power supplies (variacs). Data acquisition 
was performed utilizing the Omega Engineering OMB-ChartScan-
1400 data acquisition system equipped with a 16-channel temper-
ature card. The voltage input to each resistance heater was mea-
sured using two CHY 20 multi-meters connected in parallel.

Each experiment was carried out as follows. First, the data ac-
quisition system was initiated, and 120 s worth of data were ac-
quired and displayed on-screen to ensure that all thermocouples 
read room temperature. Both variacs were then adjusted to the de-
sired power output with the aid of the digital multi-meters. The 
voltage and current readings were continuously monitored and 
recorded every hour to obtain an average power input for each 
of the two heaters. The data was collected at 1-s intervals, and the 
data-acquisition software produced a spreadsheet that consisted 
of 17 columns of data with the first column containing the time 
stamp (at 20-s intervals), and the remaining 16 columns contain-
ing the temperature data (averaged over 20-s intervals) from the 
16 thermocouples, respectively. A more complete discussion of 
the experimental procedure is given elsewhere [34, 35].

A comparison between experimental data and the model is 
shown in Figure 6. Experimental thermocouple data are shown for 
thermocouples 6, 7, and 8 corresponding to locations 90 degrees, 
135 degrees, and 180 degrees from the heating location. For the 
model, the suddenly applied heat was taken to be introduced at 
f = 0 and location f = 180 degrees was treated as the insulated-
end of the fin, by symmetry. Model values used to describe the 
hardened steel cup are given in Table 3. The best-fit value of the 
heat transfer coefficient, h = 27.2 W m−1 K−1, was found by a least-
square regression between the transient data and the model, car-
ried out with the regression tool from a widely available spread-
sheet program. Because the quasi-steady model is not accurate at 
early time, data for the curve fit was limited to t > 1140 s (τ	> 0.12). 
Figure 6 shows that the quasi-steady model provides a reasonable 
fit to the experimental data in this time range.

Figure 4. Normalized sensitivity of temperature to Biot number at x/L 
= 0.0 for M =  0.2, 1.0 and 5.0. The maximum sensitivity occurs at later 
time for each case.

Figure 5. Schematic of the railroad roller bearing used for transient 
heating tests. Thermocouples 4 through 11 are evenly spaced (every 
45 degrees) around the outside of the outer bearing race (cup). The 
two heated rollers are adjacent to thermocouple 4.
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7. Conclusion

We have presented a unified theory for transient heat trans-
fer in flux-base fins for three tip conditions. The method may be 
easily extended to fins with other base conditions. For the partic-
ular case of a straight fin with an insulated tip, we have presented 
a quasi-steady theory in the form of a simple, non-series expres-
sion. We expect that the quasi-steady approach could be applied 
to other transient-fin geometries with an insulated tip, for exam-
ple the radial fin or other tapered fins for which exact analytical 
expressions are difficult or unavailable.

A comparison with an exact series solution for the fin transient 
shows that the quasi-steady theory is accurate within 4% for dimen-
sionless times greater than 0.35 for small values of the fin parame-
ter M. For M > 1 the accurate range extends to earlier dimensionless 
times. The accuracy increases for large dimensionless times, where 
the sensitivity to heat transfer coefficient is largest. The quasi-steady 

theory is simple and efficient for computing numerical values com-
pared to the exact series solution (33 times faster).

The quasi-steady theory lends itself to repetitive calculations, 
such as those required for parameter estimation of heat transfer 
coefficients. Temperatures measured in a transient heating exper-
iment, carried out on a non-rotating railroad roller bearing, were 
used to find the heat transfer coefficient by a least-square fit com-
parison with the quasi-steady theory. The results show that the 
quasi-steady fin model is a simple way to find heat transfer co-
efficients associated with heat loss from the outside of the bear-
ing. The heat transfer coefficients obtained by this method are in-
tended for future use as an external boundary condition for more 
elaborate thermal models of this type of bearing.

Appendix A. Transient fin, exact solution

In this appendix, the series solution for the transient temper-
ature in a flux-base fin is developed by the method of Green’s 
functions.

First, a transformation [36] is used to remove the fin term from 
the heat conduction equation. Let

T – Te = We–m2t         (25)

and then transform Equations (1)–(4) to give

∂2W/∂x2 = -1 ∂W/∂t ; 0 < x < L            (26)

at t = 0,             W(x, 0) = 0                      (27)

at x = 0,      –k∂W/∂x = q0em2t                 (28)

at x = L,      k2∂W/∂x + h2W = 0              (29)

This transformed problem may be solved by the method of 
Green’s functions in the form [6, p. 165]

(30)

The Green’s function associated with function W is that for a plane 
wall, given by [32]

(31)

The first term (for n = 0) is needed only for a type 2 (insulated) 
boundary at x = L. Eigenfunctions Xn, eigenvalues βn, and norm 
Nn are determined by the boundary conditions on the fin. For the 
flux-base fins of interest here, the eigenfunctions are

Xn(βn) = cos(βnx/L)         (32)     

and the eigenvalues and norms are given in Table 2. The number 
system in Table 2 for the three cases listed is X2J where J = 1, 2, or 
3 to represent tip conditions of the first kind (temperature), second 
kind (insulated), or third kind (convection), respectively.

After the time integral in Equation (30) is evaluated, the trans-
formation in Equation (25) can be reversed to find temperature T 
in the form

(33)

Again, the first term is only used when the fin tip is insulated (See 
Kraus et al. [10, p. 765] for an independent derivation of the in-
sulated-tip case). The above expression, with the eigenvalues and 
norms given in Table 2, is limited to fins with a specified heat flux 

Figure 6. Data from thermocouples 6, 7, and 8 for transient heating 
of a static bearing, and quasi-steady theory at locations f = 90, 135, 
and 180 degrees. The best-fit value of the heat transfer coefficient is 
27.2 W m−2 K−1.

Table 2. Norm and eigenvalues or conditions

Case         L/Nn βn or eigencondition

X21 2 (n – 1/2)π
X22 2; n ≠ 0 nπ
 1; n = 0 
X23 2[βn

2 + B2
2]/[βn

2 + B2
2 + B2]  βn tan (βn) = B2

Table 3. Parameters for the outer bearing cup used for computing 
model values

Parameter                                  Value

a 1.42(10–5) m2 s−1

ka 51.2 W/m/K
L 0.373 m
δ 0.01125 m
Ah 0.1265 m2

V 0.001469 m3

a Evaluated at 60 °C.



An A l y s i s o f f l ux-b A s e f i n s f o r e sti m A ti o n o f h eA t tr A n s f e r c o e f f i c i en t   99

at the base (x = 0). However, the same approach could be used for 
fins with other base conditions with the appropriate plane-wall 
Green’s function. The plane-wall Green’s functions for the tem-
perature-base fin (type 1 boundary at x = 0) and the fin with the 
base temperature applied through a contact conductance (type 3 
boundary at x = 0) are available elsewhere (see [6], Appendix X, 
or [32]).
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